Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51475039).
Received Date:07 May 2019
Accepted Date:04 July 2019
Available Online:01 September 2019
Published Online:20 September 2019
Abstract:The interface dynamic behavior of borophene is one of the issues that need investigating for its applications. In this paper, the interaction between graphene and borophene, h-BN is investigated. The results show that the interactions between C atoms and B atoms are weaker than those between C atoms and N atoms when graphene slides on h-BN substrate. The corrugation of interface potential between graphene and borophene is smaller than between graphene and h-BN, which implies smaller friction. Moreover, the pull-out force in the simulation system including graphene and borophene is smaller than the interaction between graphene and h-BN, which indicates a weaker boundary effect. Therefore, borophene promises to exhibit an excellent tribological behavior in application. Keywords:borophene/ graphene/ corrugation of interface potential/ friction
全文HTML
--> --> -->
2.模型和方法本文建立了两种模型, 包括石墨烯在h-BN基底上滑动以及石墨烯在硼烯基底上滑动的模型. 其中为了简化计算, h-BN和硼烯基底均固定, 滑动的石墨烯片为刚性, 并在滑动过程中保持匀速. 模型示意图如图1所示, 其中模型a, b分别为石墨烯/h-BN和石墨烯/硼烯组成的模型. 考虑到石墨烯和h-BN均为六角形蜂巢结构, 为了方便计算模型的尺寸, 可定义两个参数a0 = 0.142 nm和a1 = 0.246 nm, 如图1(a)中所示. 对于模型a, 固定h-BN的尺寸为: Lx = 3.37 nm, Ly = 2.18 nm, N = 256; 模型b中固定硼烯的尺寸为: Lx = 3.33 nm, Ly = 2.00 nm, N = 272. 其中Lx, Ly分别指两组模型中固定基底(硼烯和h-BN)在x, y方向上的长度; N为原子个数. 值得注意的是, 由于模型的简化, 该模型的建立仅适用于二维平面、无褶皱的结构, 若应用于二维结构中存在较大褶皱的情况时则会存在构型不准确的问题. 两组模型中滑动石墨烯片尺寸的计算公式如下: 图 1 石墨烯在固定基底上滑动的模型 (a) 石墨烯在h-BN上, 模型a; (b) 石墨烯在硼烯上, 模型b Figure1. Graphene slides on substrates: (a) On h-BN, model a; (b) on borophene, model b.
表1Lennard-Jones势函数参数表 Table1.Parameters for Lennard-Jones potential.
-->
3.1.石墨烯与h-BN之间的相互作用
由于h-BN在结构上是由B原子和N原子交替连接而成的多个正六边形, 因此分析石墨烯在h-BN上的滑动能够比较由于原子类型的不同而导致的界面间势能起伏的差异. 在h-BN上滑动的石墨烯片由28个原子组成, 其中hx = 2, hy = 3, 在x, y方向上的长度分别为0.57, 0.74 nm. 本文对石墨烯与h-BN之间法向载荷Fz为25, 50, 75, 86, 100, 125和150 nN的情况进行了计算. 由于不同载荷下界面间的作用力和势能曲线具有相似性, 这里选择载荷为86 nN的情况进行讨论. 石墨烯中C原子与h-BN中B, N原子间的相互作用以及石墨烯与h-BN间的总作用力和势能如图2所示. 图2(a)显示了滑动过程的三个阶段. 阶段I, 石墨烯从开始进入至刚好完全进入h-BN的过程; 阶段II, 石墨烯在h-BN上滑动的过程; 阶段III 石墨烯从即将开始滑离h-BN至完全滑出h-BN的过程. Ps为阶段I最后时刻所对应的势能数值, Pb为阶段II中势能最大值与最小值的差值, 即界面间势能起伏的幅值. 界面间的最大作用力产生在石墨烯片完全进入h-BN以及石墨烯片即将开始滑离h-BN的时刻, 可将其命为拉出力, 意为滑动片滑离h-BN时需克服的层间作用力, 记作Fexit, 如图2(b)所示. 图 2 石墨烯与h-BN在相对滑动过程中的层间作用力FLJ与势能VLJ (a) 石墨烯与h-BN之间的势能; (b) 石墨烯与h-BN之间的作用力; (c) 石墨烯中的C与N原子的相互作用; (d) C与B原子的相互作用 Figure2. Force and interface potential between graphene and h-BN during the sliding process: (a) The interface potential from phase I to phase III; (b) the force between graphene and h-BN; (c) the interaction between C and N atoms; (d) the interaction between C and B atoms.
在石墨烯与硼烯组成的模型中, 基本设定与前一模型类似. 石墨烯依然由28个原子组成, 其中hx = 2, hy = 3, 在x, y方向上的长度分别为0.57, 0.74 nm. 法向载荷Fz也选择25, 50, 75, 86, 100, 125和150 nN进行计算. 图3显示了当界面法向载荷为86 nN时石墨烯与硼烯之间的范德瓦耳斯力和势能图, 曲线形式与石墨烯和h-BN之间的相互作用类似. 图4(a)和图4(b)分别为不同的载荷下, 石墨烯与硼烯和h-BN之间的势能起伏Pb和拉出力Fexit. 可以看出载荷在25—150 nN之间时, 在相同的载荷下, 石墨烯和硼烯之间的势能起伏更小. 由于界面间作用力与势能之间为偏导关系(见(5)式), 势能起伏小意味着界面间相互作用力弱, 摩擦力更小. 此外, 由图4(b)可以看出, 在相同的载荷下石墨烯与硼烯之间的拉出力也更小. 这一结果表明石墨烯与硼烯之间的摩擦可能更小, 并且边界效应更不明显. 图 3 石墨烯与硼烯相对滑动过程中界面间的相互作用力和势能 Figure3. Force and interface potential between graphene and borophene during the sliding process.
图 4 不同载荷下石墨烯与h-BN和硼烯之间势能起伏和拉出力 (a) 势能起伏Pb; (b) 拉出力Fexit Figure4. Corrugation and pull out force between graphene and h-BN, borophene under different load: (a) Pb; (b) Fexit.