1.Department of Physics and Energy, Chongqing University of Technology, Chongqing 400054, China 2.Department of Physics, Huaqiao University, Xiamen 361021, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11675132, 11775084), the Fujian Natural Science Foundation of China (Grant No. 2016J01021), and the Scientific Research Foundation of Chongqing University of Technology of China (Grant No. 2019ZD22)
Received Date:06 June 2019
Accepted Date:01 July 2019
Available Online:01 September 2019
Published Online:20 September 2019
Abstract:According to the theories of the solid physics and irreversible thermodynamics, the performance characteristics of a novel high-efficient graphene thermionic power device (TPD) are studied. The temperature of the cathode plate and anode plate are determined by solving the energy balance equation of hot and cold sides of the TPD. The effects of the output voltage and the work function of the cathode on the volt-ampere characteristics of the TPD and the temperature of the two electrodes are analyzed to determine the parametric characteristics of the TPD at the maximum power density and efficiency. The power density and efficiency are compromised, and the parametric optimal designs are given. The influence of the temperature of heat source at high temperature on optimization performance is analyzed. The results obtained here can provide theoretical guidance for developing the thermionic energy conversion devices. Keywords:thermionic power device/ graphene/ work function/ performance optimization
$FF$的值越接近1则表示TPD的性能越好. 利用(1)—(6)式和数值计算, 可得TPD的功率密度和效率随阴极功函数和输出电压变化的等高线图, 如图3所示, 其中相关参数的取值与图2相同. 给定电压V时, 根据$V = \left( {{\varPhi _{\rm{C}}} - {\varPhi _{\rm{A}}}} \right)/q$及(3)和(4)式可知, 当${\varPhi _{\rm{C}}}$增大时, ${\varPhi _{\rm{A}}}$随${\varPhi _{\rm{C}}}$线性增大, 导致热离子激发电流密度${J_{\rm{C}}}$和${J_{\rm{A}}}$减小, 而两个极板的温差${T_{\rm{C}}} - {T_{\rm{A}}}$随${\varPhi _{\rm{C}}}$的增加而增加, 从而导致净电流密度$J = {J_{\rm{C}}} - {J_{\rm{A}}}$随V的变化存在极值. 另外, 图2(c)已证明给定${\varPhi _{\rm{C}}}$时, 存在优化功率密度${P_{{\rm{opt}}}}$和相应的优化值${V_{{\rm{opt}}}}$和${J_{{\rm{opt}}}}$, 进而可以同时优化阴极功函数和电压得到最大功率密度${P_{\max }}$和效率${\eta _{\max }}$. 尽管如此, 图3显示在不同的阴极功函数和输出电压取得最大功率密度和效率, 在取${\eta _{\max }}$时的阴极功函数和输出电压均大于取${P_{\max }}$时的阴极功函数和电压, 这主要是由TPD内外部的不可逆热损失所导致的. 图 3 (a) TPD的功率密度和(b)效率随输出电压和阴极板功函数变化的三维图 Figure3. Three-dimensional graphs of (a) the power density and (b) the efficiency varying with the output voltage and the work function of the cathode.
为了进一步确定TPD参数的优化区间, 给定阴极功函数, 通过优化电压V, 可得到优化功率密度${P_{{\rm{opt}}}}$和效率${\eta _{{\rm{opt}}}}$, 如图4(a)和图4(b)所示, 其中相关参数的取值与图2相同. 图4(a)和图4(b)显示优化功率密度和效率随电压的增加先增加后减小, 当${\varPhi _{\rm{C}}} = {\varPhi _{\rm{C}}}{,_P}$和${\varPhi _{\rm{C}}} = {\varPhi _{\rm{C}}}{,_\eta }$时, 功率密度和效率分别达到最大值${P_{\max }}$和${\eta _{\max }}$, 并且${\varPhi _{\rm{C}}}{,_P} < \varPhi _{{\rm{C,}}\eta} $. 根据${\varPhi _{{\rm{C}},P}}$和${\varPhi _{{\rm{C}},\eta }}$可确定TPD处于${P_{\max }}$和${\eta _{\max }}$时电压的最佳值为${V_P}$和${V_\eta }$. 同时, 图4也显示了优化功率密度和效率时功函数的取值均是电压的单调递增函数. 当$V < {V_P}$时, ${P_{{\rm{opt}}}}$和${\eta _{{\rm{opt}}}}$随V的减小而降低; 而当$V > {V_\eta }$时, ${P_{{\rm{opt}}}}$和${\eta _{{\rm{opt}}}}$随V的增加而减小. 因此, ${V_P} \leqslant V \leqslant {V_\eta }$和${\varPhi _{\rm{C}}}{,_P} \leqslant {\varPhi _{\rm{C}}} \leqslant {\varPhi _{\rm{C}}}{,_\eta }$为TPD的优化区间. 当电压和功函数处于该优化区间时, 图4(c)性能特征曲线中负斜率部分是功率密度和效率的优化区间, 即: ${P_\eta } \leqslant {P_{{\rm{opt}}}} \leqslant {P_{\max }}$和${\eta _P} \leqslant \eta \leqslant {\eta _{\max }}$, 其中${P_\eta }$和${\eta _P}$分别是$\eta = {\eta _{\max }}$时的功率密度和$P = {P_{\max }}$时的效率. 图 4 (a) TPD的优化功率密度和阴极功函数, (b)优化效率和阴极功函数随电压变化的曲线以及(c)性能特征曲线${\eta _{{\rm{opt}}}}{\text{-}}{P_{{\rm{opt}}}}$ Figure4. Curves of (a) the optimal power density and work function, (b) the optimal efficiency and work function varying with the voltage, and (c) the performance characteristic of TPD.