1.School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China 2.Aviation Key Laboratory of Science and Technology on Generic Technology of Self-LubricatingSpherical Plain Bearing, Yanshan University, Qinhuangdao 066004, China 3.AGC Automotive (China) Co., Ltd., Qinhuangdao 066004, China
Fund Project:Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51605418) and the Young Scientists Fund of the Natural Science Foundation of Heibei, China (Grant No. E2016203206)
Received Date:03 April 2019
Accepted Date:10 June 2019
Available Online:01 September 2019
Published Online:05 September 2019
Abstract: Velocity is an important factor affecting the friction coefficient of polymers. Polytetrafluoroethylene (PTFE), as a typical self-lubricating polymer, has attracted extensive attention because of its low friction coefficient. Currently, the friction coefficient of PTFE is investigated usually by using experimental method. The experimental study which is limited by the functionality and precision of the apparatus is inaccessible to the exploration of the microscopic tribological mechanism of PTFE. Therefore, the coarse-grained molecular dynamics simulation method is adopted in this study. In the coarse-grained model, one PTFE molecule is simplified into ten beads, including two end beads and eight backbone beads. The non-bonding and bonding interactions between beads are described by using Lennard-Jones (L-J) and multi-centered Gaussian-based potential. In order to investigate the effect of velocity on the friction coefficient of PTFE at an atomic level, we build a two-layer PTFE friction model by using the coarse-grained molecular dynamics simulation method. To directly compare the experimental results with the simulation results, we set the value of the externally applied load and the range of the velocities that match each other as closely as possible. The mechanism of how the velocity affects PTFE friction coefficient is obtained at an atomic level through analyzing the bond length distribution, bond angle distribution, the deformation of the bottom PTFE molecules within the contact area, and the friction force and normal force as a function of simulation time. The simulation results show that the bond length and bond angle decrease, the deformation of the bottom PTFE molecules along the x-direction and the friction force increase with velocity increasing. This is because the bounce back caused by the deformed PTFE molecules enhances the friction force. The severer the deformation, the larger the friction force will be. However, when the velocity exceeds a critical velocity, the bond length and bond angle increase, the deformation of the bottom PTFE molecule and the friction force decrease with velocity increasing. This is most likely due to the fact that the bottom PTFE molecules within the contact area tend to tilt along the moving direction of the upper PTFE layer, thereby reducing the angle between the upper and the bottom PTFE molecules to an angle close to the angle of parallel sliding, finally resulting in the decrease of the friction force. The deformations of PTFE molecules along the z-direction are nearly invariable under different velocities. This corresponds to the variation of the normal force. Therefore, for a constant externally applied load, the friction coefficient first increases then decreases with velocity increasing. In addition, the critical velocity is 1.2 m/s, which is in line with the published experimental result. Keywords:polytetrafluoroethylene/ friction/ velocity/ molecular dynamics simulation
图5为摩擦系数随着速度的变化规律. 可见, 当外载荷保持不变时(31 MPa), 随着速度的增加, 摩擦系数先升高后降低. 这与已发表文献[10]的实验研究结果一致. 此外, 图5中误差棒的变化范围为0.0024—0.0407. 该范围介于平行滑动的最小误差(0.002)与垂直滑动的最大误差(0.089)之间[21]. 这是因为上、下层PTFE分子接触时, 上层PTFE分子与下层PTFE分子之间的夹角介于0°到90°之间, 即介于平行滑动与垂直滑动2种极限情况之间. 图 5 当外载荷为31 MPa时, 摩擦系数随速度的变化 Figure5. Effect of velocity on friction coefficient when the externally applied load is 31 MPa.
为了分析摩擦系数随速度先上升后下降的原因, 本文分析了3种速度下(0.1, 1.2和2.0 m/s), 接触区内(25 ? < x < 100 ?, z > 40 ?)下层PTFE分子形状变化及接触过程中摩擦力和正压力随模拟时间的变化. 23.3.速度对PTFE分子形状的影响 -->
3.3.速度对PTFE分子形状的影响
本文分析了3种速度下接触区内下层PTFE分子键长分布、键角分布及回转半径Rg (radius of gyration)的变化. 图6为不同速度下接触区内下层PTFE分子键长和键角的数量分布. 图6中数量越多意味着处于该键长和键角的粒子越多. 由图6(a)可见, 尽管接触区内大多数PTFE分子的键长在平衡距离附近(~2.7 ?), 但随着速度的增加, 处于平衡距离的粒子数先减少后增加, 间距处在2.37 ?附近的粒子数量先上升后下降. 接触区内的键角分布(图6(b))与键长分布相似, 大多数PTFE粒子处于平衡键角附近(~175°), 但随着速度的增加, 处于平衡键角的粒子数先减少后增加, 处于90°—140°范围内的粒子数先增加后减小. 这是因为随着速度的增加, 接触区内的PTFE分子被压缩, 导致接触区内PTFE分子的键长及键角均变小. 速度进一步增大时, 键长和键角多处在2.7 ?和175°位置, 产生这种现象的原因可能是上、下层PTFE分子的相互作用势导致接触区内下层PTFE分子沿上层PTFE分子移动方向倾斜[31], 分子链内粒子间的相互作用势使键长和键角多处在平衡值附近. 图 6 不同速度下接触区内下层PTFE的键长 (a)和键角分布 (b) Figure6. (a) Bond length and (b) bond angle distributions of the bottom PTFE molecules within the contact area under different velocities.
其中, zi, zj分别为一条分子链内粒子i和j的z方向坐标. 图7为Rgx与Rgz的概率密度分布. 概率密度值越大说明接触区内处于该状态的分子数越多. 本文将上、下PTFE层未发生接触时回转半径的概率密度分布作为参照. 对比Rgx与Rgz的参照曲线可见, Rgx的峰值介于6—8 ?之间, 而Rgz的峰值介于0—3 ?之间. 这说明上、下PTFE层未发生接触时, 下层PTFE分子大多沿x方向分布, 沿z方向略微弯曲. 由图7(a)可见, 当上层PTFE与下层PTFE接触且沿x方向移动时, Rgx的峰值明显下降. 随着移动速度的增加, Rgx峰值下降幅度先变大后变小. 这说明, 随着移动速度的增加, 接触区内PTFE分子沿着x方向的变形量先增大后减小. 这与图6中接触区内PTFE分子键长和键角的分布结果相符. 由图7(b)可见, 当上层PTFE所受外载荷不变时, Rgz的峰值虽有下降但随速度的变化并不明显. 这说明, 速度对接触区内PTFE分子沿z方向变形量的影响很小. 图 7 接触区内下层PTFE分子沿(a) x方向及(b) z方向的回转半径分布 Figure7. Distributions of radius of gyration along (a) x and (b) z directions of the bottom PTFE molecules within the contact area.
23.4.速度对摩擦力及正压力的影响 -->
3.4.速度对摩擦力及正压力的影响
图8为3种速度下摩擦力与正压力随模拟时间的变化. 由图8(a)可见, 随着模拟时间的增加, 摩擦力逐渐增加, 且随着速度的增加, 摩擦力先增大后减小. 由图8(b)可见, 尽管正压力随着模拟时间的增加而明显增加, 但不同速度下正压力几乎保持不变. 因此根据(9)式可得摩擦系数随着速度的增加而先增大后减小(图5). 图 8 (a) 摩擦力和(b) 正压力随模拟时间的变化 Figure8. (a) Friction force and (b) normal force as a function of simulation time.