Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51676137), the Natural Science Foundation of Tianjin City, China (Grant No. 16JCYBJC41100), and the National Science Fund for Distinguished Young Scholars, China (Grant No. 51525603).
Received Date:18 January 2019
Accepted Date:08 May 2019
Available Online:01 August 2019
Published Online:05 August 2019
Abstract:The impact of droplets on surfaces is a ubiquitous phenomenon, and reducing the droplet residence time is the aim of many studies because of the potential applications in self-cleaning, anti-icing, corrosion resistance, etc. This study identifies a mode of droplet bouncing (bouncing-with-spray) that can reduce the residence time significantly. And compared with the way of using complex microstructures on the substrate employed in previous studies, simply heating the substrate to reduce the residence time is novel and simple. The dimensionless residence time decreases down to about 40% compared with that from the traditional retraction-bouncing mode. The reduction in the residence time is due to the burst of vapor bubbles in the liquid film, which results in holes forming in the liquid film and consequently the liquid film recoiling from the holes. The reduction in the recoiling distance leads to the reduction in the recoiling time. Then a simplified theoretical model with considering the energy balance and the critical condition of the bubble burst is proposed. According to this theoretical model, a scaling law is proposed for the transition boundary between the retraction-bouncing mode and the bouncing-with-spray mode in the film boiling regime, and it accords well with our experimental data. This model can also explain the transition boundary between these two modes in the transition boiling regime. Keywords:droplet impact/ Leidenfrost effect/ residence time/ bouncing
全文HTML
--> --> -->
2.实验方法实验装置示意图见图1. 注射器中的液体在注射泵(Harvard Apparatus, Pump 11 elite Pico plus)的推力下以约4 μL·s–1流速经过一根注射管后到达平口针头顶端, 当液滴所受重力大于表面张力时, 液滴从针头顶端脱离. 随后液滴撞击到一片被铜板加热的抛光硅表面上(表面粗糙度小于0.5 nm). 实验中将两根K型热电偶分别置于距撞击点1 cm的两侧, 并通过PID控制器实现对壁面温度的控制(精度$ \pm \;1\;{\rm ^\circ C}$). 实验通过高速相机(Photron Fastcam SA1.1)捕捉水平视角和倾斜视角下的液滴撞壁过程. 背景光源为一个发光二极管(LED)灯. 在进行多次重复实验的条件下, 通过一个Matlab程序进行图像处理, 获得液滴的尺寸(水和甘油的混合物液滴直径为${D_0} = $ 2.8 mm, 水滴为2.2—3.4 mm, 乙醇液滴为1.6 mm, 标准差变化范围为0.020—0.022 mm)、液滴的撞击速度(V = 0.9—2.1 m·s–1, 标准差变化范围为0.006—0.009 m·s–1)及撞击过程中的液滴轮廓变化情况. 其中液滴的撞击速度, 通过在图像处理中计算撞击前两帧图片中液滴质心位移和时间间隔的比值得到. 本文通过改变甘油和水的混合物中甘油的质量分数来实现液滴黏度的改变, 实验中采用液体的物性参数见表1. 韦伯数用来定义液滴的动能和表面能的比值, 即 图 1 液滴撞击加热壁面的实验装置示意图 (a)水平视角; (b)倾斜视角 Figure1. Schematic diagram of the experimental setup for droplet impact on a heated surface: (a) Side-view; (b) aerial-view.
通过利用该时间尺度对液滴的驻留时间进行无量纲化, 研究者们得出的无量纲驻留时间为2.2—3.2[12,22,23]. 在本实验中, 回缩弹起模式下的无量纲驻留时间为2.3, 为了更清楚地表示液滴驻留时间的减少程度, 将雾化弹起模式下的驻留时间进行相同的无量纲化处理, 得出其无量纲驻留时间为1.4, 如图4所示. 因此, 相比于回缩弹起模式, 雾化弹起模式下液滴的驻留时间大约减少40%. 图 4 回缩弹起模式(空心圆)和雾化弹起模式(实心圆)下的无量纲驻留时间比较 Figure4. Comparison of the dimensionless residence time in the retraction-bouncing mode (hollow circles) and in the bouncing-with-spray mode (solid dots).
图 6 更大的放大倍率下液膜孔洞形成的图片序列(We =122, $T = 480{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} ^\circ {\rm C}$) Figure6. Image series of hole formation in the liquid film using greater magnification ($We = 122$ and $T = 480{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} ^\circ {\rm C}$).
孔洞形成的临界条件即为回缩弹起模式到雾化弹起模式下的过渡. 在液滴撞击壁面过程中, 随着液滴在壁面的铺展, 蒸汽泡的尺寸随之增大, 而液膜随之变薄. 对于两种弹起模式的过渡, 可以认为当蒸汽泡的半径和液膜在最大铺展时的最小厚度相当时, 由于蒸汽泡的破碎, 会在液膜上留下孔洞, 如图7(a)所示. 当蒸汽泡的半径小于液膜的最小厚度时, 液膜上不会产生孔洞; 而当蒸汽泡的半径大于液膜的厚度时, 蒸汽泡则会在液滴达到最大铺展前破碎, 并在液膜上留下孔洞. 图 7 (a)蒸汽泡破碎理论模型的示意图; (b)采用液滴自由振荡周期无量纲化后的液滴最大铺展时间; (c)对数坐标下膜态沸腾区域水滴的无量纲最大铺展直径和撞击韦伯数的关系图, ${{{D_{\max }}} / {{D_0}}} \sim W{e^n}$; (d)对数坐标下水滴在膜态沸腾区域由回缩弹起到雾化弹起模式过渡的$\Delta T \sim {V^{ - 1}}$边界线, 液滴直径为2.2 mm; (e)水滴撞击加热硅片的相图及从回缩弹起到雾化弹起模式下的过渡, 图中红色虚线为示意, 液滴直径为2.2 mm, “过渡”为过渡腾区域, “膜态”指膜态沸腾区域 Figure7. (a) Schematic diagram for the theoretical model for the burst of vapor bubbles; (b) the time of maximum spreading diameter of water droplets normalized by droplet free oscillation period; (c) log-log plot for the normalized maximal spreading diameter of water droplets versus We in the film boiling regime, showing ${{{D_{\max }}} / {{D_0}}} \sim W{e^n}$; (d) log-log plot for $\Delta T \sim {V^{ - 1}}$ boundary line between the retraction-bouncing mode and the bouncing-with-spray mode in the film boiling regime for water droplets, the droplet diameter is 2.2 mm; (e) regime map for a water droplet impacting on a heated silicon wafer and the transition between the retraction-bouncing mode and the bouncing-with-spray mode, the red dashed line is only for eye guidance, the droplet diameter is 2.2 mm.