Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51675321), the Natural Science Foundation of Shanghai, China (Grant No. 15ZR1415800), and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 14ZZ092).
Received Date:11 January 2019
Accepted Date:26 February 2019
Available Online:01 June 2019
Published Online:05 June 2019
Abstract: With the development of laser technology, the application scope of nondiffracting beams, such as Bessel beams, Mathieu beams, cosine beams, and parabolic beams, which remain invariant along their propagation, continues to expand. During its propagation, the main lobes of these beams tend to bend towards off-axis position, which is called self-accelerating (or self-bending) property. A Bessel-like beam with self-acceleration can realize the propagation of the main lobe along a curved trajectory while maintaining the non-diffraction. Because of the above property, Bessel-like beams have been utilized in various areas such as guiding particles along arbitrarily curved trajectories, self-accelerating beams in nonlinear medium, plasma guidance, and laser-assisted guiding of electric discharges around objects. In this paper, we propose a method of bending the trajectory of Bessel-like beams by using a magnetic fluid deformable mirror (MFDM) instead of traditional spatial light modulator (SLM) and Pancharatnam-Berry (PB) phase manipulation. The MFDM provides a method without pixelation, where all parameters can be rapidly modified for fine-tuning. Furthermore, compared with the conventional deformable mirror, the MFDM has the advantages of a continuous and smooth mirror surface, large shape deformation, low manufacture cost, easy extension, and large inter-actuator stroke. Therefore, it is easy for the MFDM to generate the ideal shape of an axicon. Firstly, according to geometric analysis, the asymmetrical mirror profile to produce a self-accelerating Bessel-like optical beam is proposed. The proposed mirror profile can be used to compensate for the difference in optical path length for each annular slice of the axicon. If a collimated Gaussian beam is incident on the mirror combining the axicon and the asymmetrical mirror profiles, which can obtain Bessel-like beams with arbitrarily curved trajectories. Secondly, the resultant of the self-accelerating Bessel-like beams along parabolic trajectories is validated by the simulation in MATLAB. Finally, a prototype of MFDM consisting of the dual-layer arrays of miniature electromagnetic coils, a Maxwell coil and the magnetic fluid filled in a circular container is fabricated for the experiment. The experimental results show that the Bessel-like beams propagate along the parabolic trajectories, with the MFDM used, and the accuracy of the curved trajectories is verified. The proposed method in this paper opens a new experimental way to the study of Bessel-like beam; the theoretical approach can also be generalized mathematically for other non-paraxial beam propagation. Keywords:magnetic fluid/ deformable mirror/ nondiffracting beam/ Bessel beam
全文HTML
--> --> --> -->
2.1.镜面轮廓设计
${{\rm{J}}_0}\left( {{k_r}r} \right)$表示零阶贝塞尔光束, 可以采用入射的高斯光束准直后经轴棱锥透射或其等效反射形式来产生[17], 其中${k_r}$表示空间频率. 贝塞尔光束在空间中的传播距离取决于轴棱锥的内部锥角${\alpha _{ax}}$, 折射率${n_{ax}}$和半径${R_{ax}}$. 在轴棱锥上叠加一个可调的镜面轮廓, 叠加后的形状如图1所示. 当准直后的入射光束经过该新合成的面形后, 类贝塞尔光束的中心光瓣将沿着该n阶曲线的轨迹从${z_0}$弯曲到${z_1}$. 图 1 经叠加轮廓后弯曲类贝塞尔光束中心光瓣的传播轨迹(红色) Figure1. The propagation trajectory of the center lobe of a bended Bessel-like beam through the superimposed profile (in red).
如图2(a)所示, 在轴棱锥x-y平面上取一个半径为r的薄圆环切片, 当入射光束经过该薄环后会聚到z轴上的点${D_{{\rm{sym}}}}$. 对于两个任意光束P-Dsym和P′-Dsym, 它们的光程相等. 叠加该薄环上所有光束, 即可在轴上获得相长干涉, 产生零阶类贝塞尔光束的中心. 当类贝塞尔光束的中心光瓣从${D_{{\rm{sym}}}}$点移动到同一平面${z_D}$中的${D_{{\rm{asym}}}}$点时, 为了保证光程P-Dasym和P′-Dasym相等, 需要在轴棱锥上叠加一个镜面轮廓, 它能够补偿轴棱锥每个薄圆环切片上光程的不同. 由图2(b)可知, 薄环和${D_{{\rm{asym}}}}$点的最长光程为H-Dasym. 假设调整镜在H点的厚度等于0, 就可以通过将薄环上的所有光程与H-Dasym进行比较来计算调整镜面的整体轮廓$\Delta {\rm{OL}}\left( {r, \theta } \right)$. 由图2(b)可得 H-Dasym的光程为 图 2 偏移点几何关系分析 (a) 薄环上任意点与偏移点的光程; (b)偏移点与薄环的最长光程 Figure2. Off-axis point geometric analysis: (a) The distance between any point on the thin ring and the off-axis point; (b) the longest distance between the off-axis point and the point on the thin ring.
为了进一步验证基于磁液变形镜来生成轨迹可控的自加速类贝塞尔光束的可行性, 搭建如图6所示的自适应光学实验平台, 该装置由激光光源、双层驱动磁液变形镜、夏克-哈特曼波前传感器、CCD相机、计算机控制平台和反射镜、分束镜、光阑等光学元器件组成. 实验中使用波长为${\rm{635 \;nm}}$的激光作为实验光源, 经准直后近似为平面波, 1∶15(R1, R2)扩束后经光阑限制再经双层驱动磁液变形镜反射, 然后20∶3 (R3)缩束后经分束镜分为两路光束: 一路由夏克-哈特曼波前传感器(WFS150-5C, THORLABS, USA)接收并用来检测镜面面形, 将波前的分析结果反馈给计算机控制系统, 由控制系统产生变形镜变形所需要的驱动电压, 通过Advantech PCI-1724模拟输出卡驱动磁液变形镜使其镜面变形; 另一路光束由CCD相机(DCU223C, THORLABS, USA)捕获, 获得校正后的波前图像. 本实验中, 利用影响函数对磁液变形镜系统进行解耦, 由设计的分散式PID闭环控制器, 实现对多输入多输出系统每个通道的独立控制, 消除外界干扰, 改善镜面的动态响应性能, 可以实现镜面形状的精确控制. 图 6 基于波前传感器的磁液变形镜镜面控制实验平台 (a) 光路示意图; (b) 实物图 Figure6. Layout of the experimental system setup based on the wavefront sensor: (a) Schematic diagram of optical path; (b) actual diagram.
23.2.实验结果与分析 -->
3.2.实验结果与分析
图7(a)为夏克-哈特曼波前传感器检测到磁液变形镜初始平面, 可以看出表面存在一定的误差, 其表面变形量PV为${\rm{0}}{\rm{.246 \;{\text{μm}}}}$, RMS误差为$0.07{\rm{8\; {\text{μm}}}}$, 对应的精度为$\lambda {\rm{/8}}$. 图7(b)为夏克-哈特曼波前传感器采集到的内部锥角为${\alpha _{ax}} = {0.12^ \circ }$的轴棱锥波前. 为了产生抛物线弯曲轨迹, 取$n = 2$和${a_2} = 15{\rm{2 \;m}}$, 此时得到的镜面轮廓如图7(c)所示. 将图7(b)和图7(c)相结合, 可以得到如图7(d)所示经过调整后的波前轮廓形状, 其表面变形幅值PV为${\rm{8}}{\rm{.093\;{\text{μm}}}}$, RMS误差为${\rm{0}}{\rm{.134\; {\text{μm}}}}$. 所拟合面形的质量主要和驱动器的数目有关, 通过增加驱动器数目可进一步提高面形的拟合精度. 图 7 波前传感器检测到的波前轮廓(左图: 主视图; 右图: 三维视图) (a) 初始面形; (b)轴棱锥轮廓; (c) 镜面轮廓; (d) 混合轴棱锥和镜面轮廓后的面形轮廓 Figure7. Wavefront detected by the wavefront sensor (left: main view; right: 3D view): (a) Initial wavefront; (b) an axicon profile; (c) mirror profile; (d) the combination of both axicon and mirror profile.
激光经过图7(d)调整后的磁液变形镜反射, 最终由CCD相机接收到相应的光束. 图8展示了实验上得到的抛物线轨迹的自加速类贝塞尔光束. 由于搭建的光路中各个透镜对(R1, R2, R3)之间的准直及距离存在一定的误差, 以及外部环境振动和驱动器安装误差等干扰存在, 对光束产生一定的影响, 可以看到实验结果中类贝塞尔光束周围产生一些亮条纹. 但由总体实验结果可以看出, 相较于使用空间光调制器来生成轨迹可控的自加速类贝塞尔光束[6], 基于磁液变形镜产生的自加速类贝塞尔光束仍能够保持相对完整的光瓣, 并且中心光瓣具有较强的光强. 为了进一步验证光束与理想抛物线轨迹的拟合程度, 从${\rm{5 \;cm}}$到${\rm{45 \;cm}}$, 每隔${\rm{5 \;cm}}$测量一次轨迹的变化. 由图9可以看出, 实验1中该自加速类贝塞尔光束沿z轴的弯曲轨迹遵循理想轨迹传播. 对弯曲轨迹进行调整只需要修改对应参数即可, 如实验2所示, 当设定新的弯曲轨迹($\Delta D =$$ \left( {2.632 \times {{10}^{ - 3}}} \right){z^2} + (2.15 \times {10^{ - 4}})z$)时, 实际测得的类贝塞尔光束的弯曲轨迹仍然沿预定轨迹传播. 图 8 取四个不同z值的实验结果横截面图 Figure8. Experimental cross-section profiles for four different values of z.
图 9 理论和实际测得的光束传播轨迹相比较 Figure9. Comparison between numerical and experimental demonstrations of deflection of the central spot of a bended Bessel-like beam.