Laser propagation transmission properties characteristics between airborne communication terminal and unmanned aerial vehicle target in complex atmospheric background
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61771385, 61377080, 60977054) and the Key Industry Innovation Chain of Shaanxi Province, China (Grant No. 2017ZDCXL-GY-06-01).
Received Date:19 November 2018
Accepted Date:07 March 2019
Available Online:01 May 2019
Published Online:05 May 2019
Abstract:Clouds, aerosols and atmospheric molecules are major components of the atmosphere. In the fields of atmospheric physics such as target detection, wireless optical communication and remote sensing, these atmospheric components have a strong attenuation effect on laser transmission. Based on the successive scattering method for solving the radiative transfer equation, the laser transmission model between airborne wireless optical communication terminal and ground-to-air unmanned aerial vehicle (UAV) target in complex atmospheric background is established in this paper. Considering the fact that cirrus cloud, atmospheric molecules and aerosols exist in the real atmospheric background, the variations of direct transmission power, first-order scattering transmission power of 1.55 μm laser emitted by the airborne wireless optical communication terminal with UAV target height are calculated numerically under complex atmospheric background. The effects of the aircraft located at different locations, effective radius of ice crystal particles in cirrus cloud, as well as the horizontal distance between the aircraft and UAV target on received laser transmission power are also analyzed. In the first three examples (i.e., aircraft is above, below, and inside cirrus cloud), laser direct transmission power (LDTP) is much larger than first-order scattering transmission power (FSTP); when the UAV target rises into the cloud, the FSTP is significantly enhanced as a result of the effect of diffraction light. The fourth example is for calculating the variations of LDTP and FSTP with UAV target height for different effective radii of ice crystals. The results show that the LDTP decreases with the increase of effective radius, whereas the FSTP presents an opposite scenario. The fifth example is for calculating the variations of LDTP and FSTP with UAV target height for different horizontal distances. The results show that the LDTP and FSTP decrease with the increase of the horizontal distance, which is obviously realistic. In summary, it is concluded that the laser transmitted power through cirrus clouds is strongly dependent on aircraft position: above, below, or inside cirrus cloud; the horizontal distance between the aircraft and UVA target, and effective radii of ice crystals have great influences on LDTP and FSTP. Compared with the atmosphere above the clouds, the molecules and aerosols below the clouds make the laser power have a strong attenuation. The results given in this paper provide theoretical support for further studying the laser communication experiment in ground-to-air links, UAV formation, command and networking technology in complex atmospheric background. Keywords:cirrus cloud/ aerosols/ atmospheric molecules/ laser propagation/ unmanned aerial vehicle?
式中${N_0}$是单位体积内的粒子总数; a为有效半径${r_{{\rm{eff}}}}$, 一般小于100 μm; b为有效方差, 典型卷云b值在0到0.5之间[27—30], 本文选取b值为0.25. 图2(a)和图2(b)分别给出了1.55 μm激光入射时, 卷云的平均消光系数、单次散射反照率随卷云有效半径的变化. 由图2(a)可知, 卷云的平均消光系数随卷云中冰晶粒子的有效半径的增大而增大. 由图2(b)可知, 1.55 μm激光入射下卷云单次散射反照率的值均大于0.998, 这是由于该波长所对应的冰晶折射率的虚部较小[31], 说明冰晶粒子的吸收作用很小, 衰减主要由散射造成的. 图 2 卷云的消光系数、单次散射反照率随卷云有效半径的变化 Figure2. (a) Average extinction coefficient, (b) single scattering albedo of cirrus clouds vs. effective radius at 1.55 μm wavelength.
图3为卷云的平均相函数随散射角的变化, 可以看出, 卷云的平均相函数具有强前向衍射峰, 且随有效半径的增大, 则卷云相函数的前向峰值越大. 图 3 卷云的平均相函数随散射角的变化 Figure3. Average phase function of cirrus clouds vs. scattering angle
3.数值结果与分析根据第 2.2节、 2.3节给出物理模型, 数值计算的参数如下: 云顶${h_{\rm{t}}}$为8 km, 云底${h_{\rm{b}}}$为7 km, 激光功率${F_0}$为100 mW, 无人机目标的有效半径${r_{{\rm{UAV}}}}$为3 m, 飞机与无人机目标之间的水平距离d为100 km. 当飞机高度${h_{\rm{a}}}$为9 km, 图5(a)和图5(b)分别为1.55 μm激光通过卷云的直接传输功率、一阶散射传输功率随无人机目标高度${h_{{\rm{UAV}}}}$的变化. 不考虑大气分子和气溶胶的衰减时, 激光的直接传输功率随无人机目标高度的增大而减小. 这是由于无人机上升的过程中, 激光在云中的斜程路径s逐渐增大. 考虑大气分子和气溶胶作用时, 近地大气分子和气溶胶使得激光的直接传输功率进一步衰减, 这是由于近地大气中分子和气溶胶的消光系数较大. 当无人机高度${h_{{\rm{UAV}}}}$大于云顶高度${h_{\rm{t}}}$时, 激光功率的衰减仅由大气分子和气溶胶造成的, 由于高大气层中其消光系数较小, 从而使两条曲线非常接近. 对比5(a)和图5(b)两幅图可知, 一阶散射的传输功率远远小于比激光的直接传输功率. 图 5 当飞机高度为9 km时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化 Figure5. (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height when aircraft’s height is 9 km.
飞机在云下时, 即当${h_{\rm{a}}}$设为6 km, 其余参数与图5一致. 图6(a)和图6(b) 分别为1.55 μm激光通过卷云的直接传输、一阶散射传输功率随无人机高度${h_{{\rm{UAV}}}}$的变化. 不考虑分子和气溶胶的衰减时, 云底${h_{\rm{b}}}$以下范围, 激光的直接传输功率不受任何衰减; 而考虑分子和气溶胶的衰减时, 激光的直接传输功率随无人机高度的上升而单调递增, 这是由于分子和气溶胶的衰减系数随着海拔高度的增加而减小, 与真实大气层相符. 一旦无人机进入云中, 激光功率的衰减急剧增大, 无人机飞离云顶${h_{\rm{t}}}$时, 直接传输功率又逐渐增大. 这是由于随着无人机高度上升, 激光在云中的斜程路径s逐渐减小. 对比图5(b)和图6(b)可以看出, 不考虑分子和气溶胶的衰减时, 飞机在云下时的一阶散射功率与飞机在云上时的一阶散射功率关于云层对称. 图 6 当飞机高度为6 km时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化 Figure6. (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height when aircraft’s height is 6 km.
当${h_{\rm a}}$设为7.5 km, 即飞机在云中时, 1.55 μm激光通过卷云的直接传输功率、一阶散射传输功率随着无人机目标高度${h_{{\rm{UAV}}}}$的变化如图7所示. 由图7(a)可知, 当无人机高度${h_{{\rm{UAV}}}}$在云底${h_{\rm{b}}}$以下时, 激光的直接传输功率急剧下降, 这是由于云层的消光系数远大于近地大气中分子和气溶胶的消光系数, 且激光在云中的斜程距离s增大, 从而使得激光能量有较大的衰减. 当无人机上升至7—8 km(云层)范围内时, 由于激光在云层的斜程路径s变化很小, 从而激光传输功率在云层范围内趋于平稳, 由(1)式可证. 当不考虑分子和气溶胶的衰减时, 激光的直接传输功率、一阶散射传输功率关于${h_{{\rm{UAV}}}} = 7.5$ km对称, 从另一方面也验证了本模型结果的正确性. 对比图6(b)、图7(b)和图8(b)可知, 飞机在云中时的一阶散射的传输功率比其他情况下要小, 这是由于云的消光系数远大于大气分子和气溶胶的消光系数. 图 7 当飞机高度为7.5 km时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化 Figure7. (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height when aircraft’s height is 7.5 km.
图 8 卷云冰晶粒子的有效半径${r_{{\rm{eff}}}}$不同时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化 Figure8. (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height for different effective radius reff.
图8(a)和图8(b)分别给出了当考虑气溶胶和大气分子的衰减时, 卷云中冰晶粒子有效半径${r_{{\rm{eff}}}}$对激光通过卷云直接传输功率、一阶散射传输功率的影响, 其余的计算参数与图6一致. 由图8(a)和图8(b)可知, 激光的直接传输功率随着卷云冰晶粒子有效半径${r_{{\rm{eff}}}}$的增大而减小, 这是由于${r_{{\rm{eff}}}}$越大对应的卷云消光系数越大. 而一阶散射的传输功率则与激光直接传输功率相反, 这是由于${r_{{\rm{eff}}}}$越大对应的卷云相函数的强前向峰值越大, 从而激光的一阶散射传输功率随着${r_{{\rm{eff}}}}$的增大而增大, 这一结果由图3可以看出, 也由(10)和(16)式可证. 图9(a)和图9(b)分别给出了当考虑气溶胶和大气分子的衰减时, 飞机与无人机目标之间的水平距离d对1.55 μm激光通过卷云的直接传输、一阶散射传输功率的影响. 由图9(a)和图9(b)可知, 激光的直接传输、一阶散射功率随着飞机与无人机目标之间的水平距离d的增大而减小, 与实际情况相符. 图 9 水平距离d不同时, 激光通过卷云的(a)直接传输功率、(b) 一阶散射传输功率随无人机目标高度的变化 Figure9. (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height for different d.