1. 江南大学生物工程学院,工业生物技术教育部重点实验室,江苏 无锡 2141222. 江南大学环境与土木工程学院,江苏 无锡 214122
收稿日期:
2019-02-27修回日期:
2019-04-25出版日期:
2020-01-22发布日期:
2020-01-14通讯作者:
郑志永基金资助:
中央高校基本科研业务费专项资金资助项目Numerical simulation of mass transfer characteristics in an airlift reactor with a horizontal sieve plate
Zifan WANG1, Zhiyong ZHENG1,2*, Minjie GAO1, Xiang LI1, Xiaobei ZHAN11. Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China2.School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Received:
2019-02-27Revised:
2019-04-25Online:
2020-01-22Published:
2020-01-14Contact:
Zhi-Yong Zheng 摘要/Abstract
摘要: 利用Turbulent–Lehr组合模型对装配水平筛板的气升式反应器进行了计算流体力学(CFD)模拟,研究水平筛板对气含率、气泡直径、体积传质系数(kLa)和气液流速的影响。结果表明,筛板对气相的囤积作用和对液相的阻碍作用增加了反应器的整体气含率。筛板对气相的二次均布作用减弱了筛板和液面之间区域的气泡聚并过程,筛板筛孔对气泡的破碎作用产生了大量小于初始直径的气泡,增加了气泡比表面积(a);筛板对液相的阻碍作用提高了筛板附近的气–液相流动速度差,从而提高了该区域的液膜传质系数(kL),强化了反应器内的气液传质效果。
引用本文
王子凡 郑志永 高敏杰 李想 詹晓北. 装配水平筛板的气升式反应器中气液传质特性的数值模拟[J]. 过程工程学报, 2020, 20(1): 20-26.
Zifan WANG Zhiyong ZHENG Minjie GAO Xiang LI Xiaobei ZHAN. Numerical simulation of mass transfer characteristics in an airlift reactor with a horizontal sieve plate[J]. Chin. J. Process Eng., 2020, 20(1): 20-26.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219137
http://www.jproeng.com/CN/Y2020/V20/I1/20
参考文献
[1] Heijnen J J, Hols J, van der Lans R G J M, et al. A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime [J]. Chemical Engineering Science, 1997, 52: 2527-2540. [2] Shah Y T, Kelkar B G, Godbole S P, et al. Design parameters estimations for bubble column reactors [J]. AIChE Journal, 1982, 28: 353-379. [3] Luo L J, Yuan J Q, Xie P, et al. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with sieve plates [J]. Chemical Engineering Research & Design, 2013, 91: 2377-2388. [4] Lestinsky P, Vayrynen P, Vecer M, et al. Hydrodynamics of Airlift Reactor with Internal Circulation Loop: Experiment vs. CFD Simulation [J]. Procedia Engineering, 2012, 42: 892-907. [5] Tian X F, Zhang J C, Liu X L, et al. Application of CFD in of airlift loop reactor [J]. Modern Chemical Industry, 2013, 33: 121-124. [6] Chen L M, Bai Z S. CFD simulation of the hydrodynamics in an industrial scale cyclohexane oxidation airlift loop reactor [J]. 2017, 119: [7] Syed A H, Boulet M, Melchiori T, et al. CFD simulations of an air-water bubble column: effect of Luo coalescence parameter and breakup kernels [J]. Front Chem, 2017, 5: 68. [8] Yakhot V, Orszag S A. Renormalization group analysis of turbulence. I. Basic theory [J]. Journal of Scientific Computing, 1986, 1: 3-51. [9] Kolev N I. Multiphase Flow Dynamics 2: Mechanical Interactions [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 31-41. [10] Firouzi M, Nguyen A V. On the effect of van der Waals attractions on the critical salt concentration for inhibiting bubble coalescence [J]. Minerals Engineering, 2014, 58: 108-112. [11] Bothe M, Christlieb M-A, Hoffmann M, et al. Bubble size and bubble velocity distribution in bubble columns under industrial conditions [J]. The Canadian Journal of Chemical Engineering, 2017, 95: 902-912. [12] Dhanasekharan K M, Sanyal J, Jain A, et al. A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics [J]. Chemical Engineering Science, 2005, 60: 213-218. [13] Liang X F, Pan H, Su Y H, et al. CFD-PBM approach with modified drag model for the gas–liquid flow in a bubble column [J]. Chemical Engineering Research and Design, 2016, 112: 88-102. [14] 李孟,李向阳,王宏智,等. 鼓泡塔气液两相流不同曳力模型的数值模拟 [J]. 过程工程学报,2015,15:181-189. Li M, Li X Y, Wang H Z, et al. Numerical Simulation of Gas?Liquid Two-phase Flow in a Bubble Column with Various Drag Models [J], Chinese Journal of Process Engineering, 2015, 15: 181-189. [15] Avdeev A A. Bubble Systems [M]. Cham: Springer International Publishing, 2016: 329-409. [16] Vorapongsathorn T, Wongsuchoto P, Pavasant P. Performance of airlift contactors with baffles [J]. Chemical Engineering Journal, 2001, 84: 551-556. |
相关文章 14
[1] | 王丽丽 张玉柱 龙跃 王子兵 客海滨. 气淬粒化高炉熔渣液膜流动特性数值模拟[J]. 过程工程学报, 2020, 20(8): 887-895. |
[2] | 王治红 刘知习 李永军 王仕城. 分层填料对旋转填料床气相流场影响的数值模拟[J]. 过程工程学报, 2020, 20(3): 254-264. |
[3] | 朱景晶 钱付平 魏民 韩云龙 鲁进利. 褶型纤维过滤介质压力损失的多尺寸模拟[J]. 过程工程学报, 2020, 20(2): 167-173. |
[4] | 李学峰 何霞 王国荣 邱顺佐 周守为 刘清友. 天然气水合物提纯螺旋分离器性能数值模拟[J]. 过程工程学报, 2019, 19(3): 510-515. |
[5] | 邱顺佐 王国荣 王广申 周守为 刘清友 钟林 王雷振. 旋流分离对天然气水合物除砂提纯的影响[J]. 过程工程学报, 2019, 19(1): 64-72. |
[6] | 蔡小垒 陈家庆 孔祥功 刘美丽 俞接成 姬宜朋. 基于BP神经网络和CFD数值模拟的气旋浮罐结构优化及性能预测[J]. 过程工程学报, 2017, 17(5): 918-925. |
[7] | 孙东东 郑志永 李晶 詹晓北 高敏杰 金亚楠. 基于CFD模拟的新型径向流搅拌桨设计[J]. 过程工程学报, 2017, 17(4): 677-683. |
[8] | 唐迪 李育敏 计建炳. 超重力床的离心密封性能及其CFD模拟[J]. 过程工程学报, 2017, 17(4): 704-708. |
[9] | 秦敬轩 郑平 陈旭. 不同出入口条件下气液喷射器喷射性能的数值模拟[J]. 过程工程学报, 2017, 17(3): 469-476. |
[10] | 李志鹏;高正明. 涡轮桨搅拌槽内单循环流动特性的大涡模拟[J]. , 2007, 7(5): 900-904. |
[11] | 魏明;姜绍通;罗建平. 霍山石斛类原球茎在气升式反应器中补料培养合成多糖[J]. , 2007, 7(2): 375-379. |
[12] | 袁晓凡;陈书安;赵兵;王玉春;刘德明. 新型气升式反应器中浸没/非浸没周期对水母雪莲细胞培养的影响[J]. , 2003, 3(4): 0-0. |
[13] | 罗林;康瑞娟;马晓楠;蔡昭铃. 氧化亚铁硫杆菌在气升式反应器中培养条件对其生长特性的影响[J]. , 2001, 1(4): 0-0. |
[14] | 王谦;黄猛;赵兵;等. 气升式反应器超声破碎海带提取硫酸脂多糖[J]. , 2001, 1(1): 0-0. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3380