1. 东北大学冶金学院,辽宁 沈阳 110819 2. 太原科技大学材料科学与工程学院,山西 太原 030024
收稿日期:
2019-03-28修回日期:
2019-05-04出版日期:
2020-01-22发布日期:
2020-01-14通讯作者:
邹宗树基金资助:
轧制复合-粉末冶金发泡法制备泡沫铝夹心板材料的研究Physical simulation on molten steel flow characteristics in the RH reactors with different arched snorkels
Zhifeng REN1,2, Zhiguo LUO1, Zongshu ZOU1?1. School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China 2. School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China
Received:
2019-03-28Revised:
2019-05-04Online:
2020-01-22Published:
2020-01-14Contact:
LIU Hong-hua 摘要/Abstract
摘要: 为提高真空循环脱气(RH)真空精炼的效率,设计了3种新型弓形浸渍管RH真空室,并建立了物理模型。通过水模拟实验研究了浸渍管形状、提升气体流量、浸渍管浸入钢液深度对弓形浸渍管RH和传统圆形浸渍管RH钢液循环流动的影响。结果表明,在实验气体流量范围内,3个弓形浸渍管RH比传统圆形浸渍管RH的循环流量增加了45%~218%,均混时间减少了15%以上。圆形浸渍管RH达最大吹气流量时,3种弓形浸渍管RH的循环流量仍线性增加。新型弓形浸渍管RH的最大提升气体流量可在传统圆形浸渍管RH提升气体流量(60?130 m3/h)的基础上提高48%以上,方便短时间、高强度真空精炼操作。3种新型弓形浸渍管RH的循环流量随提升气体流量增加而线性增大,随浸渍管浸入钢液深度增加而增大,均混时间随提升气体流量和浸入深度增加而减小。现场应用时,弓形浸渍管其中2个面积较小的浸渍管浸入深度须大于545 mm,面积最大的浸入深度须大于818 mm,3个弓形浸渍管RH的最大提升气体流量需控制在约173 m3/h。在现场现行的提升气体流量范围(60~130 Nm3/h)内,1#, 2#和3#弓形浸渍管RH的循环流量较传统圆形浸渍管RH分别约增加100%, 42%和112%,均混时间分别缩短30%, 15%和34%以上。在实验提升气体流量范围内,非对称弓形浸渍管RH的循环流量最大,均混时间最少。
引用本文
任志峰 罗志国 邹宗树. 不同弓形浸渍管RH钢液流动行为的物理模拟[J]. 过程工程学报, 2020, 20(1): 27-34.
Zhifeng REN Zhiguo LUO Zongshu ZOU. Physical simulation on molten steel flow characteristics in the RH reactors with different arched snorkels[J]. Chin. J. Process Eng., 2020, 20(1): 27-34.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219171
http://www.jproeng.com/CN/Y2020/V20/I1/27
参考文献
[1] Hideki ONO-NAKAZATO, Hiroyuki TAJIRI,Tateo USUI, et?a1. Rate Enhancement of the Degassing Reaction by the Enlargement of RH and DH Reactors[J]. ISIJ International,2003,89(11):1113-1119. [2] Lifeng?Zhang, Fei?Li. Investigation on the Fluid Flow and Mixing Phenomena in a Ruhrstahl-Heraeus (RH) Steel Degasser Using Physical Modeling[J]. JOM,2014,66(7):1227-1240. [3] Dian-Qiao?Geng, Hong?Lei, Ji-Cheng?He. Numerical Simulation of the Multiphase Flow in the Rheinsahl–Heraeus (RH) System[J]. Metallurgical and Materials Transactions B, 2010, 41(1):234-247. [5] Kleimt?B, Kohle?S, Ponten?H?J, et?a1. Dynamic Modeling and Control of Vacuum Circulation Process [J]. Ironmaking and Steelmaking, 1993, 20(5): 390-395. [6] Baokuan LI, Fumitaka Tsukihash. Modeling of Circulating Flow in RH Degassing Vessel Water Model Designed for Two- and Multi-legs Operations [J]. ISIJ International, 2000, 40(12):1203-1209. [7] Kuwabara T, Umezawa K, Mori K, et al. Investigation of decarburization behavior in RH reactor and its operation improvement [J]. Transactions ISIJ, 1988, 28(4):305-314. [8] 陈洪民,雷洪,蒋计民,等. 单管RH精炼过程钢液流场的水模型实验[J]. 钢铁研究学报,2016, 28(10):10-14. [9] 耿佃桥,雷洪,赫冀成. 侧底复吹RH精炼装置内的钢液流场及循环流量[J]. 东北大学学报(自然科学版), 2011,33(08):1119-1123. [10] Li B K, Tsukihashi F. Effect of rotating magnetic field on two-phase flow in RH vacuum degassing[J]. ISIJ International, 2005,45(12): 972-980. Seshadri V, Luiz S. Cold Model Studies of RH Degassing Process [J]. Transactions ISIJ, 1986, 26(2):133-141. [11]Lin L, Bao Y P, Yue F, et al. Physical model of fluid flow characteristics in RH-TOP vacuum refining process[J]. International Journal of Minerals,Metallurgy and Materials, 2012, 19(6):483-489. [12]王晓冬,王维娜.RH真空精炼循环流动流场结构的数值模拟[J]. 东北大学学报(自然科学版),2009,30(10):1481-1484. [14]郁能文,魏季和,樊养颐,等. RH过程中钢液流动特性的水模拟研究[J]. 上海大学学报(自然科学版),1997,3(11):183-188. Yu N W, Wei J H, Fan Y Y, et al. Water Modelling Study on Flow Characteristics of Molten Steel in RH Process [J].The Chinese Journal of Shanghai University(Natural Science), 1997, 3(11): 183-188. [15] WEI Ji-He, YU Neng-Wen, FAN Yang-Yi, et al. Study on Flow and Mixing Characteristics of Molten Steel in RH and RH-KTB Refining Processes[J]. Journal of Shanghai University(English Edition), 2002, 6(2):167-175. |
相关文章 10
[1] | 罗志勇 刘开琪 韩伟 敖雯青 陈运法. ρ-Al2O3添加量对原位反应结合碳化硅膜支撑体性能的影响[J]. 过程工程学报, 2019, 19(2): 407-412. |
[2] | 周耀李光强杨宏伟朱诚意. 超低碳铝硅镇静钢精炼过程中夹杂物的行为及其对钢组织的影响[J]. , 2013, 13(6): 1025-1033. |
[3] | 杨兴福梁向峰杨良嵘李文松邓伏礼王福春刘会洲. Investigation of Three-liquid-phase Extraction Systems for Simultaneous Separation of Emodin and Rhein[J]. , 2013, 13(4): 591-599. |
[4] | 高敏徐晓康徐晴李霜. Production of Fumaric Acid from Raw Starchy Materials by Rhizopus oryzae with SSF[J]. , 2013, 13(2): 302-305. |
[5] | 耿佃桥雷洪赫冀成. RH精炼装置流场对混合、脱碳、夹杂物行为的影响[J]. , 2011, 11(6): 919-925. |
[6] | 陈瑞飞徐本军杨茂麟肖臻黄岩. 热变形温度对82B盘条变形抗力的影响[J]. , 2010, 10(5): 1010-1014. |
[7] | 李大武王克孙挺姚广春李杰. ZrH2颗粒热分解行为及对泡沫铝元素分布的影响[J]. , 2010, 10(2): 298-303. |
[8] | 梁小平金杨王雨段红玲. RH精炼渣高熔点相作用浓度对粘渣的影响[J]. , 2009, 9(2): 324-328. |
[9] | 丁石程音弘吴昌宁金涌程易. 甲烷部分氧化过程Rh负载的泡沫独石的稳定性[J]. , 2009, 9(2): 375-380. |
[10] | 李少华;杜竹玮;祝学远;刘巍;傅德贤;李浩然. Rhodoferax ferrireducens微生物燃料电池中钒化合物的催化性能[J]. , 2007, 7(3): 589-593. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3381