北京化工大学化学工程学院,北京 100029
收稿日期:
2019-01-02修回日期:
2019-03-29出版日期:
2019-12-22发布日期:
2019-12-22通讯作者:
高正明基金资助:
国家重点研发计划;国家自然科学基金项目Hydrodynamics performance of self-inducing stirred tank equipped with double impellers
Yu HAN, Yuyun BAO, Xin MA, Ziqi CAI, Zhengming GAO*College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Received:
2019-01-02Revised:
2019-03-29Online:
2019-12-22Published:
2019-12-22Contact:
GAO Zheng-ming Supported by:
National Key R&D Program of China摘要/Abstract
摘要: 在直径0.48 m的搅拌槽中以水?空气为介质,对具有双层桨结构的自吸式反应器的流体力学性能进行了实验研究,考察了自吸式桨浸没深度、底层桨结构和搅拌桨层间距对自吸式桨的临界吸气转速、吸气速率和气含率的影响。结果表明,临界吸气转速随自吸式桨浸没深度增加而增加,临界吸气转速几乎与下层桨的结构无关;吸气速率与气含率随浸没深度增加而减小,吸气速率与气含率受下层桨影响较大,层间距为自吸式桨直径(D)且采用上推式的四叶宽叶翼形轴流式桨作下层桨时,自吸式桨的吸气性能最佳。
引用本文
韩愈 包雨云 马鑫 蔡子琦 高正明. 具有双层桨结构的自吸式搅拌反应器的流体力学性能[J]. 过程工程学报, 2019, 19(6): 1066-1074.
Yu HAN Yuyun BAO Xin MA Ziqi CAI Zhengming GAO. Hydrodynamics performance of self-inducing stirred tank equipped with double impellers[J]. Chin. J. Process Eng., 2019, 19(6): 1066-1074.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219113
http://www.jproeng.com/CN/Y2019/V19/I6/1066
参考文献
[1] Hong H S, Cai Z J, Li J Q, et al. Simulation of gas-inducing reactor couples gas–liquid mass transfer and biochemical reaction[J]. Biochemical Engineering Journal, 2014, 91(91):1-9. [2] 刘甜甜, 李玉刚, 郑世清. CFD在自吸式加氢反应器流场研究中的应用[J]. 化工进展, 2017, 36(3):846-851. LIU T T, LI Y G, ZHENG S Q. Flow field characteristics of gas-inducing hydrogenation reactor with CFD simulation [J]. Chemical Industry and Engineering Progress, 2017, 36(3):846-851. [3] Jiang L, Li A, Tang S. An Experimental Study on Carbon Dioxide Hydrate Formation Using a Gas-Inducing Agitated Reactor[J]. Energy, 2017:S0360544217310150. [4] 张津津, 高正明, 蔡雅婷, et al. 多层组合桨搅拌槽内通气功率和传质性能研究[J]. 北京化工大学学报:自然科学版, 2015, 42(5):41-46. ZHANG J J, GAO Z M, CAI Y T, et al. Power consumption and mass transfer for various impeller combinations in a stirred tank[J]. Journal of Beijing University of Chemical Technology ( Natural Science), 2015, 42(5):41-46. [5] Ye Q , Li Z , Wu H . Principle and Performance of Gas Self-inducing Reactors and Applications to Biotechnology[M]. Springer Berlin Heidelberg, 2015: 1-33. [6] Zhang J , Gao Z , Cai Y , et al. Power consumption and mass transfer in a gas-liquid-solid stirred tank reactor with various triple-impeller combinations[J]. Chemical Engineering Science, 2017:S0009250917301008. [7] Achouri R , Hamza S B , Dhaouadi H , et al. Volumetric mass transfer coefficient and hydrodynamic study of a new self-inducing turbine[J]. Energy Conversion and Management, 2013, 71:69-75. [8] 李波, 张庆文, 洪厚胜. 气体自吸式反应器的研究进展[J]. 化工进展, 2008, 27(11):1728-1735. LI B, ZHANG Q W, HONG H S. Research progress of gas-inducing reactor [J]. Chemical Industry and Engineering Progress, 2008, 27(11):1728-1735. [9] 鞠凡,程振民,陈建华,et al.双层桨结构自吸式反应器的气含率[J]. 华东理工大学学报(自然科学版), 2009, 35(5):667-672. JU F, CHENG Z M, CHEN J H. Gas Hold-up in a Gas Self-inducing Contactor Equipped with Double Layered Impellers[J]. Journal of East China University of Science and Technology(Natural Science Edition) , 2009, 35(5):667-672. [10] Deshmukh N A, Patil S S, Joshi J B. Gas Induction Characteristics of Hollow Self-Inducing Impeller[J]. Chemical Engineering Research & Design, 2006, 84(2):124-132. [11] 秦佩, 郝惠娣, 冯蓉蓉, et al. 自吸式气液搅拌槽气液分散性能的实验研究[J]. 化工技术与开发, 2012, 41(8):40-43. QIN P, HAO H D, FENG R R, et al. Experiment Study of Gas-liquid Dispersion Performance Inside Self-inspirating Tank[J]. Technology & Development of Chemical Industry, 2012, 41(8):40-43. [12] 赵春霞, 满瑞林, 余嘉耕. 自吸式搅拌反应器制备纳米碳酸钙新工艺研究[J]. 非金属矿, 2002, 25(5):20-22. ZHAO C X, MAN R L, YU J G. A New Process Research on Preparation of Nanometer Calcium Carbonate Using Self-suction Stirred Reactor [J]. Non-Metallic Mines, 2002, 25(5):20-22. [13] Hsu Y C , Huang C J. Ozone Transfer with Optimal Design of a New Gas-Induced Reactor[J]. Aiche Journal, 2010, 43(9):2336-2342. [14] Hsu Y C, Chen J T, Yang H C, et al. Decolorization of dyes using ozone in gas-induced a reactor (p 169-176)[J]. Aiche Journal, 2010, 47(1):169-176. [15] Fonte, Cláudio P, Pinho B S , Santos-Moreau V , et al. Prediction of the Induced Gas Flow Rate from a Self-Inducing Impeller with CFD[J]. Chemical Engineering & Technology, 2014, 37(4):571-579. [16] Ju F , Cheng Z M , Chen J H , et al. A novel design for a gas-inducing impeller at the lowest critical speed[J]. Chemical Engineering Research & Design, 2009, 87(8):1069-1074. [17] Raidoo A D, Rao K S M S R, Sawant S B , et al. IMPROVEMENTS IN GAS INDUCING IMPELLER DESIGN[J]. Chemical Engineering Communications, 1987, 54(1-6):241-264. [18] Poncin S, Nguyen C, Midoux N, et al. Hydrodynamics and volumetric gas–liquid mass transfer coefficient of a stirred vessel equipped with a gas-inducing impeller[J]. Chemical Engineering Science, 2002, 57(16):3299-3306. [19] Saravanan K, Mundale V D, Patwardhan A W, et al. Power Consumption in Gas-Inducing-Type Mechanically Agitated Contactors[J]. Industrial & Engineering Chemistry Research, 1996, 35(5):1583-1602. |
相关文章 15
[1] | 宁尚雷 陶芳芳 靳海波 何广湘 杨索和 郭晓燕. SEBS高黏度溶液气液鼓泡塔的流体力学研究[J]. 过程工程学报, 2020, 20(7): 779-787. |
[2] | 韩继康 王伟之 张伟 单志伟 王东 . 浮选设备流体力学特征参数研究现状[J]. 过程工程学报, 2020, 20(10): 1121-1133. |
[3] | 刘凤霞 李永强 许晓飞 董鑫 刘志军. 微曝氧化沟气液两相传质模型构建及传质影响因素分析[J]. 过程工程学报, 2019, 19(4): 676-684. |
[4] | 范兵强 张洋 郑诗礼 冯鑫 张懿 陈晓芳 乔珊. 气液搅拌体系中宏观气含率的预测[J]. 过程工程学报, 2016, 16(4): 565-570. |
[5] | 杨志方杜峰王杰陈延新吴乐乐. 反应器类型对流动影响的数值模拟[J]. 过程工程学报, 2015, 15(5): 721-728. |
[6] | 李光晓王钊范怡平卢春喜. 气液两相逆流-错流撞击洗涤器内两相流动与传质特性[J]. , 2015, 15(2): 198-204. |
[7] | 李鸿莉李阳东李登新印春生. 三相流化床动力学特征的影响因素[J]. , 2014, 14(2): 223-228. |
[8] | 牛凯远胡堃余孟栗黄卫星. 内循环三相生物流化床反应器中流体的循环速度[J]. , 2014, 14(1): 42-46. |
[9] | 练以诚靳海波. 气升式内循环反应器的数值模拟和结构参数[J]. , 2012, 12(4): 541-549. |
[10] | 蔡清白戴干策. 三相浅层鼓泡塔颗粒悬浮特性[J]. , 2011, 11(6): 901-906. |
[11] | 秦岭靳海波杨索和何广湘朱建华. 多级气液鼓泡塔中筛板结构对气垫层高度及局部气含率的影响[J]. , 2011, 11(1): 9-14. |
[12] | 李昱喆齐祥明刘天中陈昱. 带波纹隔板的平板式光生物反应器流动特性[J]. , 2010, 10(5): 849-855. |
[13] | 赵鉴楚包雨云高正明. 电解质对搅拌反应器中气-液分散特性的影响[J]. , 2010, 10(3): 457-461. |
[14] | 李鸿莉李登新段广杰刘广涛. 三相流化床中表观气速对电导率及相含率的影响[J]. , 2010, 10(2): 236-239. |
[15] | 马志超包雨云高娜高正明. 不同叶片形状盘式涡轮搅拌桨的气-液分散特性[J]. , 2009, 9(5): 854-859. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3358