1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190 2. 中国科学院大学中丹学院,北京 100049 3. 中国丹麦科研教育中心,北京 100049
收稿日期:
2019-03-12修回日期:
2019-03-28出版日期:
2019-12-22发布日期:
2019-12-22通讯作者:
王泽基金资助:
原位供氢条件下生物质水热转化制备液体燃料基础研究Effect of blending component on etherification of phenolic-oil over KH2PO4/Al2O3
Bo YUAN1,2,3, Ze WANG1,2,3*, Wenli SONG1,2, Songgeng LI1,21. State Key Laboratory of Multi-Phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China 3. Sino-Danish Center for Education and Research, Beijing 100049, China
Received:
2019-03-12Revised:
2019-03-28Online:
2019-12-22Published:
2019-12-22摘要/Abstract
摘要: 以KH2PO4/Al2O3为催化剂,针对以甲醇为烷基化试剂的酚油醚化体系,研究了5种混配组分(乙酸、甲酸、丙酮、呋喃、乙酸乙酯)对酚油醚化反应规律的影响。结果表明,丙酮对促进烷基酚转化为芳醚的作用效果最强。基于丙酮混配组分,500℃下探究了丙酮质量配比的影响,基于最佳丙酮添加量(50wt%),进一步考察了温度对反应体系的影响,并进行机理分析。结果表明,丙酮含量不高于70wt%时,液体收率随丙酮含量升高而降低,进一步提高丙酮含量时液体收率基本稳定。各丙酮含量下,液体产物中均未检出邻甲氧基苯酚或其它任何烷氧基酚。较高丙酮含量时烷基酚含量显著降低。丙酮含量为50wt %时,芳醚含量出现极大值(29.06area%),进一步提高丙酮含量,芳烃及其它组分显著增加,导致产物中芳醚含量降低。随反应温度升高,产物中的芳醚和芳烃含量分别在500和450℃时出现极大值。综合考虑液体收率和产物极性两方面因素,确定该反应体系的最佳反应温度为450℃,丙酮添加量为50wt%,最佳条件下产物中芳醚与芳烃总量达52.90area%。丙酮分子中的羰基与酚系物中的羟基发生作用,分解产生CO2,同时烷基酚与烷氧基酚脱羟基后分别得到芳烃和芳醚两类主要液相产物。
引用本文
袁博 王泽 宋文立 李松庚. 混配组分对基于KH2PO4/Al2O3催化剂的酚油醚化的影响[J]. 过程工程学报, 2019, 19(6): 1101-1110.
Bo YUAN Ze WANG Wenli SONG Songgeng LI. Effect of blending component on etherification of phenolic-oil over KH2PO4/Al2O3[J]. Chin. J. Process Eng., 2019, 19(6): 1101-1110.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219155
http://www.jproeng.com/CN/Y2019/V19/I6/1101
参考文献
[1] Nigam P S, Singh A. Production of Liquid Biofuels from Renewable Resources [J]. Progress in Energy and Combustion Science, 2011, 37(1): 52–68. [2] Huber G W, Iborra S, Corma A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering [J]. Chemical Reviews. 2006, 106(9): 4044–4098. [3] Bridgwater A V. Review of Fast Pyrolysis of Biomass and Product Upgrading [J]. Biomass and Bioenergy, 2012, 38: 68–94. [4] Xiu S, Shahbazi A. Bio-Oil Production and Upgrading Research: A Review [J]. Renewable and Sustainable Energy Reviews. 2012, 16(7): 4406–4414. [5] Kim J S. Production, Separation and Applications of Phenolic-Rich Bio-Oil - A Review [J]. Bioresource Technology. 2015, 178: 90–98. [6] Wang Z, Lin W, Song W, et al. Pyrolysis of the Lignocellulose Fermentation Residue by Fixed-Bed Micro Reactor [J]. Energy, 2012, 43(1): 301–305. [7] Wang Z, Ren P, Lin W, et al. Composition of the Liquid Product by Pyrolysis of Dried Distiller’s Grains with Solubles [J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 242–246. [8] Hu X, Gunawan R, Mourant D, et al. Upgrading of Bio-Oil via Acid-Catalyzed Reactions in Alcohols — A Mini Review [J]. Fuel Processing Technology, 2017, 155: 2–19. [9] Mortensen P M, Grunwaldt J D, Jensen P A, et al. A Review of Catalytic Upgrading of Bio-Oil to Engine Fuels [J]. Applied Catalysis A: General, 2011, 407(1–2): 1–19. [10] Wang Z, Dang D, Lin W, et al. Catalytic Upgrading of Phenolic Oil by Etherification with Methanol [J]. Chemical Engineering and Technology, 2016, 39(10): 1797–1803. [11] Zhang S H, Wang Z, Lin W G,Song W L,Li S G. Alkylation of Alkylphenol, Alkoxyphenol and Their Mixture with Methanol under the Catalysis of Alkali and Alkaline-Earth Salts Modified Activated Alumina [J]. The Chinese Journal of Process Egineering, 2017, 17(6): 1239–1248. [12] Shen H Y, Judeh Z M A, Ching C B, et al. Comparative Studies on Alkylation of Phenol with Tert-Butyl Alcohol in the Presence of Liquid or Solid Acid Catalysts in Ionic Liquids [J]. Journal of Molecular Catalysis A: Chemical, 2004, 212(1–2): 301–308. [13] Rueping M, Nachtsheim B J. A Review of New Developments in the Friedel-Crafts Alkylation - From Green Chemistry to Asymmetric Catalysis [J]. Beilstein Journal of Organic Chemistry. 2010, pp 1–24. [14] Wu Y C, Liu L, Liu Y L, et al. TFA-Mediated Tandem Friedel-Crafts Alkylation/Cyclization/Hydrogen Transfer Process for the Synthesis of Flavylium Compounds [J]. Journal of Organic Chemistry, 2007, 72(24): 9383–9386. [15] Dang D, Wang Z, Lin W, et al. Synthesis of Anisole by Vapor Phase Methylation of Phenol with Methanol over Catalysts Supported on Activated Alumina [J]. Cuihua Xuebao/Chinese Journal of Catalysis, 2016, 37(5): 720–726. [16] Grabowska H, Mi?ta W, Trawczyński J, et al. Catalytic Alkylation of Phenol with Methanol over Zinc Aluminate [J]. Research on Chemical Intermediates, 2001, 27(3): 305–313. [17] Devi G S, Giridhar D, Reddy B M. Vapour Phase O -Alkylation of Phenol over Alkali Promoted Rare Earth Metal Phosphates [J]. 2002, 181: 173–178. [18] Sreekumar K, Sugunan S. Ferrospinels Based on Co and Ni Prepared via a Low Temperature Route as Efficient Catalysts for the Selective Synthesis of o -Cresol and 2 , 6-Xylenol from Phenol and Methanol [J]. 2002, 185: 259–268. [19] Apestegu? C R. Applied Catalysis A?: General Selective Synthesis of p -Cresol by Methylation of Phenol [J]. 2008, 342: 40–48. [20] Bhattacharyya K G, Talukdar A K, Das P, et al. Al-MCM-41 Catalysed Alkylation of Phenol with Methanol [J]. Journal of Molecular Catalysis A: Chemical, 2003, 197(1–2): 255–262. [21] Sad M E, Padró C L, Apesteguía C R. Journal of Molecular Catalysis A?: Chemical Study of the Phenol Methylation Mechanism on Zeolites HBEA , HZSM5 and HMCM22 [J]. Journal of Molecular Catalysis. A, Chemical, 2010, 327(1–2): 63–72. |
相关文章 15
[1] | 张展敖 刘庆芬. 青霉素菌丝中蛋白质酶法水解工艺[J]. 过程工程学报, 2021, 21(4): 471-478. |
[2] | 吴耀 李雲 郭宏飞 刘秀伍 陈学青 曹吉林. 273 K及323 K条件下NaCl–NaBr–CH3OH三元体系相平衡 研究及其应用[J]. 过程工程学报, 2021, 21(3): 286-297. |
[3] | 孟昭磊 李保卫 付金艳 朱超 武文斐. 稀土精矿负载Fe2O3矿物催化材料的NH3-SCR脱硝性能研究[J]. 过程工程学报, 2021, 21(3): 363-372. |
[4] | 郭艳东 苏航 陈嵩嵩 霍锋 张军平. 煤基甲醇芳构化分离过程多目标优化[J]. 过程工程学报, 2021, 21(1): 71-82. |
[5] | 李建涛 姚秀颖 刘璐 卢春喜. 催化裂化外取热器入口区域催化剂分布及优化研究[J]. 过程工程学报, 2020, 20(9): 1016-1024. |
[6] | 孙灵 诸林 何阳东. 基于链式循环二氧化碳重整的甲烷制甲醇过程火用分析[J]. 过程工程学报, 2020, 20(7): 822-831. |
[7] | 王晨 毛会玲 程琥 杜嬛 连小兵 庄金亮. 有机单体空间构型对共轭微孔聚合物催化性能的影响[J]. 过程工程学报, 2020, 20(5): 576-582. |
[8] | 张敏 韩林 胡月月 李健 闫 冰. 改性琼脂糖微球固定化甘油脱氢酶的研究[J]. 过程工程学报, 2020, 20(5): 591-598. |
[9] | 皇甫林 李长明 王超 李萍 李运甲 高士秋 余剑. 硅系黏结剂对涂覆型蜂窝体催化剂性能的影响[J]. 过程工程学报, 2020, 20(4): 484-492. |
[10] | 冯留海 冯钰琦 赵杰 门卓武 李希 卜亿峰. 气固流化床内费托铁基催化剂的流化特性[J]. 过程工程学报, 2020, 20(3): 302-307. |
[11] | 王来勇 钱付平 朱景晶 黄乃金 徐兵 吴昊. 选择性催化还原蜂窝状催化剂内流动特性的多尺度模拟[J]. 过程工程学报, 2020, 20(2): 133-140. |
[12] | 武文粉 李会泉 孟子衡 王晨晔 王兴瑞 赵晨. 碱溶法回收废SCR脱硝催化剂中的二氧化钛[J]. 过程工程学报, 2019, 19(S1): 72-80. |
[13] | 曹宏斌 许高洁 宁朋歌 石绍渊. 酚油共萃协同解毒技术及其在煤化工高浓废水中的应用[J]. 过程工程学报, 2019, 19(S1): 81-92. |
[14] | 杨时颖 郑经纬 李宝霞. 生物质制甲醇系统CO2捕集过程的设计模拟及技术经济性分析[J]. 过程工程学报, 2019, 19(6): 1250-1256. |
[15] | 张沁茗 谢召军 周震. 从商业化角度看锂-空气电池的发展[J]. 过程工程学报, 2019, 19(5): 880-889. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3346