1. 中国科学院绿色过程与工程重点实验室(中国科学院过程工程研究所),北京 1001902. 武汉东海石化重型装备有限公司,湖北 武汉 430207
收稿日期:
2018-07-20修回日期:
2018-11-28出版日期:
2019-08-22发布日期:
2019-08-15通讯作者:
华超基金资助:
十三五水体污染控制与治理科技重大专项CFD optimizations of spiral-wound heat exchangers
Xu ZHANG1, Mingkai LI2, Ping LU1, Fang BAI1, Chuan ZHOU2, Chao HUA1*1. CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. Wuhan East Petrochemical Heavy Equipment Co., Ltd., Wuhan, Hubei 430207, China
Received:
2018-07-20Revised:
2018-11-28Online:
2019-08-22Published:
2019-08-15Contact:
hua chao 摘要/Abstract
摘要: 用ANSYS CFX软件采用基于有限元的有限体积法对简化的缠绕管式换热器的壳程流动进行模拟,考察管束导程和壳程流速等参数对缠绕管式换热器壳程流体流动特性的影响。结果表明,减小缠绕管束的导程可提高壳程流体的湍流程度,增强壳程流体的均匀程度,减少温度死区并提高换热效率,减小同一截面不同区域的压力差,进而减小因流场不均匀而对管束产生的破坏性应力。提高壳程流速可增强换热,但会增加壳程压降。
引用本文
张旭 李明凯 陆平 白芳 周川 华超. 缠绕管式换热器的CFD优化[J]. 过程工程学报, 2019, 19(4): 693-703.
Xu ZHANG Mingkai LI Ping LU Fang BAI Chuan ZHOU Chao HUA. CFD optimizations of spiral-wound heat exchangers[J]. Chin. J. Process Eng., 2019, 19(4): 693-703.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218262
http://www.jproeng.com/CN/Y2019/V19/I4/693
参考文献
[1] 王艳. 换热器网络的优化及可视化 [D]. 湘潭:湘潭大学. 2004: 1-2. Wang Y. The Optimum Design and Display of Heat Exchanger Networks[D]. Xiangtan: Xiangtan University. 2004: 1-2. [2] 张周卫,薛佳幸,汪雅红,李跃. 缠绕管式换热器的研究与开发[J]. 机械设计与制造, 2014, (9): 12-17. Zhang Z W, Xue J X, Wang Y H, Li Y. Research and Develop on Coil-Wound Heat Exchanger[J]. Machinery Design & Manufacture, 2014, (9): 12-17. [3] 王斯民,简冠平,肖娟,王家瑞,文键. 缠绕管式换热器结构参数多目标优化数值模拟研究[J]. 西安交通大学学报, 2017,51:9-15. Wang S M, Jian G P, Xiao J, Wang J R, Wen J. Multi-Objective Optimization on the Structural Parameters of Spiral Wound Heat Exchanger[J]. Journal of Xi’An Jiao Tong University, 2017,51:9-15. [4] 张勇,刘鸿彦,李守谦. 缠绕管式换热器壳程流体特性分析[J]. 石油和化工设备, 2016,19(3):16-21. Zhang Y, Liu H Y, Li S Q. Chan Rao Guan Shi Huan Re Qi Ke Cheng Li Ti Te Xing Fen Xi[J]. Shi You He Hua Gong She Bei, 2016,19(3): 16-21. [5] 刘博,李庆生,李淑恒. 单根缠绕管绕流的二维数值模拟[J]. 石油机械, 2016,44(2):111-116. Liu B, Li Q S, Li S H. 2D Numerical Simulation of Fluid Flow around the Single Spiral Tube [J]. CHINA PETROLEUM MACHINERY, 2016, 44(2):111-116. [6] 田杨,陈光辉,李建隆. 水滴型缠绕管换热器壳程流动与传热研究[J]. 化工设计通讯, 2017, 43(7): 147-151. Tian Y, Chen G H, Li J L. Study on Flow and Heat Transfer of Shell-side Coil-wound Heat Exchanger in Water Drop Type[J]. Chemical Engineering Design Communications, 2017, 43(7): 147-151. [7] Ren Y, Cai WH, Chen J, et al. The heat transfer characteristic of shell-side film flow in spiral wound heat exchanger under rolling working conditions[J]. Applied Thermal Engineering, 2018,132:233-244. [8] Ren Y, Cai WH, Jiang YQ. Numerical study on shell-side flow and heat transfer of spiral-wound heat exchanger under sloshing working conditions[J]. Applied Thermal Engineering, 2018,134:287-297. [9] Wu ZY, Wang H, Cai WH, et al. Numerical investigation of boiling heat transfer on the shell-side of spiral wound heat exchanger[J]. Heat And Mass Transfer, 2016,52:1973-1982. [10] Duan ZD, Ren T, Ding GL, et al. A dynamic model for FLNG spiral wound heat exchanger with multiple phase-change streams based on moving boundary method[J]. Journal Of Natural Gas Science And Engineering, 2016,34:657-669. [11] Wang SM, Jian GP, Wang JR, et al. Application of entransy-dissipation-based thermal resistance for performance optimization of spiral-wound heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 116: 743-750. [12] Ren Y, Jiang YQ, Cai WH, et al. Numerical study on shell-side saturated boiling heat transfer in spiral wound heat exchanger[J]. Applied Thermal Engineering, 2018,140: 657-670. [13] Ren Y, Cai WH, Chen J, et al. Numerical study on the shell-side flow and heat transfer of superheated vapor flow in spiral wound heat exchanger under rolling working conditions[J]. International Journal of Heat and Mass Transfer, 2018, 121: 691-702. [14] Wu JX, Liu SL, Wang MQ. Process calculation method and optimization of the spiral-wound heat exchanger with bilateral phase change[J]. Applied Thermal Engineering, 2018, 134: 360-368. [15] Wang SM, Jian GP, Xiao J, et al. Optimization investigation on configuration parameters of spiral-wound heat exchanger using Genetic Aggregation response surface and Multi-Objective Genetic Algorithm[J]. Applied Thermal Engineering, 2017, 119: 603-609. [16] Z.Y. Wu WHC, G.D. Qiu, Y.Q. Jiang Prediction of mass transfer time relaxation parameter for boiling simulation on the shell-side of LNG spiral wound heat exchanger[J]. Adv Mech Eng, 2014:1-11. [17] C. Ding HTH, G.L. Ding, J. Chen, X.G. Mi, S.C. Yu, J.R. Li. Experimental investigation on downward flow boiling heat transfer characteristics of propane in shell side of LNG spiral wound heat exchanger[J]. Int J Refrig 2017,84:13-25. [18] C. Ding HTH, G.L. Ding, J. Chen, X.G. Mi, S.C. Yu. Influences of tube pitches on heat transfer and pressure drop characteristics of two-phase propane flow boiling in shell side of LNG spiral wound heat exchanger[J]. Applied Thermal Engineering, 2018,131:270-283. |
相关文章 15
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419. |
[3] | 郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285. |
[4] | 王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250. |
[5] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[6] | 杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45. |
[7] | 岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958. |
[8] | 屈雪婧 安敏 管小平 杨宁 孙国刚. 气液鼓泡塔的CFD-PBM耦合模拟:离散法与QMOM方法的对比[J]. 过程工程学报, 2020, 20(7): 788-797. |
[9] | 王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744. |
[10] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[11] | 薛沚怡 钱付平 朱景晶 董伟 韩云龙 鲁进利. 高湿黏性颗粒在聚四氟乙烯微孔膜滤料表面沉积特性的数值模拟[J]. 过程工程学报, 2020, 20(5): 521-530. |
[12] | 王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539. |
[13] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[14] | 王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157. |
[15] | 吴仲达 游永华 王盛 张壮 周思凯 戴方钦 易正明. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3317