1. 中国石油大学(北京)机械与储运工程学院,北京 102249 2. 中国石油大学(北京)过程流体过滤与分离技术北京市重点实验室,北京 102249
收稿日期:
2018-10-17修回日期:
2019-01-22出版日期:
2019-08-22发布日期:
2019-08-15通讯作者:
陈景Testing and optimization of gas-liquid filtration performance of folded filter
Jing CHEN1,2, Zhongli JI1,2*, Zhen LIU1,21. College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China 2. Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum, Beijing 102249, China
Received:
2018-10-17Revised:
2019-01-22Online:
2019-08-22Published:
2019-08-15Contact:
Jing 摘要/Abstract
摘要: 采用聚结型滤芯气液过滤性能实验装置,研究了油雾加载率和表观过滤速度对折叠滤芯过滤性能的影响及涂覆粘合剂对折叠滤芯过滤性能的优化作用。结果表明,涂覆粘合剂后,滤材抗张力强度明显增大,滤材孔径减小。随油雾加载率增大,滤芯过滤层液体运移通道数增加,通道压降升高。初始压降随表观过滤速度增加而升高。粘合剂主要凝固在渗透性低的区域,压降变化较小。表观过滤速度增加抑制了二次夹带,折叠滤芯过滤效率升高,而由于粘合剂脱落,涂覆粘合剂的滤芯过滤效率下降。表观过滤速度为0.10 m/s时,随油雾加载率增大,聚结在滤材表面的粘合剂抑制夹带,滤芯过滤效率升高。
引用本文
陈景 姬忠礼 刘震. 折叠滤芯气液过滤性能测试及优化[J]. 过程工程学报, 2019, 19(4): 775-782.
Jing CHEN Zhongli JI Zhen LIU. Testing and optimization of gas-liquid filtration performance of folded filter[J]. Chin. J. Process Eng., 2019, 19(4): 775-782.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218301
http://www.jproeng.com/CN/Y2019/V19/I4/775
参考文献
李柏松. 天然气净化用滤芯的气液过滤性能研究[D]. 中国石油大学(北京), 2009. Li B S,Study on Gas-liquid Separation Performance of Filters for Natural Gas Purification [D]. China University of Petroleum (Beijing), 2009. 常程, 姬忠礼, 黄金斌,等. 气液过滤过程中液滴二次夹带现象分析[J]. 化工学报, 2015, 66(4):1344-1352. Chang C, Ji Z L, Huang J B, et al. Analysis of re-entrainment in process of gas-liquid filtration[J]. CIESC Journal, 2015, 66(4):1344-1352. Chang C, Ji Z, Liu C, et al. Permeability of filter cartridges used for natural gas filtration at high pressure [J]. Journal of Natural Gas Science & Engineering, 2016, 34:419-427. Hajra M G, Mehta K, Chase G G. Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media[J]. Separation & Purification Technology, 2003, 30(1):79-88. Kampa D, Wurster S, Meyer J, et al. Validation of a new phenomenological “jump-and-channel” model for the wet pressure drop of oil mist filters [J]. Chemical Engineering Science, 2015, 122:150-160. 陈仕林, 刘震, 宫敬,等. 高压条件下聚结过滤滤芯性能的影响因素[J]. 油气储运, 2018(2). Chen S L, Liu Z, Gong J, et al. Factors influencing the performance of filter element for coalescence filtration under high pressure[J].Oil & Gas Storage and Transportation,2018(2). 陈锋, 姬忠礼, 齐强强. 孔径梯度分布对亲油型滤材气液过滤性能的影响[J]. 化工学报, 2017, 68(4):1442-1451. Chen F, Ji Z L, Qi Q Q. Influence of pore size distribution on gas-liquid filtration performance of oleophilic filters [J]. CIESC Journal, 2017, 38(9): 1442–1451. Liu Z, Ji Z, Zhang J, et al. Influence of Processing Parameters on Gas-liquid Filtration Performance of Fibrous Filter Cartridge ☆[J]. Procedia Engineering, 2015, 102:911-920. Charvet A, Gonthier Y, Gonze E, et al. Experimental and modelled efficiencies during the filtration of a liquid aerosol with a fibrous medium[J]. Chemical Engineering Science, 2010, 65(5):1875-1886. Kampa D, Wurster S, Buzengeiger J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration [J]. International Journal of Multiphase Flow, 2014, 58(58):313-324. Wurster S, Kampa D, Meyer J, et al. Measurement of oil entrainment rates and drop size spectra from coalescence filter media [J]. Chemical Engineering Science, 2015, 132:72-80. Wurster S, Meyer J, Kolb H E, et al. Bubbling vs. blow-off – On the relevant mechanism(s) of drop entrainment from oil mist filter media [J]. Separation & Purification Technology, 2015, 152:70-79. Kolb H E, Meyer J, Kasper G. Flow velocity dependence of the pressure drop of oil mist filters[J]. Chemical Engineering Science, 2017, 166:107-114. Jeffery A B, Bakis G, Skelton J. High-efficiency, self-supporting filter element made from fibers: US, US 5456836 A[P]. 1995. Vasudevan G, Chase G G. Performance of B–E-glass fiber media in coalescence filtration [J]. Journal of Aerosol Science, 2004, 35(1):83-91. Hutten I. Fiberrich -An Alternative to Phenolic Treated Filter Paper for Automatic Lube Oil Filtration [J]. FLUID PARTICLE SEPARATION JOURNAL, 1998, 11: 314-321. Mcconnell R L, Meyer M F, Petke F D, et al. Polyester binders in nonwovens and other textile applications[J]. Journal of Coated Fabrics, 1987, 16(3): 199-208. Liu Z, Ji Z, Shang J, et al. Improved Design of Two-stage Filter Cartridges for High Sulfur Natural Gas Purification [J]. Separation & Purification Technology, 2017. Institution B S. Iso 8573-2 - Compressed Air - Part 4: – Part 2 Test Methods for Aerosol Oil Content [J]. Wurster S, Meyer J, Kasper G. On the relationship of drop entrainment with bubble formation rates in oil mist filters[J]. Separation & Purification Technology, 2017, 179:542-549. |
相关文章 15
[1] | 许晓飞 魏文泽 董鑫 刘凤霞 魏炜 刘志军. 氧化沟内曝气器布置方式对曝气性能的影响规律[J]. 过程工程学报, 2021, 21(4): 394-400. |
[2] | 史亚琪 李彦君 杜玉朋 任万忠. 气-固微型流化床压降特性及最小流化速度的实验研究[J]. 过程工程学报, 2021, 21(4): 420-430. |
[3] | 王佳荣 姬忠礼 马巍威 卢锦杰 杨博. 表面润湿性对梯形除雾器分离性能的影响[J]. 过程工程学报, 2020, 20(4): 410-417. |
[4] | 李冬 杨宏刚 王怡 采晓帆 蔡如明. 防返混锥对旋风除尘器内二次流的抑制效果研究[J]. 过程工程学报, 2020, 20(12): 1397-1405. |
[5] | 吕涵 范怡平 赵亚飞 卢春喜. 气固并流式轴向移动床过滤器的压降特性[J]. 过程工程学报, 2020, 20(1): 35-43. |
[6] | 郭骥 姬忠礼. 苯酚浓度对亲油疏水型滤材聚结性能的影响[J]. 过程工程学报, 2019, 19(6): 1143-1152. |
[7] | 王党飞 王国荣 邱顺佐 钟林 周守为 刘清友. 溢流管结构对天然气水合物用旋流器分离性能的影响[J]. 过程工程学报, 2019, 19(5): 982-988. |
[8] | 廖泽楚 高伟 刘磊 姜胜强 谭援强. 螺带式混凝土搅拌机混合特性及DEM模拟[J]. 过程工程学报, 2019, 19(4): 668-675. |
[9] | 刘龙飞 姬忠礼 栾鑫. 高温陶瓷过滤管性能退化建模及实时寿命预测[J]. 过程工程学报, 2019, 19(1): 165-172. |
[10] | 杨帅 赵祥迪 徐银谋 王正 袁纪武 孙万付. 文丘里洗涤器内硫化氢气体碱液吸收过程的CFD模拟[J]. 过程工程学报, 2018, 18(S1): 103-110. |
[11] | 王润鹏 吴小林 刘震 姬忠礼. 不同操作压力下的气液过滤特性分析[J]. 过程工程学报, 2018, 18(5): 1020-1028. |
[12] | 齐强强 吴小林 陈锋 姬忠礼. 静电纺丝纤维滤材表征及其气液过滤性能[J]. 过程工程学报, 2018, 18(4): 799-808. |
[13] | 杨潇寒 付涛涛 姜韶堃 朱春英 马友光. 微通道内流体压力降研究进展[J]. 过程工程学报, 2018, 18(4): 680-688. |
[14] | 余廷芳 柳阿亮 张莹 王志强 叶文林 孙金丛. 孔隙分布对多孔介质内流动和传热的影响[J]. 过程工程学报, 2018, 18(3): 469-476. |
[15] | 颜深 孙国刚 詹敏述 姬忠礼. 不同滤料固定颗粒床过滤性能对比[J]. 过程工程学报, 2018, 18(3): 477-483. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3303