1. 中国科学院绿色过程与工程重点实验室,中国科学院过程工程研究所,北京 1001902. 郑州中科新兴产业技术研究院,河南 郑州 450000
收稿日期:
2019-03-11修回日期:
2019-04-17出版日期:
2019-06-28发布日期:
2019-06-10通讯作者:
曹宏斌基金资助:
青年创新促进会基金;自然科学基金Co-extraction and synergistic detoxification technology and its application in high-concentration wastewater from coal chemical industry
Hongbin CAO1*, Gaojie XU1,2, Pengge NING1, Shaoyuan SHI1,21. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, Henan 450000, China
Received:
2019-03-11Revised:
2019-04-17Online:
2019-06-28Published:
2019-06-10Contact:
CAO Hong-bin hongbin 摘要/Abstract
摘要: 煤化工高浓废水因成分复杂、污染物浓度高、毒性大、可生化性低等特点受到环保行业广泛关注,废水中含有高浓度的氨氮、酚类和油类物质及杂环化合物和多环芳烃等高毒性污染物,高效脱酚和深度解毒是该类废水处理的两大瓶颈。本工作从过程污染控制角度提出了酚油共萃协同解毒技术,配合研发的酚油联合脱除专用萃取剂IPE-PO,有针对性地处理云南某企业的煤化工高浓废水。用GC-MS检测了处理前后废水中的有机物种类,并与工业应用广泛的甲基异丁基酮萃取剂(MIBK)萃取体系进行对比。预处理后废水中的化学需氧量(COD)、总酚、氨氮(NH4+?N)、有机物的吸光度(UV254)平均脱除率分别为77.69%, 90.45%, 97.10%和82.19%,去除了大部分有毒污染物,废水的可生化性显著提高。处理后废水中的有机物种类从原水中的101种减至74种,展现了该技术在处理有毒物质方面的优势。经生化和深度处理,废水COD从31000~37000 mg/L降至100 mg/L以下,UV254从197 cm?1降至0.5 cm?1,可直接排入污水厂,运行成本不超过10元/t。IPE-PO萃取剂酚油协同共萃解毒技术在煤化工废水处理上是一种可行且高效的预处理方法。
引用本文
曹宏斌 许高洁 宁朋歌 石绍渊. 酚油共萃协同解毒技术及其在煤化工高浓废水中的应用[J]. 过程工程学报, 2019, 19(S1): 81-92.
Hongbin CAO Gaojie XU Pengge NING Shaoyuan SHI. Co-extraction and synergistic detoxification technology and its application in high-concentration wastewater from coal chemical industry[J]. Chin. J. Process Eng., 2019, 19(S1): 81-92.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219163
http://www.jproeng.com/CN/Y2019/V19/IS1/81
参考文献
[1]吴晓华, 宋二波, 贾尚伟. 基于SWOT 分析的我国洁净煤技术发展研究 [J]. 洁净煤技术, 2015, 21(1):24-28. Wu X H, Song E B, Jia S W. Research on development of clean coal technology China based on SWOT analysis [J]. Clean Coal Technology, 2015, 21 (1):24-28. [2] 方芳,韩洪军,崔立明, 等. 煤化工废水“近零排放”技术难点解析[J]. 环境影响评价, 2017,39(2):9-13. Fang F, Han H J, Cui L M, et al.Analysis on technological difficulties of near zero dischargefor coal gasification wastewater treatment [J].Environmental Impact Assessment, 2017,39(2):9-13. [3]GaiH J, FengY R, LinK Q, et al. Heat integration of phenols and ammonia recovery process for thetreatment of coalgasification wastewater[J]. Chemical Engineering Journal, 2017, 327: 1093-1101. [4]JiQH, Tabassum S, Hena S, et al. A review on the coalgasification wastewater treatment technologies: past, present and future outlook [J]. Journal of Cleaner Production, 2016, 126: 38-55. [5] 钱宇,周志远,陈赟, 等. 煤气化废水酚氨分离回收系统的流程改造和工业实施[J]. 化工学报, 2010, 61(7), 1821-1828. Qian Y, Zhou Z Y, Chen Y, et al. Process retrofit and industrial implementation of phenol and ammoniarecovery from coal-gasification wastewater [J]. CIESC Journal, 2010, 61(7), 1821-1828. [6] Yang C F, Yang S Y, Qian Y, et al. Simulation and operation cost estimate for phenol extraction and solvent recovery process of coal-gasification wastewater [J].Industrial & Engineering Chemistry Research, 2013, 52(34): 12108-12115. [7] 钱宇,杨思宇,马东辉, 等. 煤气化高浓酚氨废水处理技术研究进展[J].化工进展, 2016, 35(6): 1884-1893. Qian Y, Yang S Y, Ma D H, et al. Research advances in treatment of coal gasification wastewater with high phenol and ammonia [J]. CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, 2016, 35(6): 1884-1893. [8] Yang C F, Qian Y, Zhang L J, et al. Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater[J]. Chemical Engineering Journal, 2006, 117(2): 179-185. [9] Wang Z X, Xu X C, Gong Z, et al. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system[J]. Journal of Hazardous Materials, 2012, 235-236: 78- 84. [10] Wang W, Han H J. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater [J]. Bioresource Technology, 2012, 103: 95-100. [11] TabassumS, JiQ H, HenaS, et al. Treatment of coal gasification wastewater byanaerobic SBR–aerobic SBR process for eliminationof toxic organic matters-a lab scale study [J].RSC Adv., 2015, 5: 58334-58344. [12] 何苗. 杂环化合物和多环芳烃生物降解性能的研究[D]. 北京:清华大学,1995. Astudy on biodegradability of heterocyclic compounds and polycyclic aromatic hydrocarbons [D]. Beijing, Tsinghua university, 1995. [13]程能林. 溶剂手册[M]. 北京:化学工业出版社, 2007:522-615. Cheng N L. Solvent Handbook [M]. Beijing: Chemical IndustryPress, 2007: 522-615. [14] 麦子豪. 煤气化高浓酚氨污水处理过程工艺设计与节能优化[D]. 广州:华南理工大学, 2016, 6-12. Mai Z H. Energy usage optimization and process design ofthe phenols-ammonia wastewater treatment processes [D]. Guangzhou: South China University of Technology, 2016, 6-12. |
相关文章 1
[1] | 刘文昭 许高洁 董强 宁朋歌 李玉平. 煤化工废水中二元酚处理方法的研究进展[J]. 过程工程学报, 2018, 18(2): 232-240. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3262