1. 合肥学院生物与环境工程系,安徽 合肥 230601 2. 中国科学院过程工程研究所绿色过程与工程重点实验室,北京 100190 3. 河北钢铁集团邯郸钢铁集团有限责任公司, 河北 邯郸 056015
收稿日期:
2018-07-16修回日期:
2018-09-11出版日期:
2019-04-22发布日期:
2019-04-18通讯作者:
宁朋歌基金资助:
国家自然科学基金资助项目 (U1302274);中国科学院青年创新促进会Research status of hydrocyclone and its application prospect in wastewater treatment of coal chemical industry
Yuanwei SUI1,2, Guangru JIA3, Gaojie XU2, Qiang DONG1*, Pengge NING2*, Hongbin CAO21. Department of Biology and Environmental Engineering, Hefei University, Hefei, Anhui 230601, China 2. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190,China3. Hebei Iron and Steel Group Hansteel Company, Handan, Hebei 056015, China
Received:
2018-07-16Revised:
2018-09-11Online:
2019-04-22Published:
2019-04-18Supported by:
Projects (U1302274) supported by the National Science Foundation of China摘要/Abstract
摘要: 水力旋流器是利用离心力场进行两相流体分离的设备,具有体积小、效率高、结构简单和安装便捷等特点,广泛应用于化工、石油及地下开采等工业领域。本工作主要介绍了旋流器的工作原理、理论研究和应用现状,从数值模拟、旋流器的结构参数、操作参数和物性参数及应用技术拓展等方面综述了水力旋流器的研究现状,并针对煤化工废水水质高乳化、高分散和高粘度等特点,综合分析了水力旋流器在煤化工废水预处理中的应用前景。旋流器模拟与实验相结合为目前研究的主要方向,深度分析了旋流器内两相流的运动状态,为旋流器结构改良提供理论依据,推动旋流器快速发展。旋流器结构改良设计和操作参数的优化均有一定局限性,油水物性是影响油水分离的决定性因素。因此,前期对含油废水进行预处理极为重要,可采用破乳剂或絮凝剂、超声或微波等方法改善含油废水的物性,对含油废水物性的研究和改善并结合数值模拟的应用将是未来提高水力旋流器分离效率的发展方向,旋流器在煤化工废水除油脱焦粉工艺中有很好的经济效益和广阔的应用前景。
引用本文
隋元伟 贾广如 许高洁 董强 宁朋歌 曹宏斌. 水力旋流器研究现状及其在煤化工废水处理中的应用前景[J]. 过程工程学报, 2019, 19(2): 235-245.
Yuanwei SUI Guangru JIA Gaojie XU Qiang DONG Pengge NING Hongbin CAO. Research status of hydrocyclone and its application prospect in wastewater treatment of coal chemical industry[J]. Chin. J. Process Eng., 2019, 19(2): 235-245.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218248
http://www.jproeng.com/CN/Y2019/V19/I2/235
参考文献
[1] 徐继润. 水力旋流器流场理论[M]. 科学出版社, 1998: 33-75. [2] 褚良银. 水力旋流器[M]. 化学工业出版社, 1998: 1-5. [3] Liang Z, Ren L C, Zhang L, et, al. The distribution law of radial velocity of flow field in hydrocyclone[J]. Journal of Southwest Petroleum University, 2007, 29(1): 106-108. [4] 庞学诗. 水力旋流器理论与应用[M]. 中南大学出版社, 2005. [5] 倪玲英. 油水分离用水力旋流器的应用前景[J]. 新疆石油科技, 1999(3): 48-51. Ni L Y. You shui fen li yong shui li xuan liu qi de ying yong qian jing[J]. xin jiang shi you ke ji, 1999(3): 48-51. [6] 汪华林,钱卓群,魏大妹,等. 油-水旋流分离技术及其在含油污水处理中的应用[J]. 石油化工环境保护, 1998(3): 8-17. Wang H, Hou T. Oil-Water Hydrocyclone Separation Technology and its Application to Oily Wastes Treating[J]. Environment Protection in Petrochemical Industry, 1998(3): 8-17. [7] 刘天齐. 石油化工环境保护手册[M]. 烃加工出版社, 1990. [8] 庞学诗. 水力旋流器技术与应用[M]. 中国石化出版社, 2011. [8] Gomez C H. Oil-water separation in liquid-liquid hydrocyclones (LLHC)-experiment and modeling/[J]. Nepis.epa.gov, 2001. [10] 陆耀军,沈熊. 优选结构液-液旋流管分离特性[J]. 化工学报, 1999, 50(6): 758-765. Lu Y, Shen X, Zhou L. SEPARATION PERFORMANCE OF INNOVATIVE LIQUID - LIQUID HYDROCYCLONE[J]. Journal of Chemical Industry & Engineering, 1999, 50(6): 758-765. [11] 杨拓. 油水分离旋流器油滴运动及其破碎数值模拟 [D].华中科技大学, 2015. [12] Petty C A, Parks S M. Flow structures within miniature hydrocyclones[J]. Minerals Engineering, 2004, 17(5): 615-624. [13] 刘彩玉,李枫,于永红. 复合式水力旋流器径向压力分布及单体生产能力的确定[J]. 化工机械, 2009, 36(5): 434-438. Liu C, Feng L I, Yonghong Y U. Radial Pressure Distribution and Unit Production Ability Determination of Compound Hydrocyclones[J]. Chemical Engineering & Machinery, 2009, 80(2):125-130. [14] Dueck J G, Matvienko O V, Neesse T. Modeling of hydrodynamics and separation in a hydrocyclone[J]. Theoretical Foundations of Chemical Engineering, 2000, 34(5): 428-438. [15] Schuetz S, Mayer G, Bierdel M, et, al. Investigations on the flow and separation behaviour of hydrocyclones using computational fluid dynamics[J]. International Journal of Mineral Processing, 2004, 73(2): 229-237. [16] Nowakowski A F, Cullivan J C, Williams R A, et, al. Application of CFD to modelling of the flow in hydrocyclones. Is this a realizable option or still a research challenge?[J]. Minerals Engineering, 2004, 17(5): 661-669. [17] 马艺,王振波,金有海. 不同湍流模型和差分格式对旋流器流场的影响[J]. 化工机械, 2009, 36(6): 596-599. Yi M A, Wang Z, Jin Y. Influences of Different Turbulent Current Models and Difference Schemes on the Flow Field of Hydrocyclones[J]. Chemical Engineering & Machinery, 2009, 36(6): 596-599. [18] Launder B E, Spalding D B. Lectures in mathematical models of turbulence[M]//Lectures in mathematical models of turbulence/.Academic Press, 1972. [19] 陆耀军,周力行,沈熊. 不同湍流模型在液—液旋流分离管流场计算中的应用及比较[J]. 清华大学学报(自然科学版), 2001, 41(2): 105-109. Yaojun L U, Zhou L, Xiong S. Different turbulence models for simulating a liquid liquid hydrocyclone[J]. Journal of Tsinghua University, 2001, 41(2): 105-109. [20] Mare L D, Jones W P. LES of turbulent flow past a swept fence[J]. International Journal of Heat & Fluid Flow, 2003, 24(4): 606-615. [21] Dejoan A, Schiestel R. LES of unsteady turbulence via a one-equation subgrid-scale transport model[J]. International Journal of Heat & Fluid Flow, 2002, 23(4): 398-412. [22] Lübcke H, Schmidt S, Rung T, et, al. Comparison of LES and RANS in bluff-body flows[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2001, 89(14): 1471-1485. [23] Fluent Inc,FLUENT User's Guide.FLUENT Inc.2006. [24]Schmidt R C, Kerstein A R, Wunsch S, et, al. Near-wall LES closure based on one-dimensional turbulence modeling[J]. Journal of Computational Physics, 2003, 186(1): 317-355. [25] Viazzo S, Dejoan A, Schiestel R. Spectral features of the wall-pressure fluctuations in turbulent wall flows with and without perturbations using LES[J]. International Journal of Heat & Fluid Flow, 2001, 22(1): 39-52. [26] 琚选择,李自力,孙卓辉,等. 液-液水力旋流器两相湍动流数值模拟研究进展[J]. 化学工业与工程, 2009, 26(1): 84-90. Xuan-Ze J U, Zi-Li L I, Sun Z H, et al. Progress in Numerical Simulation of Two-Phase Turbulent Flow in the Liquid-Liquid Hydrocyclone(LLHC)[J]. Chemical Industry & Engineering,2009, 26(1): 84-90. [27] Bhaskar K U, Murthy Y R, Raju M R, et, al. CFD simulation and experimental validation studies on hydrocyclone[J]. Minerals Engineering, 2007, 20(1): 60-71. [28] 梁政,吴世辉,任连城. 论水力旋流器流场数值模拟中湍流模型的选择[J]. 天然气工业, 2007, 27(3): 119-121. Liang Z, Shi-Hui W U, Ren L C. THE SELECTION OF TURBULENT MODEL IN NUMERICAL SIMULATION OF FLOW FIELD OF HYDRAULIC CYCLONE[J]. Natural Gas Industry, 2007, 27(3):119-121. [29] Kharoua N, Khezzar L, Nemouchi Z. Computational fluid dynamics study of the parameters affecting oil-water hydrocyclone performance. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2010, 224(2): 119-128. [30] Xia Y F, Deng S S, Gu M, et, al. Field Simulation of Liquid-Liquid Hydrocyclone Based on Large Eddy Theory[M]// Fuzzy Information and Engineering Volume 2. Springer Berlin Heidelberg, 2009: 901-906. [31] 魏新利,张海红,王定标,等. 水力旋流器流场的数值模拟研究[J]. 热科学与技术, 2005, 4(2): 164-168. Wei X L, Zhang H H, Wang D B. Numerical simulation and study of inner flow field in hydrocyclone[J]. Journal of Thermal Science & Technology, 2005, 4(2):164-168. [32] 赵立新,崔福义,蒋明虎,等. 基于雷诺应力模型的脱油旋流器流场特性研究[J]. 化学工程, 2007, 35(5): 32-35. Zhao L X, Cui F Y, Jiang M H, et al. Study on the characteristics of flow field inside de-oiling hydrocyclone based on Reynolds stress model[J]. Chemical Engineering, 2007, 35(5):32-35. [33] 刘海生,贺会群,艾志久,等. 雷诺应力模型对旋流器内流场的数值模拟[J]. 计算机仿真, 2006, 23(9): 243-245. Liu H S, Hui-Qun H E, Zhi-Jiu A I, et al. Numerical Simulation of Inner Flow Field in Hydrocyclone with RSM Model[J]. Computer Simulation, 2006, 23(9):243-245. [34] 李坤,李正兴,袁惠新. 单入口水力旋流器内速度分布特性的数值模拟[J]. 矿山机械, 2006(4): 87-89. Li K, LI Z X, Yuan H X. Dan ru kou shui li xuan liu qi nei su du fen bu te xing de shu zhi mo ni[J]. Kuang shan ji xie, 2006(4): 87-89. [35] 马艺,金有海,王振波. 两种不同入口结构型式旋流器内的流场模拟[J]. 化工进展, 2009, 28(s1): 497-501. Ma Y, Jin Y H, Wang Z B. Liang zhong bu tong jie gou xing shi xuan liu qi nei de liu chang mo ni[J]. Hua gong jing zhan, [37]2009, 28(s1): 497-501. [36] 刘晓敏,檀润华,蒋明虎,等. 水力旋流器结构形式及参数关系研究[J]. 机械设计, 2005, 22(2): 26-29. Liu X M, Tan R H, Jiang M H, et al. Research on structural form and parametric relations of hydrocyclones[J]. Journal of Machine Design, 2005, 22(2): 26-29. [37] 俞接成,陈家庆,韩景. 轴向入口油水分离水力旋流器及其数值模拟[J]. 北京石油化工学院学报, 2009, 17(2): 19-23. Yu J. Axial Entrance Hydrocyclone for Oil-Water Separation and its Numerical Simulation[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2009, 17(2): 19-23. [38] Noroozi S, Hashemabadi S H. CFD Simulation of Inlet Design Effect on Deoiling Hydrocyclone Separation Efficiency[J]. Chemical Engineering & Technology, 2010, 32(12): 1885-1893. [39] 王振波. 油田采出水处理用水力旋流器的试验研究 [D]. 石油大学:中国石油大学(北京). 2001. [40] 何利民. 除油水力旋流器溢流口结构试验研究[J]. 化工机械, 2000, 28(4): 193-196. He L. An experimental investigation on the structure of the overflow mouth of a deoiling hydrocyclone[J]. Chemical Engineering & Machnery, 2000, 28(4): 193-196. [41] 钟声. 新型多孔溢流管式水力旋流器的研究 [D]. 东北石油大学. 2012. [42] 周先桃,陈文梅,雷明光,等. 水力旋流器短路流消除方法[J]. 石油化工设备, 2003, 32(5): 4-6. Zhou X T, Chen W M, Lei M G, et al. Eradication of short-flow in a hydrocyclone[J]. Petro-chemical Equipment, 2003, 32(5): 4-6. [43] 褚良银. 水力旋流器固液两相流场研究 [D]. 成都科技大学:四川大学. 1992. [44] 诸良银. 化工装备技术[M]. 1995, 16(1): 10-13 [45] 柳吉祥. 旋转流分选的理论及应用[M]. 煤炭工业出版社, 1985. [46] 张丹,陈晔.锥角对固-液水力旋流器流场及其分离性能的影响[J]. 流体机械, 2009, 37(8): 11-16. Zhang D, Chen Y. Effect of the cone angle on flow field and separation performance of solid-liquid hydrocyclones[J]. Fluid Machinery, 2009, 37(8):11-16. [47] Saidi M, Maddahian R, Farhanieh B. A parametric study on deoiling hydrocyclone flow field[C] International Conference on Mechanical and Industrial Engineering. 2012. [48] 耿高峰. 油水分离水力旋流器锥段长度对速度场影响研究[J]. 化学工程与装备, 2012(2): 30-33. Geng G F. You shui fen li shui li xuan liu qi zhui duan chang du dui su du chang ying xiang yan jiu[J]. Hua xue gong cheng yu zhuang bei, 2012(2): 30-33. [49] 王振波. 油田采出水处理用水力旋流器的试验研究 [D]. 石油大学:中国石油大学(北京). 2001. [50] 褚良银. 水力旋流器[M]. 化学工业出版社, 1998: 122-141 [51] 张婷婷. 水力旋流器操作参数优选[J]. 科技创新导报, 2015(4): 70-70. Zhang T T. shui li xuan liu qi cao zuo can shu you xuan[J]. ke ji chuang xin dao bao, 2015(4): 70-70. [52] 王振波,贾少磊,金有海. 除油型旋流器压降比特性试验研究[J]. 化工机械, 2004, 31(1): 1-4. Wang Z, Jia S, Jin Y. An Experimental Investigation on the Pressure Drop Ratio Characteristics of Oil-Removing Cyclones[J]. Chemical Engineering & Machinery, 2004(8): 608-608. [53] 刘彩玉,蒋明虎,李枫. 液-液水力旋流器压降比特性[J]. 东北石油大学学报, 2005, 29(1): 104-106. Liu C Y, Jiang M H, Feng L I. Features of pressure-drop ratio of hydrocyclone[J]. Journal of Daqing Petroleum Institute, 2005, 29(1): 104-106. [54] 杨拓. 油水分离旋流器油滴运动及其破碎数值模拟 [D]. 华中科技大学. 2015. [55] 舒朝晖. 油水分离水力旋流器分离特性及其软件设计的研究 [D]. 四川大学. 2001. [56] Wolbert D, Ma B F, Aurelle Y, et, al. Efficiency estimation of liquid‐liquid Hydrocyclones using trajectory analysis [J]. Aiche Journal, 1995, 41(6): 1395-1402. [57] 薛红兵,康宜华,姚薇,等. 除油旋流器内壁油滴粒径分布规律研究[J]. 石油机械, 2001, 29(12): 1-3. Xue H B, Kang Y H,Yao W, Deng. Chu you xuan liu qi nei bi you di li jing fen bu gui lv yan jiu[J]. shi you ji xie, 2001, 29(12): 1-3. [58] 罗然,张伟,王家辉,等. 用CFD确定物性参数对井下油水分离效率的影响[J]. 石油和化工设备, 2010, 13(6): 23-26. LUO R, Zhang W, Wang J H, Deng. Yong CFD que ding wu xing can shu dui jing xia you shui fen li xiao lv de ying xiang[J]. shi you he hua gong she bei, 2010, 13(6): 23-26. [59] Belaidi A, Thew M T, Munaweera S J. Hydrocyclone Performance with Complex Oil-Water Emulsions in the Feed [J]. Canadian Journal of Chemical Engineering, 2010, 81(6): 1159-1170. [60] 杨琳,梁政,田家林,等. 粘度对液-液旋流器内部流场及分离效率影响的仿真分析[J]. 流体机械, 2010, 38(3): 28-32. Yang L, Liang Z, Tian J L, et al. Simulation Study on Viscosity Impacting on the Internal Flow Field and Separation Efficiency of Liquid-liquid Cyclone[J]. Fluid Machinery, 2010, 38(3): 28-32. [61] 赵远鹏. 阿尔油田含酸化返排液原油脱水技术研究[J]. 内蒙古石油化工, 2014(11): 100-103. Zhao Y P. Study on Crude Oil Dehydration Technology of Acid of Flowback in A'Er Oil Field[J]. Inner Mongolia petrochemical industry. 2014(11): 100-103. [62] Bednarski S, Listewnik J. Separation of Liquid-Liquid Solids Mixtures in a Hydrocyclone -Coalescer System[M]// Hydrocyclones. Springer Netherlands, 1992: 329-358. [63] [GB]8978-1996, 《污水综合排放标准》 [64] 夏永明, 孙良康. 石油储运过程环境污染控制[M]. 中国石化出版社, 1992. |
相关文章 15
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419. |
[3] | 郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285. |
[4] | 王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250. |
[5] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[6] | 杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45. |
[7] | 岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958. |
[8] | 王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744. |
[9] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[10] | 王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539. |
[11] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[12] | 王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157. |
[13] | 吴仲达 游永华 王盛 张壮 周思凯 戴方钦 易正明. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. |
[14] | 卢金霖 张东升 罗志国 邹宗树. 旋流中间包夹杂物碰撞去除的数值模拟[J]. 过程工程学报, 2020, 20(12): 1432-1438. |
[15] | 南文光 顾益青. 基于离散元方法的金属粉末铺粉动力学研究[J]. 过程工程学报, 2020, 20(11): 1313-1320. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3242