1. 中国科学院过程工程研究所,中国科学院绿色过程与工程重点实验室,北京 1001902. 中国科学院大学化学工程学院,北京 100049
收稿日期:
2019-01-30修回日期:
2019-03-01出版日期:
2019-10-22发布日期:
2019-10-22通讯作者:
张庆华基金资助:
国家重点研发计划重点专项;高芳烃高含氮重油催化转化反应基础研究;高芳烃高含氮重油催化转化反应基础研究Micro-mixing characteristics of non-Newtonian fluid in a stirred tank agitated with different impellers
Juan YANG1,2, Qinghua ZHANG1,2*, Chao YANG1,2*, Zaisha MAO11. CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2019-01-30Revised:
2019-03-01Online:
2019-10-22Published:
2019-10-22摘要/Abstract
摘要: 在直径0.282 m的搅拌槽内,以羟乙基纤维素(HEC)水溶液为工作体系,以磷酸盐?碘化物?碘酸盐平行竞争反应为模型反应,比较了非牛顿流体体系中向心桨、Rushton桨、三斜叶桨的功率准数,考察了加料时间、桨型及双层桨组合对微观混合效果的影响。结果表明,随功率增大,功率准数基本不变,Rushton桨功率准数最大,是向心桨的两倍、斜叶桨的四倍。随加料时间增大,离集指数先减小后不变。在实验考察范围内,单位体积功耗相等的情况下,单层桨微观混合效果的顺序为Rushton桨?向心桨?斜叶桨,双层桨中高剪切的Rushton桨与强循环的斜叶桨组合的微观混合效率最高。
引用本文
杨娟 张庆华 杨超 毛在砂. 不同组合桨搅拌槽内非牛顿流体的微观混合特性[J]. 过程工程学报, 2019, 19(5): 865-871.
Juan YANG Qinghua ZHANG Chao YANG Zaisha MAO. Micro-mixing characteristics of non-Newtonian fluid in a stirred tank agitated with different impellers[J]. Chin. J. Process Eng., 2019, 19(5): 865-871.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219128
http://www.jproeng.com/CN/Y2019/V19/I5/865
参考文献
[1]Ba?dyga J, Bourne J R. Turbulent mixing and chemical reactions [M]. Wiley, 1999. [2]Danckwerts P V. The definition and measurement of some characteristics of mixtures [J]. Appl. Sci. Res., 1952, 3(4): 279-296. [3]Danckwerts P V. The effect of incomplete mixing on homogeneous reactions [J]. Chem. Eng. Sci., 1958, 8(1): 93-102. [4]Bourne J R, Kozicki F, Rys P. Mixing and fast chemical reaction-I: Test reactions to determine segregation [J]. Chem. Eng. Sci., 1981, 36(10): 1643-1648. [5]Bourne J R, Yu S. Investigation of micromixing in stirred tank reactors using parallel reactions [J]. Ind. Eng. Chem. Res., 1994, 33(1): 41-55. [6]Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency-Experimental approach [J]. Chem. Eng. Sci., 1996, 51(22): 5053-5064. [7]Cheng J C, Feng X, Cheng D, et al. Retrospect and Perspective of Micro-mixing Studies in Stirred Tanks [J]. Chin. J. Chem. Eng., 2012, 20(1): 178-190. [8]闵健, 高正明, 蒋勇, 等. 多层桨搅拌槽内的微观混合特性 [J]. 过程工程学报, 2005, 5(5): 495-498. Min J, Gao Z M, Jiang Y, et al. Micromixing Characteristics in a Stirred Tank with Multiple Impellers [J]. Chin. J. Process. Eng., 2005, 5 (5): 495-498. [9]Gu D, Liu Z, Xu C, et al. Solid-liquid mixing performance in a stirred tank with a double punched rigid-flexible impeller coupled with a chaotic motor [J]. Chem. Eng. Process., 2017, 118:37-46. [10]王能勤, 梁正祥, 张桂昭. 穿流式搅拌桨, CN88219019.9 [P/OL]. 1988-11-19. [11]杨超, 王涛, 毛在砂, 等. 一种产生向心流动的搅拌桨装置, CN102049208A [P/OL]. 2011-05-11. [12]刘作华, 杨鲜艳, 谢昭明, 等. 柔性桨与自浮颗粒协同强化高黏度流体混沌混合 [J]. 化工学报, 2013, 64(8): 2794-2800. Liu Z H, Yang X Y, Xie Z M, et al. Chaotic mixing performance of high-viscosity fluid synergistically intensified by flexible impeller and floating particles [J]. CIESC J., 2013, 64(8): 2794-2800. [13]刘仁龙, 李爽, 刘作华, 等. 穿流-柔性组合桨强化搅拌槽中流体混沌混合特性 [J]. 化工学报, 2015, 66 (12): 4736-4742. Liu R L, Shuang L I, Liu Z H, et al. Chaotic mixing enhanced by punched-flexible impeller in stirred vessel [J]. CIESC J., 2015, 66 (12): 4736-4742. [14]李挺, 贾卓泰, 张庆华, 等. 几种单层桨搅拌槽内宏观混合特性的比较 [J]. 化工学报, 2019, 70 (1): 42-48. Li T, Jia Z T, Zhang Q H, et al. Comparison of macro-mixing characteristics of stirred tank with different impellers [J]. CIESC J., 2019, 70 (1):42-48. [15]Pinot J, Commenge J M, Portha J F, et al. New protocol of the Villermaux–Dushman reaction system to characterize micromixing effect in viscous media [J]. Chem. Eng. Sci., 2014, 118: 94-101. [16]陈志平, 章序文, 林兴华. 搅拌与混合设备设计选用手册 [M]. 北京: 化学工业出版社, 2004: 31-33. [17]陈志希, 谢明辉, 周国忠, 等. 24种搅拌器的功率曲线 [J]. 化学工程, 2010, 38 (3): 38-43. Chen Z P, Xie M H, Zhou G Z, et al. Power curve of 24 types of mixers [J]. Chem. Eng., 2010, 38 (3): 38-43. |
相关文章 15
[1] | 熊浩 包雨云 汪晶 蔡子琦. 具有黏结颗粒的搅拌槽功率特性[J]. 过程工程学报, 2020, 20(11): 1273-1280. |
[2] | 王璐璐 周勇军 鲍苏洋 辛伟 陶兰兰. 改进型INTER-MIG桨搅拌槽内流场的PIV实验[J]. 过程工程学报, 2017, 17(3): 447-452. |
[3] | 盛勇 刘庭耀 韩丽辉 刘青. 高固含率搅拌槽内颗粒分布及悬浮特性的数值模拟 [J]. , 2017, 17(1): 21-28. |
[4] | 刘洪斌肖慧娜李萍瑛穆伟涛. 基于四参数流变模式的旋流分离流场特性分析[J]. 过程工程学报, 2016, 16(2): 181-188. |
[5] | 郝惠娣程天琦秦佩朱娜雷建勇翟甜. 新型自吸式多相搅拌槽临界悬浮特性的实验研究[J]. , 2014, 14(2): 229-233. |
[6] | 李健达苏红军张庆徐世艾. 最大叶片式桨流体动力学性能的数值模拟[J]. , 2014, 14(1): 23-29. |
[7] | 郝惠娣雷建勇马腾秦佩冯荣荣杨斌. 计算流体动力学用于搅拌槽内对数螺旋导流板结构的优化[J]. , 2013, 13(6): 921-925. |
[8] | 黄娟鲍杰戴干策. 螺带型搅拌槽内异物性液体的混合性能[J]. , 2013, 13(4): 548-554. |
[9] | 吴俊子曾伟民王玉光仉丽娟万利利周洪波. 搅拌槽反应器中中度嗜热浸矿菌预处理含砷金矿[J]. , 2013, 13(3): 494-499. |
[10] | 周宏宝李向阳杨超毛在砂张广积. 基于LED光源反射的液固搅拌槽中颗粒悬浮特性测定的光纤法[J]. , 2011, 11(6): 933-937. |
[11] | 郭欣李志鹏高正明. 双层翼型桨搅拌槽内流动特性的PIV研究[J]. , 2010, 10(4): 632-637. |
[12] | 江涵刘心洪黄雄斌. 用FPIV方法研究固-液方形搅拌槽内液相湍流[J]. , 2010, 10(1): 1-9. |
[13] | 马志超包雨云高娜高正明. 不同叶片形状盘式涡轮搅拌桨的气-液分散特性[J]. , 2009, 9(5): 854-859. |
[14] | 杨锋苓周慎杰张翠勋. 无挡板涡轮桨搅拌槽内湍流流动的分离涡模拟[J]. , 2009, 9(4): 641-646. |
[15] | 杨锋苓周慎杰张翠勋陈莲芳. 偏心搅拌槽固液悬浮特性[J]. , 2008, 8(6): 1064-1069. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3325