1. 北京市过程污染控制工程技术研究中心,中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京 100190
2. 中国科学院大学化学工程学院,北京 100049
收稿日期:
2018-12-10修回日期:
2019-02-22出版日期:
2019-10-22发布日期:
2019-10-22通讯作者:
宁朋歌基金资助:
国家****科学基金;中国科学院青年创新促进会Research status of oxygen-containing acid root detection methods and application prospect of mass spectrometry in tungsten-molybdenum separation
Shujie LIN1,2, Pengge NING1*, Yi ZHANG11. Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2018-12-10Revised:
2019-02-22Online:
2019-10-22Published:
2019-10-22摘要/Abstract
摘要: 溶剂萃取法具有操作简单、回收率高、产品纯度高等优点,被广泛应用于钨钼分离。分离过程中钨钼离子形态会影响与萃取剂的结合方式及萃取历程,因而研究钨钼的离子形态变化有助于深入了解钨钼分离机理,进而指导工业生产。在水溶液中,钨钼的离子形态以钨钼含氧酸根形式存在,研究钨钼离子形态的本质即研究不同钨钼含氧酸根形式对萃取分离过程的影响。本工作综述了水溶液中含氧酸根离子形态的仪器分析方法,发现ESI-MS(电喷雾质谱法)在监测萃取过程中钨钼离子形态转化路径中具有潜在应用,并对ESI-MS在湿法冶金领域中监测钨钼离子形态及其转化规律的应用进行了展望,旨在为今后深入了解钨钼分离机理、定向调控钨钼分离过程及工业生产提供理论指导。
引用本文
蔺淑洁 宁朋歌 张懿. 含氧酸根检测方法的研究现状及质谱法在钨钼分离中的应用前景[J]. 过程工程学报, 2019, 19(5): 910-918.
Shujie LIN Pengge NING Yi ZHANG. Research status of oxygen-containing acid root detection methods and application prospect of mass spectrometry in tungsten-molybdenum separation[J]. Chin. J. Process Eng., 2019, 19(5): 910-918.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218333
http://www.jproeng.com/CN/Y2019/V19/I5/910
参考文献
[1] Senthilnathan N, Raja Annamalai A, Venkatachalam G. Sintering of tungsten and tungsten heavy alloys of W–Ni–Fe and W–Ni–Cu: a review [J]. Trans. Indian. Inst. Met. 2016, 70 (5): 1161-1176. [2] Leal-Ayala D R, Allwood J M, Petavratzi E, et al. Mapping the global flow of tungsten to identify key material efficiency and supply security opportunities [J]. Resour. Conserv. Recy. 2015, 103: 19-28. [3] Hayes S M, McCullough E A. Critical minerals: A review of elemental trends in comprehensive criticality studies [J]. 2018, In Press. [4] Ning P G, Cao H B, Zhang Y. Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923 [J]. Sep. Purif. Technol. 2009, 70 (1): 27-33. [5] Wen J W, Liu F, Cao H B, et al. Insights into the extraction of various vanadium species by primary amine [J]. Hydrometallurgy. 2017, 173: 57-62. [6] Hastings J J, Howarth O W. A 183W, 1H and 17O nuclear magnetic resonance study of aqueous isopolytungstates [J]. J. Chem. Soc. Dalton. 1992, (2): 209-215. [7] Redkin A F, Bondarenko G V. Raman spectra of tungsten-bearing solutions [J]. J. Solution. Chem. 2010, 39 (10): 1549-1561. [8] Zhan J L, Hu J T, Zhang L F. Raman studies on species in single and mixed solutions of molybdate and vanadate [J]. Chin. J. Chem. Phys. 2016, 29 (4): 425-429. [9] Aureliano M, Ohlin C A, Vieira M O, et al. Characterization of decavanadate and decaniobate solutions by Raman spectroscopy [J]. Dalton T. 2016, 45 (17): 7391-7399. [10] Nguyen T H, Lee M S. A review on the separation of molybdenum, tungsten, and vanadium from leach liquors of diverse resources by solvent extraction [J]. Geosystem Eng. 2016, 19 (5): 247-259. [11] Truebenbach C S, Houalla M, Hercules D M. Characterization of isopoly metal oxyanions using electrospray time-of-flight mass spectrometry [J]. J. Mass Spectrom. 2000, 35: 1121-1127. [12] Walanda D K, Burns R C, Lawrance G A, et al. Electrospray mass spectrometry of aqueous solutions of isopolyoxotungstates [J]. J. Clust. Sci. 2000, 11: 5-28. [13] Long D-L, Streb C, Song Y-F, et al. Unravelling the complexities of polyoxometalates in solution using mass spectrometry: protonation versus heteroatom inclusion [J]. J. Am. Chem. Soc. 2008, 130: 1830-1832. [14] Jia Q D, Zhang Y, Cao J. Characterization of polyoxometalates by electrospray ionization mass spectrometry [J]. Sci. China. Chem. 2015, 58 (7): 1206-1210. [15] Deery M J, Howarth O W, Jennings K R. Application of electrospray ionisation mass spectrometry to the study of dilute aqueous oligomeric anions and their reactions [J]. J. Chem. Soc. Dalton. 1997, (24): 4783-4788. [16] Themelis D G, Kika F S, Economou A. Flow injection direct spectrophotometric assay for the speciation of trace chromium(III) and chromium(VI) using chromotropic acid as chromogenic reagent [J]. Talanta. 2006, 69 (3): 615-620. [17] Jade Mohajerin T, Helz G R, White C D, et al. Tungsten speciation in sulfidic waters: determination of thiotungstate formation constants and modeling their distribution in natural waters [J]. Geochim Cosmochim Ac. 2014, 144: 157-172. [18] Bednar A J, Mirecki J E, Inouye L S, et al. The determination of tungsten, molybdenum, and phosphorus oxyanions by high performance liquid chromatography inductively coupled plasma mass spectrometery [J]. Talanta 2007, 72 (5): 1828-1832. [19] Scancar J, Berlinger B, Thomassen Y, et al. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS [J]. Talanta. 2015, 142: 164-169. [20] Schramel P, Wendler I, Angerer J. The determination of metals (antimony, bismuth, lead, cadmium, mercury, palladium, platinum, tellurium, thallium, tin and tungsten) in urine samples by inductively coupled plasma-mass spectrometry [J]. Int. Arch. Occup. Environ. Health. 1997, 69: 219-223. [21] Fedotov M A, Maksimovskaya R I. NMR structural aspects of the chemistry of V, Mo, W polyoxometalates [J]. J. Struct. Chem+. 2006, 47(5): 952-978. [22] Smith B J, Patrick V A. Quantitative Determination of Sodium Metatungstate Speciation by 183W NMR Spectroscopy [J]. Aust. J. Chem. 2000, 53: 965-970. [23] Nekovar P, Schrotterova D. Extraction of V(V), Mo(VI) and W(VI) polynuclear species by primene JMT [J]. Chem. Eng. J. 2000, 79 (3): 229-233. [24] Zhang X Y, Ning P G, Cao H B, et al. Measurement and modeling for molybdenum extraction from the Na2MoO4–H2SO4–H2O system by primary amine N1923 [J]. Ind & Eng Chem Res. 2016, 55 (5): 1427-1438. [25] Xu W F, Ning P G, Cao H B, et al. Thermodynamic model for tungstic acid extraction from sodium tungstate in sulfuric acid medium by primary amine N1923 diluted in toluene [J]. Hydrometallurgy. 2014, 147: 170-177. [26] Robards K, McKelvie I D, Benson R L, et al. Determination of carbon, phosphorus, nitrogen and silicon species in waters [J]. Anal. Chim. Acta. 1994, 287 (3): 147-190. [27] Nagypal I, Beck M T. Principles of concentration distributions in multicomponent equilibrium systems [J]. Coordin. Chem. Rev. 1982, 43: 233-250. [28] Kiss T, Enyedy é A, Jakusch T. Development of the application of speciation in chemistry [J]. Coordin. Chem. Rev. 2017, 352: 401–423. [29] Schwarzenbach G, Anderegg G. Die verwendung der quecksilberelektrode zur bestimmung der atabilitatskonstanten von metallkomplexen [J]. Helv. Chim. Acta. 1957, 40 (6): 1773-1792. [30] Noroozifar M, Khorasani-Motlagh M, Specific extraction of chromium as tetrabutylammonium-chromate and spectrophotometric determination by diphenylcarbazide: speciation of chromium in effluent streams [J]. Anal. Sci. 2003, 19: 705-708. [31] Pobozy E, Wojasinska E, Trojanowicz M. Ion chromatographic speciation of chromium with diphenylcarbazide-based spectrophotometric detection [J]. J. Chromatogr. A. 1996, 736: 141-150. [32] Gift A D, Stewart M S, Bokashanga P K. Experimental determination of pKa values by use of NMR chemical shifts, revisited [J]. J. Chem. Educ. 2012, 89: 1458?1460. [33] Peters S J, Stevenson C D. The complexation of the Na+ by 18-crown-6 studied via nuclear magnetic resonance [J]. J. Chem. Educ. 2004, 81 (5): 715-717. [34] Dougherty W J, Smernik R J, Chittleborough D J. Application of spin counting to the solid-state P31 NMR analysis of pasture soils with varying phosphorus content [J]. Soil Sci. Soc. Am. J. 2005, 69 (6): 2058-2070. [35] Li W, Joshi S R, Hou G, et al. Characterizing phosphorus speciation of chesapeake bay sediments using chemical extraction, P31 NMR, and X-ray absorption fine structure spectroscopy [J]. Environ. Sci. Technol. 2015, 49 (1): 203-211. [36] Varaprath S, Stutts D H, Kozersk G E. A primer on the analytical aspects of silicones at trace levels-challenges and artifacts – A review [J]. Silicon Chem. 2006, 3: 79–102. [37] Truong H T, Nguyen T H, Lee M S. Separation of molybdenum(VI), rhenium(VII), tungsten(VI), and vanadium(V) by solvent extraction [J]. Hydrometallurgy. 2017, 171: 298-305. [38] Zhao H, Liu H J, Qu J H. Aluminum speciation of coagulants with low concentration: Analysis by electrospray ionization mass spectrometry [J]. Colloid. Surface. A. 2011, 379 (1-3): 43-50. [39] Wen J W, Ning P G, Cao H B, et al. Recovery of high-purity vanadium from aqueous solutions by reusable primary amines N1923 associated with semi-quantitative understanding of vanadium species [J]. ACS Sustainable. Chem. Eng. 2018, 6 (6): 7619-7626. [40] Pyrzynska K, Wierzbicki T. Determination of vanadium species in environmental samples [J]. Talanta. 2004, 64 (4): 823-829. [41] Rudolph W W. Raman-spectroscopic measurements of the first dissociation constant of aqueous phosphoric acid solution from 5 to 301°C [J]. J. Solution. Chem. 2012, 41 (4): 630-645. [42] Bergwerff J A, Visser T, Weckhuysen B M. On the interaction between Co- and Mo-complexes in impregnation solutions used for the preparation of Al2O3-supported HDS catalysts: A combined Raman/UV-vis-NIR spectroscopy study [J]. Catal. Today. 2008, 130 (1): 117-125. [43] Sipos P, May P M, Hefter G. Quantitative determination of an aluminate dimer in concentrated alkaline aluminate solutions by Raman spectroscopy [J]. Dalton T. 2006, (2): 368-375. [44] Chainet F, Lienemann C-P, Courtiade M, et al. Silicon speciation by hyphenated techniques for environmental, biological and industrial issues: A review [J]. J. Anal. Atom. Spectrom. 2011, 26 (1): 30-51. [45] Boussemart M, Van Den Berg C M G, Ghaddaf M. The determination of thechromium speciation in sea-water using catalytic cathodic stripping voltammetry [J]. Anal. Chim. Acta. 1992, 262 (1): 103-115. [46] 张伟光,赵中伟. 新型硫化剂五硫化二磷对钨和钼的硫化热力学[J]. 中国有色金属学报, 2014, 24 (5):1375-1382. Zhang W G, Zhao Z W. Thermodynamics of W and Mo sulfidation by using new sulfiding agent P2S5 [J]. The Chinese Journal of Nonferrous Metals, 2014, 24 (5):1375-1382. [47] Zhao Z W, Cao C F, Chen X Y. Separation of macro amounts of tungsten and molybdenum by precipitation with ferrous salt [J]. T. Nonferr. Metal. Soc. 2011, 21 (12): 2758-2763. [48] 肖连生. 中国钨提取冶金技术的进步与展望[J]. 有色金属科学与工程, 2013, 4 (5), 6-10. Xiao L S. Progress and prospect of tungsten extraction metallurgy in China [J]. Nonferrous Metals Science and Engineering, 2013, 4 (5), 6-10. [49] 廖春华. 离子交换法分离钨钼的新工艺研究[D]. 长沙:中南大学,2012:64-69. Liao C H. The new technology for separation of Tungsten and Molybdenum by Ion Exchange [D]. Changsha: Central South University, 2012: 64-69. [50] 杨跷, 肖连生. 特种树脂吸附沉淀法从钨酸铵溶液中分离钼的研究[J]. 有色金属(冶金部分), 2010, 4: 37-40. Yang Q, Xiao L S. Study on separation molybdenum with special resin adsorption precipitation method from ammonium tungstate solution [J]. Non-ferrous Metals (smelting part), 2010, (4): 37-40. [51] Zhao Z W, Zhang J L, Chen X Y, et al. Separation of tungsten and molybdenum using macroporous resin: equilibrium adsorption for single and binary systems [J]. Hydrometallurgy. 2013, 140: 120-127. [52] Zhang X Y, Ning P G, Xu W F, et al. Modeling for tungstic precipitation and extraction based on pitzer equation [J]. Sci. China. Chem. 2015, 59 (4): 497-504. [53] 张勇, 钨钼分离技术的最新研究进展. 湖南有色金属, 2016, 32 (6): 21-25. Zhang Y. Latest research development of tungsten and molybdenum separation technology [J]. Hunan Nonferrous Metals, 2016, 32 (6): 21-25. |
相关文章 5
[1] | 孙帅 孙宏骞 宋静 曲景奎 齐涛. 钪资源现状及溶剂萃取在钪提取过程中的应用研究进展[J]. 过程工程学报, 2020, 20(8): 877-886. |
[2] | 焉杰文 李彬 潘德安. 超声强化在湿法浸出过程中的应用[J]. 过程工程学报, 2020, 20(11): 1241-1247. |
[3] | 郑诗礼 薛玉冬 杜浩 张懿. 碱性介质活性氧调控技术在湿法冶金中的研究进展[J]. 过程工程学报, 2019, 19(S1): 58-64. |
[4] | 徐平 陈钦 张西华 曹宏斌 王景伟 张懿 孙峙. 废锂离子电池中锂提取技术研究进展[J]. 过程工程学报, 2019, 19(5): 853-864. |
[5] | 田国才华一新华一新. 离子液体在有色金属冶金中的应用[J]. , 2009, 9(1): 200-208. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3338