删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

含氧酸根检测方法的研究现状及质谱法在钨钼分离中的应用前景

本站小编 Free考研考试/2022-01-01

蔺淑洁1,2, 宁朋歌1*, 张 懿1
1. 北京市过程污染控制工程技术研究中心,中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京 100190
2. 中国科学院大学化学工程学院,北京 100049
收稿日期:2018-12-10修回日期:2019-02-22出版日期:2019-10-22发布日期:2019-10-22
通讯作者:宁朋歌

基金资助:国家****科学基金;中国科学院青年创新促进会

Research status of oxygen-containing acid root detection methods and application prospect of mass spectrometry in tungsten-molybdenum separation

Shujie LIN1,2, Pengge NING1*, Yi ZHANG1
1. Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:2018-12-10Revised:2019-02-22Online:2019-10-22Published:2019-10-22







摘要/Abstract


摘要: 溶剂萃取法具有操作简单、回收率高、产品纯度高等优点,被广泛应用于钨钼分离。分离过程中钨钼离子形态会影响与萃取剂的结合方式及萃取历程,因而研究钨钼的离子形态变化有助于深入了解钨钼分离机理,进而指导工业生产。在水溶液中,钨钼的离子形态以钨钼含氧酸根形式存在,研究钨钼离子形态的本质即研究不同钨钼含氧酸根形式对萃取分离过程的影响。本工作综述了水溶液中含氧酸根离子形态的仪器分析方法,发现ESI-MS(电喷雾质谱法)在监测萃取过程中钨钼离子形态转化路径中具有潜在应用,并对ESI-MS在湿法冶金领域中监测钨钼离子形态及其转化规律的应用进行了展望,旨在为今后深入了解钨钼分离机理、定向调控钨钼分离过程及工业生产提供理论指导。

引用本文



蔺淑洁 宁朋歌 张懿. 含氧酸根检测方法的研究现状及质谱法在钨钼分离中的应用前景[J]. 过程工程学报, 2019, 19(5): 910-918.
Shujie LIN Pengge NING Yi ZHANG. Research status of oxygen-containing acid root detection methods and application prospect of mass spectrometry in tungsten-molybdenum separation[J]. Chin. J. Process Eng., 2019, 19(5): 910-918.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218333
http://www.jproeng.com/CN/Y2019/V19/I5/910







[1] Senthilnathan N, Raja Annamalai A, Venkatachalam G. Sintering of tungsten and tungsten heavy alloys of W–Ni–Fe and W–Ni–Cu: a review [J]. Trans. Indian. Inst. Met. 2016, 70 (5): 1161-1176.
[2] Leal-Ayala D R, Allwood J M, Petavratzi E, et al. Mapping the global flow of tungsten to identify key material efficiency and supply security opportunities [J]. Resour. Conserv. Recy. 2015, 103: 19-28.
[3] Hayes S M, McCullough E A. Critical minerals: A review of elemental trends in comprehensive criticality studies [J]. 2018, In Press.
[4] Ning P G, Cao H B, Zhang Y. Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923 [J]. Sep. Purif. Technol. 2009, 70 (1): 27-33.
[5] Wen J W, Liu F, Cao H B, et al. Insights into the extraction of various vanadium species by primary amine [J]. Hydrometallurgy. 2017, 173: 57-62.
[6] Hastings J J, Howarth O W. A 183W, 1H and 17O nuclear magnetic resonance study of aqueous isopolytungstates [J]. J. Chem. Soc. Dalton. 1992, (2): 209-215.
[7] Redkin A F, Bondarenko G V. Raman spectra of tungsten-bearing solutions [J]. J. Solution. Chem. 2010, 39 (10): 1549-1561.
[8] Zhan J L, Hu J T, Zhang L F. Raman studies on species in single and mixed solutions of molybdate and vanadate [J]. Chin. J. Chem. Phys. 2016, 29 (4): 425-429.
[9] Aureliano M, Ohlin C A, Vieira M O, et al. Characterization of decavanadate and decaniobate solutions by Raman spectroscopy [J]. Dalton T. 2016, 45 (17): 7391-7399.
[10] Nguyen T H, Lee M S. A review on the separation of molybdenum, tungsten, and vanadium from leach liquors of diverse resources by solvent extraction [J]. Geosystem Eng. 2016, 19 (5): 247-259.
[11] Truebenbach C S, Houalla M, Hercules D M. Characterization of isopoly metal oxyanions using electrospray time-of-flight mass spectrometry [J]. J. Mass Spectrom. 2000, 35: 1121-1127.
[12] Walanda D K, Burns R C, Lawrance G A, et al. Electrospray mass spectrometry of aqueous solutions of isopolyoxotungstates [J]. J. Clust. Sci. 2000, 11: 5-28.
[13] Long D-L, Streb C, Song Y-F, et al. Unravelling the complexities of polyoxometalates in solution using mass spectrometry: protonation versus heteroatom inclusion [J]. J. Am. Chem. Soc. 2008, 130: 1830-1832.
[14] Jia Q D, Zhang Y, Cao J. Characterization of polyoxometalates by electrospray ionization mass spectrometry [J]. Sci. China. Chem. 2015, 58 (7): 1206-1210.
[15] Deery M J, Howarth O W, Jennings K R. Application of electrospray ionisation mass spectrometry to the study of dilute aqueous oligomeric anions and their reactions [J]. J. Chem. Soc. Dalton. 1997, (24): 4783-4788.
[16] Themelis D G, Kika F S, Economou A. Flow injection direct spectrophotometric assay for the speciation of trace chromium(III) and chromium(VI) using chromotropic acid as chromogenic reagent [J]. Talanta. 2006, 69 (3): 615-620.
[17] Jade Mohajerin T, Helz G R, White C D, et al. Tungsten speciation in sulfidic waters: determination of thiotungstate formation constants and modeling their distribution in natural waters [J]. Geochim Cosmochim Ac. 2014, 144: 157-172.
[18] Bednar A J, Mirecki J E, Inouye L S, et al. The determination of tungsten, molybdenum, and phosphorus oxyanions by high performance liquid chromatography inductively coupled plasma mass spectrometery [J]. Talanta 2007, 72 (5): 1828-1832.
[19] Scancar J, Berlinger B, Thomassen Y, et al. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS [J]. Talanta. 2015, 142: 164-169.
[20] Schramel P, Wendler I, Angerer J. The determination of metals (antimony, bismuth, lead, cadmium, mercury, palladium, platinum, tellurium, thallium, tin and tungsten) in urine samples by inductively coupled plasma-mass spectrometry [J]. Int. Arch. Occup. Environ. Health. 1997, 69: 219-223.
[21] Fedotov M A, Maksimovskaya R I. NMR structural aspects of the chemistry of V, Mo, W polyoxometalates [J]. J. Struct. Chem+. 2006, 47(5): 952-978.
[22] Smith B J, Patrick V A. Quantitative Determination of Sodium Metatungstate Speciation by 183W NMR Spectroscopy [J]. Aust. J. Chem. 2000, 53: 965-970.
[23] Nekovar P, Schrotterova D. Extraction of V(V), Mo(VI) and W(VI) polynuclear species by primene JMT [J]. Chem. Eng. J. 2000, 79 (3): 229-233.
[24] Zhang X Y, Ning P G, Cao H B, et al. Measurement and modeling for molybdenum extraction from the Na2MoO4–H2SO4–H2O system by primary amine N1923 [J]. Ind & Eng Chem Res. 2016, 55 (5): 1427-1438.
[25] Xu W F, Ning P G, Cao H B, et al. Thermodynamic model for tungstic acid extraction from sodium tungstate in sulfuric acid medium by primary amine N1923 diluted in toluene [J]. Hydrometallurgy. 2014, 147: 170-177.
[26] Robards K, McKelvie I D, Benson R L, et al. Determination of carbon, phosphorus, nitrogen and silicon species in waters [J]. Anal. Chim. Acta. 1994, 287 (3): 147-190.
[27] Nagypal I, Beck M T. Principles of concentration distributions in multicomponent equilibrium systems [J]. Coordin. Chem. Rev. 1982, 43: 233-250.
[28] Kiss T, Enyedy é A, Jakusch T. Development of the application of speciation in chemistry [J]. Coordin. Chem. Rev. 2017, 352: 401–423.
[29] Schwarzenbach G, Anderegg G. Die verwendung der quecksilberelektrode zur bestimmung der atabilitatskonstanten von metallkomplexen [J]. Helv. Chim. Acta. 1957, 40 (6): 1773-1792.
[30] Noroozifar M, Khorasani-Motlagh M, Specific extraction of chromium as tetrabutylammonium-chromate and spectrophotometric determination by diphenylcarbazide: speciation of chromium in effluent streams [J]. Anal. Sci. 2003, 19: 705-708.
[31] Pobozy E, Wojasinska E, Trojanowicz M. Ion chromatographic speciation of chromium with diphenylcarbazide-based spectrophotometric detection [J]. J. Chromatogr. A. 1996, 736: 141-150.
[32] Gift A D, Stewart M S, Bokashanga P K. Experimental determination of pKa values by use of NMR chemical shifts, revisited [J]. J. Chem. Educ. 2012, 89: 1458?1460.
[33] Peters S J, Stevenson C D. The complexation of the Na+ by 18-crown-6 studied via nuclear magnetic resonance [J]. J. Chem. Educ. 2004, 81 (5): 715-717.
[34] Dougherty W J, Smernik R J, Chittleborough D J. Application of spin counting to the solid-state P31 NMR analysis of pasture soils with varying phosphorus content [J]. Soil Sci. Soc. Am. J. 2005, 69 (6): 2058-2070.
[35] Li W, Joshi S R, Hou G, et al. Characterizing phosphorus speciation of chesapeake bay sediments using chemical extraction, P31 NMR, and X-ray absorption fine structure spectroscopy [J]. Environ. Sci. Technol. 2015, 49 (1): 203-211.
[36] Varaprath S, Stutts D H, Kozersk G E. A primer on the analytical aspects of silicones at trace levels-challenges and artifacts – A review [J]. Silicon Chem. 2006, 3: 79–102.
[37] Truong H T, Nguyen T H, Lee M S. Separation of molybdenum(VI), rhenium(VII), tungsten(VI), and vanadium(V) by solvent extraction [J]. Hydrometallurgy. 2017, 171: 298-305.
[38] Zhao H, Liu H J, Qu J H. Aluminum speciation of coagulants with low concentration: Analysis by electrospray ionization mass spectrometry [J]. Colloid. Surface. A. 2011, 379 (1-3): 43-50.
[39] Wen J W, Ning P G, Cao H B, et al. Recovery of high-purity vanadium from aqueous solutions by reusable primary amines N1923 associated with semi-quantitative understanding of vanadium species [J]. ACS Sustainable. Chem. Eng. 2018, 6 (6): 7619-7626.
[40] Pyrzynska K, Wierzbicki T. Determination of vanadium species in environmental samples [J]. Talanta. 2004, 64 (4): 823-829.
[41] Rudolph W W. Raman-spectroscopic measurements of the first dissociation constant of aqueous phosphoric acid solution from 5 to 301°C [J]. J. Solution. Chem. 2012, 41 (4): 630-645.
[42] Bergwerff J A, Visser T, Weckhuysen B M. On the interaction between Co- and Mo-complexes in impregnation solutions used for the preparation of Al2O3-supported HDS catalysts: A combined Raman/UV-vis-NIR spectroscopy study [J]. Catal. Today. 2008, 130 (1): 117-125.
[43] Sipos P, May P M, Hefter G. Quantitative determination of an aluminate dimer in concentrated alkaline aluminate solutions by Raman spectroscopy [J]. Dalton T. 2006, (2): 368-375.
[44] Chainet F, Lienemann C-P, Courtiade M, et al. Silicon speciation by hyphenated techniques for environmental, biological and industrial issues: A review [J]. J. Anal. Atom. Spectrom. 2011, 26 (1): 30-51.
[45] Boussemart M, Van Den Berg C M G, Ghaddaf M. The determination of thechromium speciation in sea-water using catalytic cathodic stripping voltammetry [J]. Anal. Chim. Acta. 1992, 262 (1): 103-115.
[46] 张伟光,赵中伟. 新型硫化剂五硫化二磷对钨和钼的硫化热力学[J]. 中国有色金属学报, 2014, 24 (5):1375-1382.
Zhang W G, Zhao Z W. Thermodynamics of W and Mo sulfidation by using new sulfiding agent P2S5 [J]. The Chinese Journal of Nonferrous Metals, 2014, 24 (5):1375-1382.
[47] Zhao Z W, Cao C F, Chen X Y. Separation of macro amounts of tungsten and molybdenum by precipitation with ferrous salt [J]. T. Nonferr. Metal. Soc. 2011, 21 (12): 2758-2763.
[48] 肖连生. 中国钨提取冶金技术的进步与展望[J]. 有色金属科学与工程, 2013, 4 (5), 6-10.
Xiao L S. Progress and prospect of tungsten extraction metallurgy in China [J]. Nonferrous Metals Science and Engineering, 2013, 4 (5), 6-10.
[49] 廖春华. 离子交换法分离钨钼的新工艺研究[D]. 长沙:中南大学,2012:64-69.
Liao C H. The new technology for separation of Tungsten and Molybdenum by Ion Exchange [D]. Changsha: Central South University, 2012: 64-69.
[50] 杨跷, 肖连生. 特种树脂吸附沉淀法从钨酸铵溶液中分离钼的研究[J]. 有色金属(冶金部分), 2010, 4: 37-40.
Yang Q, Xiao L S. Study on separation molybdenum with special resin adsorption precipitation method from ammonium tungstate solution [J]. Non-ferrous Metals (smelting part), 2010, (4): 37-40.
[51] Zhao Z W, Zhang J L, Chen X Y, et al. Separation of tungsten and molybdenum using macroporous resin: equilibrium adsorption for single and binary systems [J]. Hydrometallurgy. 2013, 140: 120-127.
[52] Zhang X Y, Ning P G, Xu W F, et al. Modeling for tungstic precipitation and extraction based on pitzer equation [J]. Sci. China. Chem. 2015, 59 (4): 497-504.
[53] 张勇, 钨钼分离技术的最新研究进展. 湖南有色金属, 2016, 32 (6): 21-25.
Zhang Y. Latest research development of tungsten and molybdenum separation technology [J]. Hunan Nonferrous Metals, 2016, 32 (6): 21-25.




[1]孙帅 孙宏骞 宋静 曲景奎 齐涛. 钪资源现状及溶剂萃取在钪提取过程中的应用研究进展[J]. 过程工程学报, 2020, 20(8): 877-886.
[2]焉杰文 李彬 潘德安. 超声强化在湿法浸出过程中的应用[J]. 过程工程学报, 2020, 20(11): 1241-1247.
[3]郑诗礼 薛玉冬 杜浩 张懿. 碱性介质活性氧调控技术在湿法冶金中的研究进展[J]. 过程工程学报, 2019, 19(S1): 58-64.
[4]徐平 陈钦 张西华 曹宏斌 王景伟 张懿 孙峙. 废锂离子电池中锂提取技术研究进展[J]. 过程工程学报, 2019, 19(5): 853-864.
[5]田国才华一新华一新. 离子液体在有色金属冶金中的应用[J]. , 2009, 9(1): 200-208.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3338
相关话题/过程 工程 冶金 有色金属 技术

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 滚筒端面对颗粒物料轴向混合过程影响的离散模拟
    侯全勋1,2,董世杰2,3,张泉5,冯勇进5,王晓宇5,刘晓星2,4*1.中国矿业大学(北京)化学与环境工程学院,北京1000832.中国科学院过程工程研究所多相复杂系统国家重点实验室,北京1001903.中国石油大学(北京)重质油国家重点实验室,北京1022494.中国科学院大学化学与化工学院,北 ...
    本站小编 Free考研考试 2022-01-01
  • 非线性光学晶体3BiCl3.7SC(NH2)2的合成及其转化过程
    白云鹤1,裴铁柱1,张良1,张宁2,马得佳1,尹秋响1,3,4,谢闯1,3,4*1.天津大学化工学院,天津3000722.山东益丰生化环保股份有限公司,山东滨州2565003.天津大学国家工业结晶工程技术研究中心,天津3000724.天津化学化工协同创新中心,天津300072收稿日期:2019-01 ...
    本站小编 Free考研考试 2022-01-01
  • 直接接触沸腾换热过程连续相特征提取及分布规律
    熊文真1,徐建新2,黄峻伟3*1.信阳职业技术学院,河南信阳4640002.昆明理工大学复杂有色金属资源清洁利用国家重点实验室,云南昆明6500933.云南农业大学机电工程学院,云南昆明650100收稿日期:2018-05-30修回日期:2018-08-18出版日期:2019-08-22发布日期:2 ...
    本站小编 Free考研考试 2022-01-01
  • LF精炼废渣水热浸出过程中主要矿相的溶解行为
    何环宇1,2,3,侯巍巍1,2,3,刘虹灵1,2,3,李杨1,2,3*1.武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北武汉4300812.湖北省冶金二次资源工程技术研究中心,湖北武汉4300813.武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉430081收稿日期:201 ...
    本站小编 Free考研考试 2022-01-01
  • 带钢保护气氛循环喷射冷却热工过程的数值模拟
    陈平安1,2,戴方钦1,2*,郭悦1,2,潘卢伟1,2,柯江军3,巫嘉谋4,雷远胜3,李运成41.武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,湖北武汉4300812.高温材料与炉衬技术国家地方联合工程研究中心,湖北武汉4300813.黄石山力兴冶薄板有限公司,湖北黄石4351004.黄石 ...
    本站小编 Free考研考试 2022-01-01
  • MoSi2和(Mo,W)Si2涂层的宽温域氧化过程
    毛绍宝1,2,杨英2,李海庆3,张世宏1,2*1.安徽工业大学材料科学与工程学院,安徽马鞍山2430022.安徽工业大学现代表界面工程研究中心,安徽马鞍山2430023.中国运载火箭技术研究院航天材料及工艺研究所,北京100076收稿日期:2018-11-10修回日期:2019-01-18出版日期: ...
    本站小编 Free考研考试 2022-01-01
  • 战略性稀有金属资源绿色高值利用技术进展
    齐涛1,2*,王伟菁1,2,魏广叶1,2,朱兆武1,2,曲景奎1,2,王丽娜1,2,张绘1,21.中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,北京1001902.中国科学院过程工程研究所绿色过程与工程重点实验室,北京100190收稿日期:2019-03-01修回日期:2019-04- ...
    本站小编 Free考研考试 2022-01-01
  • “过程工程学”的由来及对“不可逆循环过程”的研究
    李佐虎*中国科学院过程工程研究所,北京100190收稿日期:2019-05-30出版日期:2019-06-28发布日期:2019-06-10通讯作者:李佐虎OriginofprocessengineeringandstudyontheirreversiblecircularprocessesZuoh ...
    本站小编 Free考研考试 2022-01-01
  • 绿色分离技术发展态势与展望
    刘会洲1,2,3,4*,刘小平1,3*,陈欣1,张超1,3,杨良嵘2,41.中国科学院文献情报中心,北京1001902.中国科学院过程工程研究所,北京1001903.中国科学院大学经济与管理学院图书情报与档案管理系,北京1001904.中国科学院大学化学与化工学院,北京100049收稿日期:2019 ...
    本站小编 Free考研考试 2022-01-01
  • 碱性介质活性氧调控技术在湿法冶金中的研究进展
    郑诗礼*,薛玉冬,杜浩,张懿中国科学院过程工程研究所湿法冶金清洁生产技术国家工程实验室,绿色过程与工程重点实验室,北京100190收稿日期:2019-02-28修回日期:2019-03-29出版日期:2019-06-28发布日期:2019-06-10通讯作者:郑诗礼基金资助:国家自然科学基金Rese ...
    本站小编 Free考研考试 2022-01-01