1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 1001902. 中国科学院大学,北京 100049
收稿日期:
2018-07-06修回日期:
2018-09-04出版日期:
2019-04-22发布日期:
2019-04-18通讯作者:
张冬海基金资助:
国家重点研发计划Effect of polyaniline particles on corrosion resistance of waterborne epoxy resin coatings
You FENG1,2, Jingkun ZHANG1, Yang XUE1, Haosheng WANG1, Donghai ZHANG1*, Yunfa CHEN11. State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2018-07-06Revised:
2018-09-04Online:
2019-04-22Published:
2019-04-18Supported by:
National Key R&D Program of China摘要/Abstract
摘要: 以盐酸为掺杂剂、过硫酸铵为氧化剂、咪唑类离子液体为稳定剂,采用化学氧化聚合法合成了导电聚苯胺(PANI)颗粒,将其分散到水性环氧树脂(ER)中制成聚苯胺水性环氧防腐涂层,研究了聚苯胺颗粒对涂层防腐性能和机械性能的影响。结果表明,添加聚苯胺显著提高了水性环氧涂层的阻隔性能,信号频率f=0.01 Hz时,PANI/ER涂层的阻抗(|Z|f=0.01Hz)均高于纯ER涂层。添加5.0wt% PANI时ER涂层阻隔性能最好,浸泡0~168 h时|Z|f=0.01Hz稳定在约8.0×108 Ω?cm2,浸泡168 h后|Z|f=0.01Hz=7.5×108 Ω?cm2,远高于ER和其它PANI/ER体系。中性盐雾实验结果表明,聚苯胺赋予了涂层钝化腐蚀的能力,显著提高了涂层的防腐性能,且其添加量越高,防腐性能越好。弯曲和冲击实验结果表明,涂层的机械性能随聚苯胺含量增加先上升后降低,当聚苯胺添加量不超过5.0wt%时,涂层的机械性能优异,附着力和韧性均较好;PANI添加量增至7.0wt%时,ER涂层的脆性明显变大,机械性能下降。聚苯胺在水性环氧体系中的最宜添加量为5.0wt%,此时涂层的机械性能良好,综合防腐性能最优。
引用本文
冯悠 张婧坤 薛杨 王好盛 张冬海 陈运法. 聚苯胺颗粒对水性环氧树脂涂层防腐性能的影响[J]. 过程工程学报, 2019, 19(2): 419-426.
You FENG Jingkun ZHANG Yang XUE Haosheng WANG Donghai ZHANG Yunfa CHEN. Effect of polyaniline particles on corrosion resistance of waterborne epoxy resin coatings[J]. Chin. J. Process Eng., 2019, 19(2): 419-426.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218237
http://www.jproeng.com/CN/Y2019/V19/I2/419
参考文献
[1] Kendig M, Mills D J.An historical perspective on the corrosion protection by paints [J]. Progress in Organic Coatings, 2017, 102: 53-59.[J].Progress in Organic Coatings, 2017, 102(part A):53-59 [2]Wang G, Yang J.Influences of glass flakes on fire protection and water resistance of waterborne intumescent fire resistive coating for steel structure[J].Progress in Organic Coatings, 2011, 70(2-3):150-156 [3] Lyon S B, Bingham R, Mills D J.Advances in corrosion protection by organic coatings: What we know and what we would like to know [J]. Progress in Organic Coatings, 2017, 102: 2-7.[J].Progress in Organic Coatings,, 2017, 102(part A):2-7 [4]Packham D E.Adhesive technology and sustainability[J].International Journal of Adhesion and Adhesives, 2009, 29(3):248-252 [5] Liu M, Mao X, Zhu H, et al.Water and corrosion resistance of epoxy–acrylic–amine waterborne coatings: Effects of resin molecular weight, polar group and hydrophobic segment [J]. Corrosion Science, 2013, 75: 106-113.[J].Corrosion Science, 2013, 75(-):106-113 [6] Francisco J S, Capelossi V R, Aoki I V.Evaluation of a sulfursilane anticorrosive pretreatment on galvannealed steel compared to phosphate under a waterborne epoxy coating [J]. Electrochimica Acta, 2014, 124: 128-136.[J].Electrochimica Acta, 2014, 124(-):128-136 [7]DeBerry D W.Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating[J].Journal of the Electrochemical society, 1985, 132(5):1022-1026 [8]Wessling B.Corrosion prevention with an organic metal (polyaniline): surface ennobling,passivation,corrosion test results[J].Materials and Corrosion, 1996, 47(8):439-445 [9] 李志涛.聚2, 3-二甲基苯胺及其无机纳米复合物的制备及防腐性能研究 [D].重庆大学, 2014. [10]Li Z T.Preparation and Anticorrosive properties of Poly(2, 3-dimethylaniline) and its Composites with nano Inorganic Particles [D]. Chongqing University, 2014. [11]Chen Y, Wang X H, Li J, et al.Long-term anticorrosion behaviour of polyaniline on mild steel[J].Corrosion science, 2007, 49(7):3052-3063 [12]Sathiyanarayanan S, Muthkrishnan S, Venkatachari G.Corrosion protection of steel by polyaniline blended coating[J].Electrochimica Acta, 2006, 51(28):6313-6319 [13]Fahlman M, Jasty S, Epstein A J.Corrosion protection of ironsteel by emeraldine base polyaniline: an X-ray photoelectron spectroscopy study[J].Synthetic Metals, 1997, 85(1-3):1323-1326 [14]Cook A, Gabriel A, Siew D, et al.Corrosion protection of low carbon steel with polyaniline: passivation or inhibition[J].Current Applied Physics, 2004, 4(2-4):133-136 [15]Schauer T, Joos A, Dulog L, et al.Protection of iron against corrosion with polyaniline primers[J].Progress in Organic Coatings, 1998, 33(1):20-27 [16] 肖书虎.聚苯胺对铁基金属的伽伐尼阳极保护效应 [D].武汉大学, 2005. [17]Xiao S H.The Effect of Polyaniline to Galvanic Anodic Protection on Ferrous Metals [D]. Wuhan University, 2005. [18] 赵贺.导电高分子材料对金属防腐作用的研究 [D].天津工业大学, 2017. [19]Zhao H.Anticorrosion Effect of Conductive Polymer Materials on Metals [D].Tianjin Polytechnic University, 2017. |
相关文章 5
[1] | 王红玉本莲芳田华王智博. 聚苯胺/纳米CuO复合颗粒的制备及其性能[J]. 过程工程学报, 2015, 15(4): 688-792. |
[2] | 姬晓元王平苏志国马光辉张松平. 中空聚氨酯纳米纤维的制备与表征及其原位固定化酶的应用[J]. , 2013, 13(3): 481-487. |
[3] | 黄惠付仁春朱维郭忠诚. 聚3,4-乙烯二氧噻吩/聚苯胺复合材料的制备与性能[J]. , 2012, 12(4): 672-677. |
[4] | 黄惠郭忠诚李具康陈步明. 锌电积过程中聚苯胺/碳化钨阳极的结构变化及失效行为[J]. , 2010, 10(5): 1020-1024. |
[5] | 王明涌王志刘婷郭占成. 超重力场电沉积镍箔及其机械性能[J]. , 2009, 9(3): 568-573. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3249