中国石油大学(华东)石油工程学院,山东 青岛 266580
收稿日期:
2018-03-22修回日期:
2018-05-29出版日期:
2019-02-22发布日期:
2019-02-12通讯作者:
张黎明Numerical simulation on flow characteristics of heavy oil through circular-sectioned 90° bends
Xiaoyuan GU, Fukui PAN, Wenjie WANG, Liming ZHANG*School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
Received:
2018-03-22Revised:
2018-05-29Online:
2019-02-22Published:
2019-02-12Contact:
Ming LiZHANG 摘要/Abstract
摘要: 采用计算流体力学三维层流模型模拟,研究了温度50~75℃、雷诺数Re=300~800、弯管内径D=50.7~131.7 mm、弯径比B=0.75~3.0条件下稠油在90°弯管内的阻力特性,分析了弯管局域阻力系数波动的机理。结果表明,随温度升高、入口雷诺数下降、弯管直径增加,局域阻力系数提高;在弯管0~15°范围内阻力下降,原因是弯管内形成双纵向涡,75°到弯管后0.5D范围内阻力下降,原因是弯管内形成4个纵向涡;弯管的弯径比对局域流动阻力影响很大,B=0.75时相邻截面最大落差达B=3.0时的28.35倍,但管道进出口阻力仅为1.68倍,原因是弯径比B≤1.0时,弯管后1.0D范围内侧形成了局域低压区,对应位置出现流向涡旋,同时弯管后0.5D截面稠油剪切速率达到峰值。
引用本文
顾效源 潘福奎 汪文杰 张黎明. 90°圆截面弯管内稠油流动特性分析[J]. 过程工程学报, 2019, 19(1): 83-90.
Xiaoyuan GU Fukui PAN Wenjie WANG Liming ZHANG. Numerical simulation on flow characteristics of heavy oil through circular-sectioned 90° bends[J]. Chin. J. Process Eng., 2019, 19(1): 83-90.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218158
http://www.jproeng.com/CN/Y2019/V19/I1/83
参考文献
[1] Nu?ez G, Guevara E, Gonzalez J. Highly viscous oil transportation methods in the Venezuela industry [C]. Proceeding of the 15th World Petroleum Congress, 1998: 495-502. [2] Anhorn J L, Badakhshan A. A carrier for heavy oil transportation and viscosity mixing rule applicability [J]. Journal of Canadian Petroleum Technology, 1994, 33(4): 17-21. [3] Cheng C, Boger D V, Nguyen Q D. Influence of thermal history on the waxy structure of statically cooled waxy crude oil [J]. SPE Journal, 2000, 5(2): 148–157. [4] 湛含辉,朱辉,陈津端等. 90°弯管内二次流(迪恩涡)的数值模拟[J]. 锅炉技术, 2010, 41(4): 1–5. Zhan H H, Zhu H, Chen J D, et al. Numerical simulation of secondary flow (Dean vortices) in 90°curved tube[J]. Boler technology, 2010, 41(4): 1–5. [5] Munekata M, Terasawa T, Yoshikawa H, et al. Development of secondary flow in a transition state of surfactant solution flow in a square-sectioned 90° bend [J]. The Japan Society of Mechanical Engineers, 2010 , 7 (B): 1019–1027. [6] Liepsch D, Poll A. LDA and pressure measurements in a tube with a 90° bend using shear thinning and shear thickening additives in water [J]. Multiphase flow, 1995: 151–165. [7] Xia X L, Qiang H F. Numerical Solution on Flow Property of a Shear-Thinning Gel Propellant in a 90°Pipe Bend [J]. Advanced materials research, 2012, 468-471:2274-2281. [8] 陈良勇, 段钰锋, 刘猛, 等. 具有壁面滑移特性的水煤浆流经局部管件的阻力特性 [J]. 化工学报, 2009, 60 (12): 2981-2989. Chen L Y, Duan Y F, Liu M, et al. Friction losses across pipe elements for coal-water slurries with wall-slip behavior [J]. CIESC Journal, 2009 , 60 (12): 2981-2989. [9] 中国石油天然气管道工程有限公司. 输油管道工程设计规范: GB 50253-2014[S]. 北京: 中国计划出版社, 2014. China petroleum pipeline engineering corporation. Code for design of oil transportation pipeline engineering: GB 50253-2014[S]. Beijing: Planning Press of China, 2014. [10] 齐超, 于欢, 吴玉国, 等. 辽河油田稠油流变特性实验研究 [J]. 辽宁石油化工大学学报, 2016, 36 (5) : 29-32. Qi C, Yu H, Wu Y G, et al. Experimental study on the rheological properties of heavy oil in Liaohe oil-field [J]. Journal of liaoning shihua university, 2016, 36 (5) :29-32. [11] 张金亮, 王为民, 申龙涉, 等. 辽河油田超稠油流变特性的试验研究 [J]. 油气田地面工程, 2006 , 25 (7) :11,15. Zhang J L, Wang W M, Shen L S, et al. Experimental study on the rheological properties of ultra-heavy oil in Liaohe oil-field [J]. Oil-Gas Field Surface Engineering, 2006, 25 (7) :11,15. [12] Metzner A B, Reed J C. Flow of non-newtonian fluids - correlation of the laminar, transition, turbulent flow regions [J]. AICHE Journal, 1955, 1(4): 434-440. [13] Güzel B, Frigaard I, Martinez D M. Predicting laminar–turbulent transition in Poiseuille pipe flow for non-Newtonian fluids [J]. Chemical Engineering Science, 2009 , 64 (2) :254-264 [14] 刘崇建, 刘孝良, 柳世杰. 非牛顿流体流态判别方法的研究 [J]. 天然气工业, 2001 , 21 (4) : 49-52. Liu C J, Liu X L, Liu S J. A study of the flow pattern discriminant method for non-newtonian fluid [J]. Natural gas industry, 2001, 21 (4) : 49-52. [15] 袁世伟. 幂律非牛顿流体流动的数值计算与实验研究[D]. 上海:华东理工大学, 2014. Yuan S W. Numerical simulation and experimental study of power-law fluid [D]. Shanghai:East China University Of Science And Technology, 2014. [16] 季楚凌. 稠油管道90°弯管流场及应力分析 [J]. 当代化工, 2015 44(2) : 401-404. Ji C L. Analysis on flow field and stress of 90-degree bend in heavy oil transmission pipeline [J]. Contemporary chemical industry, 2015 44(2) : 401-404. [17] 郑永刚, 谢翠丽, 姚泽西. 非牛顿流体在圆管中层流-紊流分层流动规律 [J]. 四川大学学报(工程科学版), 2000, 32( 3) : 1-4. Zheng Y G, Xie C L, Yao Z X. Laws of the laminar-turbulent stratified flow for non-newtonian fluids in pipe [J]. Journal of Sichuan university (Engineering science edition), 2000, 32(3) : 1-4. [18] 贺成才. 幂律-牛顿流体圆管分层层流的数值模拟 [J]. 天然气与石油, 2003, 21(1) : 18-21. He C C. Digital simulations of stratified flow in power-law newton fluid pipe [J]. Natural gas and oil, 2003, 21(1) : 18-21. [19] Biberg D. A mathematical model for two-phase stratified turbulent duct flow [J]. Multiphase Science & Technology, 2007, 19 (1) :1-48. [20] Dennis S C R, Michael N G. Dual solutions for steady laminar flow through a curved tube [J]. Quarterly journal of mechanics & applied mathematics, 1982, 35 (3) : 305-324 |
相关文章 5
[1] | 李军 王娟 张佳 邹槊 何星晨 万加亿. 极板凹凸结构形状对电解槽内部流动特性的影响[J]. 过程工程学报, 2021, 21(3): 251-258. |
[2] | 王娟 李军 邹槊 何星晨 万加亿 周宇. 压滤式水电解槽微通道内球凸-球凹结构绕流特性的模拟[J]. 过程工程学报, 2020, 20(3): 294-301. |
[3] | 杨松泉 褚雅志 曹婉婉 刘燕 王领. 筛孔型润德塔盘的性能 [J]. , 2017, 17(1): 35-40. |
[4] | 曹婉婉郭建全樊轩褚雅志马晓迅-. 筛孔型润德塔盘的流体力学性能[J]. 过程工程学报, 2015, 15(3): 381-385. |
[5] | 常彦龙;冯庆华;张琨;阎肖华. θ网环等四种小型高效精密填料流体力学性能测定及比较[J]. , 2004, 4(6): 496-501. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3208