1. 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,云南 昆明 650093 2. 昆明理工大学冶金与能源工程学院,云南 昆明 650093
收稿日期:
2018-03-30修回日期:
2018-09-03出版日期:
2018-11-22发布日期:
2018-11-19通讯作者:
徐媛基金资助:
高砷石膏渣协同钢渣固化机理及砷解毒机制研究Solidification/stabilization of arsenic-bearing gypsum sludge using Portland cement: precalcination effect and arsenic immobilization mechanism
Yong LI1,2, Yuan XU1,2, Xing ZHU1,2*, Hua WANG1,2, Xianjin QI1,2, Kongzhai LI1,2, Yonggang WEI1,21. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China 2. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
Received:
2018-03-30Revised:
2018-09-03Online:
2018-11-22Published:
2018-11-19Contact:
Yuan Xu 摘要/Abstract
摘要: 提出了一种预煅烧和水泥固化/稳定化相结合的无害化处置含砷石膏渣方法,研究了预煅烧影响及砷固化机理. 含砷石膏渣中砷含量为8.56%,浸出毒性高达1097.5 mg/L,远高于《危险废物鉴别标准GB5085.3-2007》中危废鉴别值5 mg/L. 预煅烧温度为600和700℃时,石膏渣中亚砷酸盐分解导致总砷量和砷迁移性降低,砷浸出毒性可显著降低至较低水平(41.2和4.2 mg/L). 采用水泥固化可降低砷浸出毒性和控制砷泄露风险,较高温度(600和700℃)预煅烧后的石膏渣经水泥固化后抗压强度分别达4.2和5.2 MPa,砷浸出毒性分别达到0.98和0.22 mg/L,低于GB5085.3-2007危废限值. 砷以Ca2As2O7和AlAsO4形式被包裹或吸附在C?S?H水化产物中,降低了砷迁移性;预煅烧可加速石膏渣水泥固化中砷参与水泥水化和化合反应,导致更多且密实的AlAsO4和Ca2As2O7相形成,强化砷固化效果. 该方法有利于含砷量高和毒性高的含砷石膏渣处置,固化体可直接进入垃圾填埋场.
引用本文
李勇 徐媛 祝星 王华 祁先进 李孔斋 魏永刚. 含砷石膏渣水泥固化/稳定化:预煅烧影响和砷固化机理[J]. 过程工程学报, 2018, 18(S1): 111-121.
Yong LI Yuan XU Xing ZHU Hua WANG Xianjin QI Kongzhai LI Yonggang WEI. Solidification/stabilization of arsenic-bearing gypsum sludge using Portland cement: precalcination effect and arsenic immobilization mechanism[J]. Chin. J. Process Eng., 2018, 18(S1): 111-121.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.20180108
http://www.jproeng.com/CN/Y2018/V18/IS1/111
参考文献
[1] Zhang, L.; Qin, X.; Tang, J.; Liu, W.; Yang, H. Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China [J]. Applied Geochemistry 2017, 77, 80-88. [2] Chai, L.; Shi, M.; Liang, Y.; Tang, J.; Li, Q. Behavior, distribution and environmental influence of arsenic in a typical lead smelter. Journal of Central South University [J]. 2015, 22(4),1276-1286. [3] Min, X.; Liao, Y.; Chai, L.; Yang, Z.; Xiong, S.; Liu, L.; Li, Q. Removal and stabilization of arsenic from anode slime by forming crystal scorodite. Transactions of Nonferrous Metals Society of China [J]. 2015,25(4),1298-1306. [4] Li, Y.; Min, X.; Chai, L.; Shi, M.; Tang, C.; Wang, Q.; Liang, Y.; Lei, J.; Liyang, W. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals [J]. Journal of Environmental Management, 2016,181,756-761. [5] Chai, L.; Yue, M.; Yang, J.; Wang, Q. Li, Q.; Liu, H.; Formation of tooeleite and the role of direct removal of As(III) from high-arsenic acid wastewater [J]. Journal of Hazardous Materials, 2016,320,620-627. [6] Du, Y.; Lu, Q.; Chen, H.; Du, Y.; Du, D. A novel strategy for arsenic removal from dirty acid wastewater via CaCO3-Ca(OH)2-Fe(III) processing [J]. Journal of Water Process Engineering, 2016,12,41-46. [7] Hu, H.; Qiu K. Three-step vacuum separation for treating arsenic sulphide residue [J]. Vacuum, 2015,111,170-175. [8] Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011,92(3),407-418. [9] Zhang, D.; Yuan, Z.; Wang, S.; Jia, Y. Demopoulos, G.P. Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry [J]. Journal of Hazardous Materials, 2015,300,272-280. [10] Zhu, X.; Qi, X.; Wang, H.; Shi, Y.; Liao, T. Characterization of High-arsenic Sludge in Copper Metallurgy Plant [C]. Characterization of Minerals, Metals, and Materials, 2014,173-184. [11] Radovanovi?, D.; Kamberovi?, ?.J.; Kora?, M.S.; Rogan, J.R. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process [J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering, 2016,51,34-43. [12] Zha, F.; Liu, J.; Xu, L.; Cui, K. Effect of cyclic drying and wetting on engineering properties of heavy metal contaminated soils solidified/stabilized with fly ash [J]. Journal of Central South University, 2013,20,1947-1952. [13] Pedro, B.; Rosangela, A.H.; Humayoun, A. Solidification/stabilization of arsenic: Effects of arsenic speciation [J]. Journal of Environmental Science and Health . Part A:Environmental Science and Engineering and Toxicology, 1996,A31(4),747-754. [14] Tao, Z.; Zhou, X.; Luo, Z.; Chen, X.; Hao, X.; Chen, Z. Progress on the Solidification/Immobilization of Arsenic-bearing Waste Cement [J]. Materials Review, 2016,30(5),132-136. [15] Ellis, D.; Frey, H.; Markey, R.M.; Redwine, J.C.; Navratil, J.D. Arsenic treatment technologies for soil, waste, and water. DTIC Document,2002. [16] Dutré, V.; Vandecasteele, C. Solidification/stabilisation of arsenic-containing waste: Leach tests and behaviour of arsenic in the leachate [J]. Waste Management, 1995,15(1),55-62. [17] Choi, W.H.; Lee, S.R.; Park, J.Y. Cement based solidification/stabilization of arsenic-contaminated mine tailings [J]. Waste Management, 2009,29(5),1766-1771. [18] Kim, B.J.; Jang, J.G.; Park, C.Y.; Kim, H.K. Recycling of arsenic-rich mine tailings in controlled low-strength materials [J]. Journal of Cleaner Production, 2016,118,151-161. [19] Dutré, V.; Vandecasteele, C. Immobilization Mechanism of Arsenic in Waste Solidified Using Cement and Lime [J]. Environmental Science & Technology, 1998,32(18),2782-2787. [20] Akhter, H.; Cartledge, F.K.; Roy, A.; Tittlebaum, M.E. Solidification/stabilization of arsenic salts: Effects of long cure times [J]. Journal of Hazardous Materials, 1997,52(2-3),247-264. [21] Vandecasteele, C.; Dutré, V.; Geysen, D.; Wauters, G. Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic [J]. Waste Management, 2002,22(2),143-146. [22] Shih, C.J.; Lin, C.F. Arsenic contaminated site at an abandoned copper smelter plant: waste characterization and solidification/stabilization treatment [J]. Chemosphere, 2003,53(7),691-703. [23] Moon, D.H.; Wazne, M.; Yoon, I.H.; Grubb, D.G. Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils [J]. Journal of Hazardous Materials, 2008,159(2),512-518. [24] Yoon, I.H.; Moon, D.H.; Kim, K.W.; Lee, K.Y. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust [J]. Journal of Environmental Management, 2010,91(11),2322-2328. [25] Coussy, S.; Benzaazoua, M.; Blanc, D.; Moszkowicz, P.; Bussière, B. Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens [J]. Journal of Environmental Management, 2012,93(1),10-21. [26] Martínez-Villegas, N.; Briones-Gallardo, R.; Ramos-Leal, J.A.; Avalos-Borja, M.; Casta?ón-Sandoval, A.D.; Razo-Flores, E.; Villalobos, M. Arsenic mobility controlled by solid calcium arsenates: A case study in Mexico showcasing a potentially widespread environmental problem [J]. Environmental Pollution, 2013,176(5),114-122. [27] Bothe, J.V.; Brown, P.W. Arsenic immobilization by calcium arsenate formation [J]. Environmental Science & Technology, 1999,33(21),3806-11. [28] Dutré, V.; Vandecasteele, C.; Opdenakker, S. Oxidation of arsenic bearing fly ash as pretreatment before solidification [J]. Journal of Hazardous Materials, 1999,68(3),205-215. [29] Coussy, S.; Benzaazoua, M.; Blanc, D.; Moszkowicz, P.; Bussière, B. Arsenic stability in arsenopyrite-rich cemented paste backfills: A leaching test-based assessment [J]. Journal of Hazardous Materials, 2011,185(2–3),1467-1476. [30] Coussy, S.; Paktunc, D.; Rose, J.; Benzaazoua, M. Arsenic speciation in cemented paste backfills and synthetic calcium–silicate–hydrates [J]. Minerals Engineering, 2012,39,51-61. [31] Hassan, K.M.; Fukushi, K.; Turikuzzaman, K.; Moniruzzaman S.M. Effects of using arsenic–iron sludge wastes in brick making [J]. Waste Management, 2014,34(6),1072-1078. [32] Malviya, R.; Chaudhary, R. Factors affecting hazardous waste solidification/stabilization: A review [J]. Journal of Hazardous Materials, 2006,137(1),267-276. [33] State environmental protection administration. Identification standards for hazardous wastes-Identification for extraction toxicity, GB5085.3-2007, 2007 [GB]. (in Chinese). [34] State environmental protection administration. Solid Waste-Extraction Procedure for Leaching Toxicity-Sulphuric Acid & Nitric Acid Method, HJ/T299-2007, 2007 [GB]. (in Chinese). [35] Lampris, C.; Stegemann, J.A.; Cheeseman, C.R. Solidification/stabilisation of air pollution control residues using Portland cement: Physical properties and chloride leaching [J]. Waste Management, 2009,29(3),1067-1075. [36] Chen, Q.Y.; Zhang, L.; Ke, Y.J.; Hills, C.; Kang, Y.M. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge [J]. Chemosphere, 2009,74(6),758-764. [37] Zhen, G.; Lu, X.; Cheng, X.; Chen, H.; Yan, X.; Zhao, Y. Hydration process of the aluminate 12CaO?7Al2O3-assisted Portland cement-based solidification/stabilization of sewage sludge [J]. Construction and Building Materials, 2012,30,675-681. [38] Jing, C.; Liu, S.; Meng, X. Arsenic leachability and speciation in cement immobilized water treatment sludge [J]. Chemosphere, 2005,59(9),1241-1247. [39] Nakwanit, S.; Visoottiviseth, P.; Khokiattiwong, S.; Sangchoom, W. Management of arsenic-accumulated waste from constructed wetland treatment of mountain tap-water [J]. Journal of Hazardous Materials, 2011,185(2),1081-1085. [40] Quina, M.J.; Bordado, J.C.; Quinta-Ferreira, R.M. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues [J]. Waste Management, 2009,29(9),2483-2493. [41] Clancy, T.M.; Snyder, K.V.; Reddy, R.; Lanzirotti, A.; Amrose, S.E.; Raskin, L.; Hayes, K.F. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment [J]. Journal of Hazardous Materials, 2015,300,522-529. [42] Yang, Y.; Wang, G.; Xie, S.; Tu, X.; Huang, X. Effect of mechanical property of cemented soil under the different pH value [J]. Applied Clay Science, 2013,79(7),19-24. [43] Singh, T.S.; Pant, K.K. Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials [J]. Journal of Hazardous Materials, 2006,131(1–3),29-36. |
相关文章 2
[1] | 张纯闵小波王密张建强李辕成. 含铅冶炼废渣中铅的机械力化学稳定行为[J]. 过程工程学报, 2015, 15(6): 1034-1038. |
[2] | 赵鲁梅胡建杭王华刘慧利卿山李磊. 预煅烧铜渣对生物质催化热解动力学的影响[J]. , 2010, 10(4): 726-731. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3160