中国石化安全工程研究院化学品安全控制国家重点实验室,山东 青岛 266071
收稿日期:
2018-05-11修回日期:
2018-09-07出版日期:
2018-11-22发布日期:
2018-11-19通讯作者:
刘静如基金资助:
国家重点研发计划——典型危险化学品储运过程火灾爆炸防控工程示范Effect of rust on runaway reaction of ethylene oxide aqueous solution
Jingru LIU*, Manping JIN, Lei ZHAO, Fan ZHANG*, Wei XU, Ning SHISINOPEC Research Institute of Safety Engineering, State Key Laboratory of Safety and Control for Chemicals, Qingdao, Shandong 266071, China
Received:
2018-05-11Revised:
2018-09-07Online:
2018-11-22Published:
2018-11-19Contact:
Jing-Ru LIU 摘要/Abstract
摘要: 采用绝热量热仪对环氧乙烷(EO)水溶液?铁锈/Fe2O3体系进行了绝热量热实验,得到了铁锈、Fe2O3固体与EO水溶液接触时的起始放热温度、最高放热温度和压力、绝热温升、失控反应过程温度、压力等参数. 结果表明,在实验条件下EO水溶液与现场铁锈接触时失控反应特征不明显,未出现温度、压力剧升现象;发生失控反应的起始放热温度、最高反应温度、最高压力等随EO浓度降低而减小,达到最大反应速率的时间在30 min内,30wt% EO水溶液?Fe2O3体系的起始放热温度接近100℃,纯EO?Fe2O3体系的起始放热温度为150℃. Fe2O3固体比现场铁锈对EO及其水溶液失控反应的催化诱导作用更明显,且随EO浓度升高,失控后果更严重.
引用本文
刘静如 金满平 赵磊 张帆 徐伟 石宁. 铁锈对环氧乙烷水溶液失控反应的影响[J]. 过程工程学报, 2018, 18(S1): 138-145.
Jingru LIU Manping JIN Lei ZHAO Fan ZHANG Wei XU Ning SHI. Effect of rust on runaway reaction of ethylene oxide aqueous solution[J]. Chin. J. Process Eng., 2018, 18(S1): 138-145.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.20180166
http://www.jproeng.com/CN/Y2018/V18/IS1/138
参考文献
[1] PESCHEL A, J?RKE A, SUNDMACHER K, et al. Optimal reaction concept and plant wide optimization of the ethylene oxide process [J]. Chemical Engineering Journal, 2012, 207: 656-674. [2] LEE H J, GHANTA M, BUSCH D H, et al. Toward a CO2-free ethylene oxide process: homogeneous ethylene oxide in gas-expanded liquids [J]. Chemical Engineering Science, 2010, 65(1): 128-134. [3] PESCHEL A, KARST F, FREUND H, et al. Analysis and optimal design of an ethylene oxide reactor [J]. Chemical Engineering Science, 2011, 66(24): 6453-6469. [4] AMEYA J, XIAOQING Y, TIMOTHY A B, et al. Thermal Decomposition of Ethylene Oxide:? Potential Energy Surface, Master Equation Analysis, and Detailed Kinetic Modeling. Journal of Physical Chemistry A, 2005, 109(35): 8016-8027. [5] JOSHI A, YOU X, BARCKHOLTZ T A, et al. Thermal decomposition of ethylene oxide: potential energy surface, master equation analysis, and detailed kinetic modeling [J]. The Journal of Physical Chemistry A, 2005, 109(35): 8016-8027. [6] BRITTON L G. Thermal stability and deflagration of ethylene oxide [J]. Plant/Operations Progress, 1990, 9(2): 75-86. [7] BUBBICO R, DORE G, MAZZAROTTA B. Risk analysis study of road transport of ethylene oxide [J]. Journal of Loss Prevention in the Process Industries, 1998, 11(1): 49-54. [8] JUNE R K, DYE R. F. Explosive decomposition of ethylene oxide [J]. Plant/Operations Progress, 1990, 9(2): 67-74. [9] FREEDER B G, SNEE T J. Alkali-catalysed polymerization of ethylene oxide and propylene oxide-hazard evaluation using accelerating rate calorimetry [J]. Journal of Loss Prevention in the Process Industries, 1988, 1(3): 164-168. [10] MELHEM G A, GIANETTO A, LEVIN M E, et al. Kinetics of the reactions of ethylene oxide with water and ethylene glycols [J]. Process Safety Progress, 2001, 20(4): 231-246. [11]王犇, 刘毛毛, 赵琳, 等. 环氧乙烷热稳定性及杂质对其影响研究. 安全与环境学报. 2015, 15(5): 123-127. [12] DINH L T T, ROGERS W J, MANNAN M S, et al. Reactivity of ethylene oxide in contact with basic contaminants [J]. Thermochimica Acta, 2008, 480(1): 53-60. PEKALSKI A A, ZEVENBERGEN J F, BRAITHWAITE M, et al. Explosive decomposition of ethylene oxide at elevated condition: effect of ignition energy, nitrogen dilution, and turbulence [J]. Journal of Hazardous Materials, 2005, 118(1): 19-34. [13] Liu J, Zhang F, Xu W. et al. Thermal reactivity of ethylene oxide in contact with contaminants: A review. Thermochimica Acta. 652 (2017): 85–96. [14] LEVIN M. E. The reactivity of ethylene oxide in contact with iron oxide fines as measured by adiabatic calorimetry [J]. Journal of Hazardous Materials, 2003, 104(1): 227-245. [15] 刘静如, 孙峰, 刘文旭, 等. 环氧乙烷水溶液失控反应特性研究. 安全与环境学报. 2017, 17(6): 2234-2239. [16] DEVER J P, GEORGE K F, HOFFMAN W C, et al. Ethylene Oxide, Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Volume 9, Kroschwitz, J. I., Editor, John Wiley & Sons, NewYork, NY, 915-959, 1994. [17] WILCOCK E, ROGERS R L. A review of the phi factor during runaway conditions. Journal of Loss Prevention in the Process Industries, 1997, 10(5-6): 289-302. |
相关文章 8
[1] | 施红勋. 基于决策树算法的石化装置过程安全管理评估技术研发及应用[J]. 过程工程学报, 2018, 18(S1): 52-58. |
[2] | 陈嵩嵩 董丽 张军平 盛贵阳 张梅香 崔改静. 环氧乙烷化工设计安全事项分析[J]. 过程工程学报, 2018, 18(S1): 72-81. |
[3] | 胡憧憬 孙泽 黄龙 张海军 宋兴福 于建国. 储能硝酸熔盐的热稳定性分析[J]. 过程工程学报, 2018, 18(6): 1315-1322. |
[4] | 唐刚 姜浩浩 陈丽娟 张浩 刘纯林 周子健. 玻纤增强聚酰胺6/次磷酸钇复合材料的制备及其阻燃性能[J]. 过程工程学报, 2018, 18(6): 1340-1346. |
[5] | 黄惠付仁春朱维郭忠诚. 聚3,4-乙烯二氧噻吩/聚苯胺复合材料的制备与性能[J]. , 2012, 12(4): 672-677. |
[6] | 吴青海任天瑞. 固载化离子液体催化环氧乙烷和二氧化碳合成碳酸乙烯酯[J]. , 2012, 12(2): 302-309. |
[7] | 漆虹韩静江晓骆陶振邢卫红范益群. 微孔SiO2膜在水蒸气条件下的稳定性能[J]. , 2010, 10(1): 161-166. |
[8] | 倪亚茹;陆春华;张焱;张其土;许仲梓. 稀土掺杂硼铝硅酸盐玻璃形成和析晶性能[J]. , 2006, 6(5): 777-780. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3162