1. 湖南科技大学土木工程学院,湖南 湘潭 411201
2. 重庆工商大学废油资源化技术与装备教育部工程研究中心,重庆 400067
收稿日期:
2017-11-16修回日期:
2018-01-18出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
张鹏基金资助:
锰矿区锰与DOM相互作用机制及混凝去除机理研究;DON荧光组分与DON含量、N-DBPs的相关性分析及优化混凝过程研究;新型混凝剂CTS-GSH分子模型构建及对水中铬(VI)的去除机理研究Determination of sulfhydryl content in CTS?GSH through near-infrared reflectance spectroscopy
Peng ZHANG1*, Yulu Wang1, Guocheng ZHU1, Zhaojie JIAO2, Wei ZHANG11. School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
2. Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education,Chongqing Technology
and Business University, Chongqing 400067, China
Received:
2017-11-16Revised:
2018-01-18Online:
2018-08-22Published:
2018-08-15摘要/Abstract
摘要: 选取56份自制的壳聚糖与谷胱甘肽通过酰胺化反应合成的巯基化壳聚糖(CTS?GSH)样品,对其进行近红外光谱扫描,选取各波段的特征吸收峰作为自变量,以巯基含量为因变量,建立偏最小二乘(PLS)模型预测巯基含量,并将预测值与实测值作比较. 结果表明,预测值与计算值的相关系数大于0.9,表明模型具有良好的预测性能. 预测值和实测值的差异不显著,表明近红外光谱预测CTS-GSH中的巯基含量具有可行性.
引用本文
张鹏 王雨露 朱国成 焦昭杰 张伟. 近红外光谱法测定CTS-GSH中巯基含量[J]. 过程工程学报, 2018, 18(4): 757-763.
Peng ZHANG Yulu Wang Guocheng ZHU Zhaojie JIAO Wei ZHANG. Determination of sulfhydryl content in CTS?GSH through near-infrared reflectance spectroscopy[J]. Chin. J. Process Eng., 2018, 18(4): 757-763.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217390
http://www.jproeng.com/CN/Y2018/V18/I4/757
参考文献
[1]Brocca L, Morbidelli R, Melone F, et al.Soil moisture spatial variability in experimental areas of central Italy[J].Journal of Hydrology, 2007, 333(2–4):356-373 [2]Itskos G, Koutsianos A, Koukouzas N, et al.Zeolite development from fly ash and utilization in lignite mine-water treatment[J]. International Journal of Mineral Processing, 2015, 139:43-50 [3]Kumar A, Maiti S K.Assessment of potentially toxic heavy metal contamination in agricultural fields,sediment,and water from an abandoned chromite-asbestos mine waste of Roro hill,Chaibasa,India[J].Environmental Earth Sciences, 2015, 74(3):1-17 [4]Wingenfelder U, Hansen C, Furrer G, et al.Removal of heavy metals from mine waters by natural zeolites[J].Environmental Science & Technology, 2005, 39(12):4606-4613 [5]Abongwa P T, Geyer C, Puckette J.Investigating the Effectiveness of Mineral Precipitate as a Tool in the Removal of Heavy Metals from Mine Waters[C]// AGU Fall Meeting. AGU Fall Meeting Abstracts, 2014; 93(8): 18-23. [6]Sounthararajah D P, Loganathan P, Kandasamy J, et al.Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon[J].International Journal of Environmental Research & Public Health, 2015, 12(9):10475-10489 [7]Matouq M, Jildeh N, Qtaishat M, et al.The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa,pods[J].Journal of Environmental Chemical Engineering, 2015, 3(2):775-784 [8]Mat?ok M, Petrus R, Warcho? J K.Equilibrium study of heavy metals adsorption on kaolin[J].Industrial & Engineering Chemistry Research, 2015, 54(27):6975-6984 [9]Sreekantan S, Lai C W, Zaki S M.The Influence of Lead Concentration on Photocatalytic Reduction of Pb(II) Ions Assisted by Cu-TiO2 Nanotubes[J].International Journal of Photoenergy, 2014, 2014(839106):1-7 [10]Mavrov V, Erwe T, Bl?cher C, et al.Study of new integrated processes combining adsorption,membrane separation and flotation for heavy metal removal from wastewater **[J].Desalination, 2003, 157(1):97-104 [11]Muthukrishnan M, Guha B K.Heavy metal separation by using surface modified nanofiltration membrane[J].Desalination, 2006, 200(1):351-353 [12]Ge Y, Yuan Y, Wang K, et al.Preparation of geopolymer-based inorganic membrane for removing Ni(2+) from wastewater.[J]. Journal of Hazardous Materials, 2015, 299:711-718. [13]Feng D, Aldrich C, Tan H.Treatment of acid mine water by use of heavy metal precipitation and ion exchange[J].Minerals Engineering, 2000, 13(6):623-642 [14]Kim S J, Lim K H, Joo K H, et al.Removal of heavy metal-cyanide complexes by ion exchange[J].Korean Journal of Chemical Engineering, 2002, 19(6):1078-1084 [15]Plazinski W, Rudzinski W.Modeling the effect of surface heterogeneity in equilibrium of heavy metal ion biosorption by using the ion exchange model[J].Environmental Science & Technology, 2009, 43(19):7465-71 [16]Liu Y, Cao C, Ning S, et al.Research on the Effects of Coagulation Process on the Removal of Humic Acid and Heavy Metal[J].Industrial Safety & Environmental Protection, 2015, 61(1-2):171-80 [17]Headway on natural polymeric coagulants in water and wastewater treatment operations[J].Journal of Water Process Engineering, 2015, 6:174-192. [18]Shamsnejati S, Chaibakhsh N, Pendashteh A R, et al.Mucilaginous seed of Ocimum basilicum, as a natural coagulant for textile wastewater treatment[J]. Industrial Crops & Products, 2015, 69:40-47. [19]Mouedhen G, Feki M, De P M, et al.Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena[J].Journal of Hazardous Materials, 2009, 168(2–3):983-991 [20]Barrera-Díaz C, Lugo-Lugo V, Roa-Morales G, et al.Enhancing the electrochemical Cr(VI) reduction in aqueous solution[J].Journal of Hazardous Materials, 2011, 185(2-3):1362-1368 [21]Cheng Y J, Yan F B, Feng H, et al.Bioremediation of Cr(VI) and immobilization as Cr(III) by Ochrobactrum anthropi[J].Environmental Science & Technology, 2010, 44(16):6357-63 [22]Kramer D M, Puzon G J, Xun L, et al.Formation of Soluble Organo -- Chromium (Ill) Complexes after Chromate Reduction in the Presence of Cellular Organics[J].Environmental Science & Technology, 2005, 39(8):2811-2817 [23]Kumari M, Tripathi B D.Efficiency of Phragmites australis, and Typha latifolia, for heavy metal removal from wastewater[J]. Ecotoxicology & Environmental Safety, 2015, 112:80-86. [24]Zhang P, Ren B.Inverse Emulsion Polymerization of Dimethyl Diallyl Ammonium Chloride and Acrylamide for Water Treatment[J].Asian Journal of Chemistry, 2013, 25(7):3966-3970 [25]Zhu G, Zheng H, Chen W, et al.Preparation of a composite coagulant: Polymeric aluminum ferric sulfate (PAFS) for wastewater treatment[J].Desalination, 2012, 285(1):315-323 [26]Golbaz S, Jafari A J, Rafiee M, et al.Separate and simultaneous removal of phenol,chromium,and cyanide from aqueous solution by coagulationprecipitation: Mechanisms and theory[J].Chemical Engineering Journal, 2014, 253(7):251-257 [27]Liu X R, Hong W W, Deng Y H.Determination of thiol content in thiolated chitosan by 4, 4′-dithiodipyridine[J]. Journal of Shenyang Pharmaceutical University, 2013; 30(2): 120. [28]Dai C Y, Gao X Y, Tang B, et al.Determination of the Contents of Chlorogenic Acid and Phillyrin of Shuanghuanglian Oral Fluid Using NIRS[J].Spectroscopy & Spectral Analysis, 2010, 30(2):358-362 [29]Wang J, Cui L, Gao W, et al.Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy[J].Geoderma, 2014, 216(4):1-9 [30]Okparanma R N, Coulon F, Mayr T, et al.Mapping polycyclic aromatic hydrocarbon and total toxicity equivalent soil concentrations by visible and near-infrared spectroscopy.[J]. Environmental Pollution, 2014, 192: 162-170. |
相关文章 1
[1] | 孙伟;钟江华;张灿英;江宏;焦奎. 巯基乙酸修饰ZnS纳米颗粒的水相合成及表征[J]. , 2007, 7(5): 984-988. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3085