删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

提升小波加权自相关函数的基音检测算法*

本站小编 Free考研考试/2022-01-02

-->
王晨,章小兵,刘美娟.提升小波加权自相关函数的基音检测算法*[J].,2018,37(2):201-207
提升小波加权自相关函数的基音检测算法*
Pitch detection based on lifting wavelet transform and weighted autocorreation
投稿时间:2017-06-11修订日期:2017-10-14
中文摘要:
随着计算机技术的发展,语音识别技术作为人机交互的重要渠道,其在复杂噪声环境下的特征值检测算法直接关系到计算机的运算效率。基音周期是语音特征值提取的重要参数之一。针对传统基音检测算法在噪声环境下检测精度低的问题,提出了一种基于自适应提升小波变换加权线性预测误差自相关函数的基音检测算法。该方法用多级提升小波近似系数加权求和的方法来弥补自相关函数随着时间延迟量的增加幅值衰减的缺陷;用线性预测误差自相关函数的方法来抑制共振峰的干扰,然后将两种方法结合来突出基音周期处的峰值。实验结果表明,与传统的自相关函数法和小波加权法相比,该方法能有效减弱共振峰的影响,突出基音周期处的峰值,提高基音周期检测精度,鲁棒性更好。
英文摘要:
With the development of computer technology, speech recognition technology as an important channel of human-computer interaction, its eigenvalue detection algorithm is directly related to the computer"s computing efficiency in a complex noise environment. The pitch period is one of the important parameters of speech eigenvalue extraction. Aiming at the problem that the traditional pitch detection algorithm has low detection accuracy in noisy environment, a pitch detection algorithm based on lifting wavelet transform weighted linear predictive error autocorrelation function is proposed. This method use the way of Multi - level lifting wavelet approximation coefficient weighted summation to compensate the defect of the autocorrelation function decreases with the increase of the amount of time delay and the method of linear prediction error autocorrelation function is used to suppress the interference of the formant, then the two methods are combined with the peak at the pitch period. The experimental result shows that comparing with the traditional pitch detection algorithm, the method can effectively reduce the influence of the formant, highlight the peak at the pitch period, improve the accuracy of the pitch period detection and make robustness better.
DOI:10.11684/j.issn.1000-310X.2018.02.003
中文关键词:基音检测提升小波变换自适应阈值算法线性预测自相关函数法
英文关键词:Pitch detectionLifting wavelet transformAdaptive algorithmLinear predictionImproved autocorrelation
基金项目:安徽工业大学产学研基金资助重大项目 (RD14206003)
作者单位E-mail
王晨安徽工业大学 电气与信息工程学院 安徽马鞍山 243000844395889@qq.com
章小兵安徽工业大学 电气与信息工程学院 安徽马鞍山 243000zxb13013113592
刘美娟安徽工业大学 电气与信息工程学院 安徽马鞍山 243000995698102@qq.com
摘要点击次数:1185
全文下载次数:1145
查看全文查看/发表评论下载PDF阅读器
相关附件:修改说明1修改说明1修改说明217084图文件.zip
关闭








PDF全文下载地址:

http://yysx.cnjournals.cn/ch/reader/create_pdf.aspx?file_no=17084&flag=1&journal_id=yysx&year_id=2018
相关话题/安徽工业大学 安徽 电气 环境 英文