引 言
力学系统的对称性与守恒律密切相关. 通过研究对称性而探索或发现复杂力学系统的守恒律, 这是分析力学研究的一个重要方面[1-2]. Lie对称性[3-9]、Noether对称性[10-20]和Mei对称性[21-28]是3种概念不同的对称性方法. 利用对称性和守恒律, 可以简化动力学问题甚至求解力学系统的精确解, 从而更好地理解其动力学行为. 微分方程的Lie理论最早由Lutzky[29]引入力学系统, 所得守恒量是Noether型的. Hojman[30]由Lie对称性直接导出一类不属于Noether型的守恒量, 称之为Hojman守恒量[21]. Hilger[31]于1990年提出了测度链上的分析理论, 而时间尺度作为测度链的特殊情形备受关注[32-34]. 时间尺度分析不仅是连续分析和离散分析的统一, 而且是经典微积分对任意时间尺度的拓广. Bartosiewicz和Torres[35]首先开展时间尺度上Noether对称性的研究, 此后关于时间尺度上Noether定理及其证明的探讨至今仍方兴未艾[36-42]. 但是, 时间尺度上Lie对称性直到最近才有一些初步的研究且所得守恒量均为Noether型的[43-46]. 鉴于此, 本文将研究并给出由时间尺度上Lie对称性直接导出的非Noether型的新型守恒量.
1.
时间尺度微积分
为方便读者, 这里对时间尺度微积分做一简单介绍, 详见文献[32-33].
设
ight] cup {mathbb{N}}$
ight) = inf left{ {s in {{mathbb{T}}}:s > t}
ight}$
ho left( t
ight) = sup left{ {s in {{mathbb{T}}}:s < t}
ight}$
ight) = t$
ight) > t$
ho left( t
ight) = t$
ho left( t
ight) < t$
ight) = sigma left( t
ight) - t$
ight) = t -
ho left( t
ight)$
由
ho left( {sup {{mathbb{T}}}}
ight),sup {{mathbb{T}}}}
ight]$
ight)}
ight)$
定义函数
ight)}
ight) - yleft( tau
ight) -
ight. $
ight)left( {sigma left( t
ight) - tau }
ight)
ight| leqslant varepsilon left| {sigma left( t
ight) - tau }
ight|$
ight) $
ight)$
ho left( t
ight)}
ight) - yleft( tau
ight) - {y^nabla }left( t
ight)left( {
ho left( t
ight) - tau }
ight)}
ight| leqslant varepsilon left| {
ho left( t
ight) - tau }
ight| $
ight) $
ight)$
如果函数
ight) $
ight) $
ight) $
如果对所有的
ight) = yleft( t
ight) $
ight)Delta t = Yleft( t
ight) + C} $
ight)} Delta t = Yleft( b
ight) - Yleft( a
ight) $
Dubois-Reymond引理: 令
ight] to {{mathbb{R}}^n} $
ight) = eta left( b
ight) = 0 $
ight)} {eta ^Delta }left( t
ight)cdot $
ight]^k}$
ight) equiv C$
链式法则: 设函数
ight)$
ight)$
ight) = gleft( {{vartheta _1}left( zeta
ight),{vartheta _2}left( zeta
ight), cdots ,{vartheta _n}left( zeta
ight)}
ight)$
ight)$
$$begin{array}{l} {G^Delta }left( {{zeta ^0}} ight) = g_{{t_i}}^{{Delta _i}}left( {{t^0}} ight)vartheta _i^Delta left( {{zeta ^0}} ight)+quad g_{{t_{i - 1}}}^{{Delta _{i - 1}}}left[ {{vartheta _1}left( {{zeta ^0}} ight),{vartheta _2}left( {{zeta ^0}} ight), cdots ,{vartheta _{i - 1}}left( {{zeta ^0}} ight),{sigma _i}left( {{vartheta _i}left( {{zeta ^0}} ight)} ight)}, ight. quad left. {{vartheta _{i + 1}}left( {{zeta ^0}} ight), cdots ,{vartheta _n}left( {{zeta ^0}} ight)} ight]vartheta _{i - 1}^Delta left( {{zeta ^0}} ight) + cdots+ quad g_{{t_1}}^{{Delta _1}}left[ {{vartheta _1}left( {{zeta ^0}} ight),{sigma _2}left( {{vartheta _2}left( {{zeta ^0}} ight)} ight), cdots ,{sigma _i}left( {{vartheta _i}left( {{zeta ^0}} ight)} ight)}, ight. quad left. {{vartheta _{i + 1}}left( {{zeta ^0}} ight), cdots ,{vartheta _n}left( {{zeta ^0}} ight)} ight]vartheta _1^Delta left( {{zeta ^0}} ight)+ end{array}$$ |
$$ begin{array}{*{20}{l}}quad g_{{t_{i + 1}}}^{{Delta _{i + 1}}}left[ {{sigma _1}left( {{vartheta _1}left( {{zeta ^0}} ight)} ight),{sigma _2}left( {{vartheta _2}left( {{zeta ^0}} ight)} ight) cdots ,{sigma _i}left( {{vartheta _i}left( {{zeta ^0}} ight)} ight)}, ight. {quad left. {{vartheta _{i + 1}}left( {{zeta ^0}} ight), cdots ,{vartheta _n}left( {{zeta ^0}} ight)} ight]vartheta _{i + 1}^Delta left( {{zeta ^0}} ight) + cdots + }quad g_{{t_n}}^{{Delta _n}}left[ {{sigma _1}left( {{vartheta _1}left( {{zeta ^0}} ight)} ight),{sigma _2}left( {{vartheta _2}left( {{zeta ^0}} ight)} ight), cdots ,{sigma _{n - 1}}left( {{vartheta _{n - 1}}left( {{zeta ^0}} ight)} ight),} ight.left. {quad {vartheta _n}left( {{zeta ^0}} ight)} ight]vartheta _n^Delta left( {{zeta ^0}} ight)end{array}$$ | (1) |
其中
$$begin{array}{l} g_{{t_i}}^{{Delta _i}}left( t ight){buildrel Delta over =} dfrac{{partial gleft( t ight)}}{{{Delta _i}{t_i}}} = mathop {lim }limits_{begin{subarray}{l} {s_i} to {t_i} {s_i} ne {sigma _i}left( {{t_i}} ight) end{subarray}} dfrac{begin{array}{l}gleft( {{t_1},t_2, cdots ,{t_{i - 1}},{sigma _i}left( {{t_i}} ight),{t_{i + 1}}, cdots ,{t_n}} ight) - gleft( {{t_1}, t_2,cdots ,{t_{i - 1}},{s_i},{t_{i + 1}}, cdots ,{t_n}} ight)end{array}}{{{sigma _i}left( {{t_i}} ight) - {s_i}}}end{array} $$ | (2) |
称为函数
ight)$
混合delta偏导数次序交换定理: 如果
ight)$
ight)$
ight) = g_{{t_j}{t_i}}^{{Delta _j}{Delta _i}}left( t
ight)$
对于delta可微函数
ight)$
ight)$
$$ begin{split}&{left( {yz} ight)^Delta }left( t ight) = {y^sigma }left( t ight){z^Delta }left( t ight) + {y^Delta }left( t ight)zleft( t ight) =&;;;;;;;; yleft( t ight){z^Delta }left( t ight) + {y^Delta }left( t ight){z^sigma }left( t ight)end{split} $$ | (3) |
以及分部积分公式
$$ begin{split} &int_a^b {yleft( t ight)} {z^Delta }left( t ight)Delta t = &qquadleft( {yz} ight)left( b ight) - left( {yz} ight)left( a ight) - int_a^b {{y^Delta }left( t ight){z^sigma }left( t ight)Delta t}end{split} $$ | (4) |
2.
时间尺度上运动微分方程
时间尺度上Lagrange方程为[28]
$$ frac{nabla }{{nabla t}}frac{{partial L}}{{partial q_s^Delta }} - {sigma ^nabla }left( t ight)frac{{partial L}}{{partial {q_s}}} = 0, ;{s = 1,2, cdots ,n} $$ | (5) |
其中
ight):{{{mathbb{R}}}^n} times {{{mathbb{R}}}^n} times {{{mathbb{T}}}^k} to {{mathbb{R}}} $
ight)$
ight)$
假设系统非奇异, 即
ight) ne 0$
$$ q_s^{Delta Delta } = {alpha _s}left( {{q_k},q_k^Delta ,t} ight), ;{s = 1,2, cdots ,n} $$ | (6) |
3.
时间尺度上Lagrange系统的两个重要关系式
本节推导时间尺度上Lagrange系统的两个重要关系式, 它们是推导时间尺度上Hojman守恒量的基础.
设函数
ight) $
$$ frac{{bar Delta }}{{Delta t}}{varOmega _s} = frac{{partial {varOmega _s}}}{{{Delta _k}{q_k}}}q_k^Delta + frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}{alpha _k} + frac{{partial {varOmega _s}}}{{{Delta _{2n + 1}}t}}qquadqquad $$ | (7) |
$$ begin{split}& frac{{bar Delta }}{{Delta t}}frac{{bar Delta }}{{Delta t}}{varOmega _s} = {left( {frac{{partial {varOmega _s}}}{{{Delta _k}{q_k}}}} ight)^sigma }{alpha _k} + frac{{bar Delta }}{{Delta t}}frac{{partial {varOmega _s}}}{{{Delta _k}{q_k}}}q_k^Delta +& qquad {left( {frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight)^sigma }left( {frac{{partial {alpha _k}}}{{{Delta _j}{q_j}}}q_j^Delta + frac{{partial {alpha _k}}}{{{Delta _{n + j}}q_j^Delta }}{alpha _j} + frac{{partial {alpha _k}}}{{{Delta _{2n + 1}}t}}} ight) + & qquad frac{{bar Delta }}{{Delta t}}frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}{alpha _k} + frac{{{partial ^2}{varOmega _s}}}{{{Delta _{2n + 1}}t{Delta _k}{q_k}}}q_k^Delta+ & qquad frac{{{partial ^2}{varOmega _s}}}{{{Delta _{2n + 1}}t{Delta _{n + k}}q_k^Delta }}{alpha _k} + frac{{{partial ^2}{varOmega _s}}}{{{Delta _{2n + 1}}t{Delta _{2n + 1}}t}}end{split} $$ | (8) |
其中
ight)$
ight)$
$$ frac{{bar Delta }}{{Delta t}}left( * ight) = frac{partial }{{{Delta _k}{q_k}}}left( * ight)q_k^Delta + frac{partial }{{{Delta _{n + k}}q_k^Delta }}left( * ight){alpha _k} + frac{partial }{{{Delta _{2n + 1}}t}}left( * ight) $$ | (9) |
而符号
ight)$
$$ dfrac{{partial {varOmega _s}}}{{{Delta _k}{q_k}}} buildrel Delta over = dfrac{partial }{{{Delta _k}{q_k}}}{varOmega _s}left( {q_1^sigma , q_2^sigma,cdots ,q_{k - 1}^sigma ,{q_k}, cdots ,{q_n},q_1^Delta ,q_2^Delta , cdots ,q_n^Delta ,t} ight)quadquad $$ | (10) |
$$ begin{array}{l}dfrac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}buildrel Delta over = dfrac{partial }{{{Delta _{n + k}}q_k^Delta }}{varOmega _s}left( q_1^sigma , q_2^sigma ,cdots ,q_n^sigma ,q_1^{Delta sigma }, q_2^{Delta sigma },cdots , ight. quad left. q_{k - 1}^{Delta sigma },q_k^Delta , cdots ,q_n^Delta ,t ight) end{array}$$ | (11) |
$$ dfrac{{partial {varOmega _s}}}{{{Delta _{2n + 1}}t}} buildrel Delta over = dfrac{partial }{{{Delta _{2n + 1}}t}}{varOmega _s}left( {q_1^sigma , q_2^sigma , cdots ,q_n^sigma ,q_1^{Delta sigma },q_2^{Delta sigma }, cdots ,q_n^{Delta sigma },t} ight) quadquadquadquadquad$$ | (12) |
再将式(7)两端分别对
$$ begin{split}&dfrac{partial }{{partial {q_s}}}dfrac{{bar Delta }}{{Delta t}}{varOmega _s} = dfrac{{{partial ^2}{varOmega _s}}}{{{Delta _k}{q_k}partial {q_s}}}q_k^Delta + dfrac{{{partial ^2}{varOmega _s}}}{{{Delta _{n + k}}q_k^Delta partial {q_s}}}{alpha _k}+&qquad dfrac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}dfrac{{partial {alpha _k}}}{{partial {q_s}}} + dfrac{{{partial ^2}{varOmega _s}}}{{{Delta _{2n + 1}}tpartial {q_s}}} end{split}$$ | (13) |
$$begin{split}& frac{partial }{{{Delta _s}{q_s}}}frac{{bar Delta }}{{Delta t}}{varOmega _s} = frac{{{partial ^2}{varOmega _s}}}{{{Delta _k}{q_k}{Delta _s}{q_s}}}q_k^Delta + {left( {frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight)^sigma }frac{{partial {alpha _k}}}{{{Delta _s}{q_s}}}+ &qquad frac{{{partial ^2}{varOmega _s}}}{{{Delta _{n + k}}q_k^Delta {Delta _s}{q_s}}}{alpha _k} + frac{{{partial ^2}{varOmega _s}}}{{{Delta _{2n + 1}}t{Delta _s}{q_s}}} end{split}$$ | (14) |
$$ begin{split}& frac{partial }{{partial q_s^Delta }}frac{{bar Delta }}{{Delta t}}{varOmega _s} = frac{{{partial ^2}{varOmega _s}}}{{{Delta _k}{q_k}partial q_s^Delta }}q_k^Delta + frac{{partial {varOmega _s}}}{{{Delta _s}{q_s}}} + &qquad frac{{{partial ^2}{varOmega _s}}}{{{Delta _{n + k}}q_k^Delta partial q_s^Delta }}{alpha _k} + frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}frac{{partial {alpha _k}}}{{partial q_s^Delta }} + frac{{{partial ^2}{varOmega _s}}}{{{Delta _{2n + 1}}tpartial q_s^Delta }}end{split} $$ | (15) |
$$begin{split}& frac{partial }{{{Delta _{n + k}}q_k^Delta }}frac{{bar Delta }}{{Delta t}}{varOmega _s} = {left( {frac{{partial {varOmega _s}}}{{{Delta _k}{q_k}}}} ight)^sigma } + frac{{{partial ^2}{varOmega _s}}}{{{Delta _j}{q_j}{Delta _{n + k}}q_k^Delta }}q_j^Delta+ &qquad {left( {frac{{partial {varOmega _s}}}{{{Delta _{n + j}}q_j^Delta }}} ight)^sigma }frac{{partial {alpha _j}}}{{{Delta _{n + k}}q_k^Delta }} + frac{{{partial ^2}{varOmega _s}}}{{{Delta _{n + j}}q_j^Delta {Delta _{n + k}}q_k^Delta }}{alpha _j} + &qquad frac{{{partial ^2}{varOmega _s}}}{{{Delta _{2n + 1}}t{Delta _{n + k}}q_k^Delta }}end{split} $$ | (16) |
将式(8)两端对
$$begin{split}& frac{partial }{{partial q_s^Delta }}frac{{bar Delta }}{{Delta t}}frac{{bar Delta }}{{Delta t}}{varOmega _s} = frac{partial }{{partial q_s^Delta }}{left( {frac{{partial {varOmega _s}}}{{{Delta _k}{q_k}}}} ight)^sigma }{alpha _k} + {left( {frac{{partial {varOmega _s}}}{{{Delta _k}{q_k}}}} ight)^sigma }frac{{partial {alpha _k}}}{{partial q_s^Delta }} +&qquad frac{{bar Delta }}{{Delta t}}frac{{partial {varOmega _s}}}{{{Delta _s}{q_s}}} + frac{partial }{{partial q_s^Delta }}left( {frac{{bar Delta }}{{Delta t}}frac{{partial {varOmega _s}}}{{{Delta _k}{q_k}}}} ight)q_k^Delta + frac{partial }{{partial q_s^Delta }}{left( {frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight)^sigma }cdot &qquad left( {frac{{partial {alpha _k}}}{{{Delta _j}{q_j}}}q_j^Delta + frac{{partial {alpha _k}}}{{{Delta _{n + j}}q_j^Delta }}{alpha _j} + frac{{partial {alpha _k}}}{{{Delta _{2n + 1}}t}}} ight) + &qquad {left( {frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight)^sigma }left( {frac{{{partial ^2}{alpha _k}}}{{{Delta _j}{q_j}partial q_s^Delta }}q_j^Delta + frac{{partial {alpha _k}}}{{{Delta _s}{q_s}}}} ight. + &qquad left. { frac{{{partial ^2}{alpha _k}}}{{{Delta _{n + j}}q_j^Delta partial q_s^Delta }}{alpha _j} + frac{{partial {alpha _k}}}{{{Delta _{n + j}}q_j^Delta }}frac{{partial {alpha _j}}}{{partial q_s^Delta }} + frac{{{partial ^2}{alpha _k}}}{{{Delta _{2n + 1}}tpartial q_s^Delta }}} ight) + &qquad frac{partial }{{partial q_s^Delta }}left( {frac{{bar Delta }}{{Delta t}}frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight){alpha _k} + frac{{bar Delta }}{{Delta t}}frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}frac{{partial {alpha _k}}}{{partial q_s^Delta }} + &qquad frac{{{partial ^3}{varOmega _s}}}{{{Delta _{2n + 1}}t{Delta _k}{q_k}partial q_s^Delta }}q_k^Delta + frac{{{partial ^2}{varOmega _s}}}{{{Delta _{2n + 1}}t{Delta _s}{q_s}}} + &qquad frac{{{partial ^3}{varOmega _s}}}{{{Delta _{2n + 1}}t{Delta _{n + k}}q_k^Delta partial q_s^Delta }}{alpha _k} + frac{{{partial ^2}{varOmega _s}}}{{{Delta _{2n + 1}}t{Delta _{n + k}}q_k^Delta }}frac{{partial {alpha _k}}}{{partial q_s^Delta }} + &qquadfrac{{{partial ^3}{varOmega _s}}}{{{Delta _{2n + 1}}{t^2}partial q_s^Delta }} [-5pt]end{split}$$ | (17) |
将
$$ frac{{bar Delta }}{{Delta t}}frac{{partial {varOmega _s}}}{{partial {q_s}}} = frac{{{partial ^2}{varOmega _s}}}{{partial {q_s}{Delta _k}{q_k}}}q_k^Delta + frac{{{partial ^2}{varOmega _s}}}{{partial {q_s}{Delta _{n + k}}q_k^Delta }}{alpha _k} + frac{{{partial ^2}{varOmega _s}}}{{partial {q_s}{Delta _{2n + 1}}t}} $$ | (18) |
比较式(13)和式(18), 假设
$$ frac{{bar Delta }}{{Delta t}}frac{{partial {varOmega _s}}}{{partial {q_s}}} = frac{partial }{{partial {q_s}}}frac{{bar Delta }}{{Delta t}}{varOmega _s} - frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}frac{{partial {alpha _k}}}{{partial {q_s}}} $$ | (19) |
再将式(15)对时间
$$ begin{split} &frac{{bar Delta }}{{Delta t}}frac{partial }{{partial q_s^Delta }}frac{{bar Delta }}{{Delta t}}{varOmega _s} = {left( {frac{{{partial ^2}{varOmega _s}}}{{{Delta _k}{q_k}partial q_s^Delta }}} ight)^sigma }{alpha _k} + frac{{bar Delta }}{{Delta t}}frac{{{partial ^2}{varOmega _s}}}{{{Delta _k}{q_k}partial q_s^Delta }}q_k^Delta +&qquad frac{{bar Delta }}{{Delta t}}frac{{partial {varOmega _s}}}{{{Delta _s}{q_s}}} + frac{{bar Delta }}{{Delta t}}frac{{{partial ^2}{varOmega _s}}}{{{Delta _{n + k}}q_k^Delta partial q_s^Delta }}{alpha _k} + &qquad {left( {frac{{{partial ^2}{varOmega _s}}}{{{Delta _{n + k}}q_k^Delta partial q_s^Delta }}} ight)^sigma }left( {frac{{partial {alpha _k}}}{{{Delta _j}{q_j}}}q_j^Delta + frac{{partial {alpha _k}}}{{{Delta _{n + j}}q_j^Delta }}{alpha _j} + frac{{partial {alpha _k}}}{{{Delta _{2n + 1}}t}}} ight)+ &qquad {left( {frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight)^sigma }left( frac{{{partial ^2}{alpha _k}}}{{partial q_s^Delta {Delta _j}{q_j}}}q_j^Delta + frac{{{partial ^2}{alpha _k}}}{{partial q_s^Delta {Delta _{n + j}}q_j^Delta }}{alpha _j} + ight. &qquad left. frac{{{partial ^2}{alpha _k}}}{{partial q_s^Delta {Delta _{2n + 1}}t}} ight) + frac{{bar Delta }}{{Delta t}}frac{{{partial ^2}{varOmega _s}}}{{{Delta _{2n + 1}}tpartial q_s^Delta }} + frac{{bar Delta }}{{Delta t}}frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}frac{{partial {alpha _k}}}{{partial q_s^Delta }} end{split}$$ | (20) |
类似地, 比较式(17)和式(20), 并假设函数
$$begin{split}& frac{{bar Delta }}{{Delta t}}frac{partial }{{partial q_s^Delta }}frac{{bar Delta }}{{Delta t}}{varOmega _s} = frac{partial }{{partial q_s^Delta }}frac{{bar Delta }}{{Delta t}}frac{{bar Delta }}{{Delta t}}{varOmega _s} - frac{partial }{{{Delta _s}{q_s}}}frac{{bar Delta }}{{Delta t}}{varOmega _s}- &qquad left[ {frac{partial }{{partial q_s^Delta }}{{left( {frac{{partial {varOmega _s}}}{{{Delta _k}{q_k}}}} ight)}^sigma } - {{left( {frac{{{partial ^2}{varOmega _s}}}{{{Delta _k}{q_k}partial q_s^Delta }}} ight)}^sigma }} ight]{alpha _k} - &qquad frac{partial }{{{Delta _{n + k}}q_k^Delta }}frac{{bar Delta }}{{Delta t}}{varOmega _s}frac{{partial {alpha _k}}}{{partial q_s^Delta }}- &qquad left[ {frac{partial }{{partial q_s^Delta }}{{left( {frac{{partial {varOmega _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight)}^sigma } - {{left( {frac{{{partial ^2}{varOmega _s}}}{{{Delta _{n + k}}q_k^Delta partial q_s^Delta }}} ight)}^sigma }} ight]frac{{bar Delta }}{{Delta t}}{alpha _k} end{split}$$ | (21) |
式(19)和式(21)是时间尺度上Lagrange系统导数运算的两个重要关系式.
4.
时间尺度上Lie对称性
在时间尺度上引进无限小变换
$$ {t^*} = t , ;q_s^*left( {{t^*}} ight) = {q_s}left( t ight) + varepsilon {xi _s}left( {{q_k},q_k^Delta ,t} ight) $$ | (22) |
式中
ight)}}$
ight)}}$
ight)}}$
$$left. begin{split} & {X^{left( 0 ight)}} = {xi _s}frac{partial }{{partial {q_s}}} & {X^{left( 1 ight)}} = {X^{left( 0 ight)}} + frac{{bar Delta }}{{Delta t}}{xi _s}frac{partial }{{partial q_s^Delta }} & {X^{left( 2 ight)}} = {X^{left( 1 ight)}} + frac{{bar Delta }}{{Delta t}}frac{{bar Delta }}{{Delta t}}{xi _s}frac{partial }{{partial q_s^{Delta Delta }}} end{split} ight}$$ | (23) |
依据微分方程在单参数Lie变换群下的不变性, 可定义时间尺度上Lagrange系统的Lie对称性, 即
定义1. 对于时间尺度上Lagrange系统(5), 当且仅当
$$ {X^{left( 2 ight)}}left[ {q_s^{Delta Delta } - {alpha _s}left( {{q_k},q_k^Delta ,t} ight)} ight] = 0, ;{s = 1,2, cdots ,n} $$ | (24) |
则变换式(22)是Lie对称性的.
方程(24)可写为
$$ frac{{bar Delta }}{{Delta t}}frac{{bar Delta }}{{Delta t}}{xi _s} - {X^{left( 1 ight)}}left( {{alpha _s}} ight) = 0 $$ | (25) |
或
$$ frac{{bar Delta }}{{Delta t}}frac{{bar Delta }}{{Delta t}}{xi _s} - {xi _k}frac{{partial {alpha _s}}}{{partial {q_k}}} - frac{{bar Delta }}{{Delta t}}{xi _k}frac{{partial {alpha _s}}}{{partial q_k^Delta }} = 0 $$ | (26) |
称方程(25)或式(26)为时间尺度上Lie对称性确定方程.
5.
时间尺度上Lie对称性定理
由Lie对称性可直接导出时间尺度上一类新守恒量, 即有:
定理1. 对于时间尺度上Lagrange系统(5), 如果变换式(22)是Lie对称性的, 并假设所有函数对其变量的混合delta偏导数连续, 且存在函数
ight)$
$$ frac{{partial {alpha _s}}}{{partial q_s^Delta }} + frac{1}{psi }frac{{partial psi }}{{{Delta _s}{q_s}}}q_s^Delta = 0 $$ | (27) |
则该系统存在新的守恒量, 形如
$$ I = frac{1}{psi }frac{partial }{{partial {q_s}}}left( {psi {xi _s}} ight) + frac{1}{psi }frac{partial }{{partial q_s^Delta }}left( {psi frac{{bar Delta }}{{Delta t}}{xi _s}} ight) + varXi $$ | (28) |
其中
$$ begin{split}& varXi = int_{{t_1}}^t {Biggl{{18} {left( {dfrac{partial }{{{Delta _s}{q_s}}} - dfrac{partial }{{partial {q_s}}}} ight)dfrac{{bar Delta }}{{Delta t}}{xi _s} + left( {dfrac{{partial {xi _s}}}{{{Delta _{n + k}}q_k^Delta }} - dfrac{{partial {xi _s}}}{{partial q_k^Delta }}} ight)dfrac{{partial {alpha _k}}}{{partial {q_s}}}} } + &qquad left( {dfrac{partial }{{{Delta _{n + k}}q_k^Delta }} - dfrac{partial }{{partial q_k^Delta }}} ight)dfrac{{bar Delta }}{{Delta t}}{xi _s}dfrac{{partial {alpha _k}}}{{partial q_s^Delta }} + &qquad left[ {dfrac{partial }{{partial q_s^Delta }}{{left( {dfrac{{partial {xi _s}}}{{{Delta _k}{q_k}}}} ight)}^sigma } - {{left( {dfrac{{{partial ^2}{xi _s}}}{{{Delta _k}{q_k}partial q_s^Delta }}} ight)}^sigma }} ight]{alpha _k} + &qquad left[ {dfrac{partial }{{partial q_s^Delta }}{{left( {dfrac{{partial {xi _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight)}^sigma } - {{left( {dfrac{{{partial ^2}{xi _s}}}{{{Delta _{n + k}}q_k^Delta partial q_s^Delta }}} ight)}^sigma }} ight]dfrac{{bar Delta }}{{Delta t}}{alpha _k} + &qquad left[ {dfrac{1}{psi }dfrac{{partial psi }}{{{Delta _s}{q_s}}} - {{left( {dfrac{1}{psi }dfrac{{partial psi }}{{partial {q_s}}}} ight)}^sigma }} ight]dfrac{{bar Delta }}{{Delta t}}{xi _s} + &qquad { left[ {{X^{left( 1 ight)}}left( {dfrac{1}{psi }dfrac{{partial psi }}{{{Delta _s}{q_s}}}} ight) - {xi _k}dfrac{partial }{{{Delta _s}{q_s}}}left( {dfrac{1}{psi }dfrac{{partial psi }}{{partial {q_k}}}} ight)} ight]q_s^Delta } Bigggr}{18}Delta tau end{split}$$ | (29) |
证明: 将式(28)按方程(6)对时间
$$begin{split} &frac{{bar Delta }}{{Delta t}}I = frac{{bar Delta }}{{Delta t}}left[ {frac{1}{psi }frac{partial }{{partial {q_s}}}left( {psi {xi _s}} ight) + frac{1}{psi }frac{partial }{{partial q_s^Delta }}left( {psi frac{{bar Delta }}{{Delta t}}{xi _s}} ight)} ight]+ &qquad left( {frac{partial }{{{Delta _s}{q_s}}} - frac{partial }{{partial {q_s}}}} ight)frac{{bar Delta }}{{Delta t}}{xi _s} + left( {frac{{partial {xi _s}}}{{{Delta _{n + k}}q_k^Delta }} - frac{{partial {xi _s}}}{{partial q_k^Delta }}} ight)frac{{partial {alpha _k}}}{{partial {q_s}}}+ &qquad left( {frac{partial }{{{Delta _{n + k}}q_k^Delta }} - frac{partial }{{partial q_k^Delta }}} ight)frac{{bar Delta }}{{Delta t}}{xi _s}frac{{partial {alpha _k}}}{{partial q_s^Delta }}+ &qquad left[ {frac{partial }{{partial q_s^Delta }}{{left( {frac{{partial {xi _s}}}{{{Delta _k}{q_k}}}} ight)}^sigma } - {{left( {frac{{{partial ^2}{xi _s}}}{{{Delta _k}{q_k}partial q_s^Delta }}} ight)}^sigma }} ight]{alpha _k} + &qquad left[ {frac{partial }{{partial q_s^Delta }}{{left( {frac{{partial {xi _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight)}^sigma } - {{left( {frac{{{partial ^2}{xi _s}}}{{{Delta _{n + k}}q_k^Delta partial q_s^Delta }}} ight)}^sigma }} ight]frac{{bar Delta }}{{Delta t}}{alpha _k} + &qquad left[ {frac{1}{psi }frac{{partial psi }}{{{Delta _s}{q_s}}} - {{left( {frac{1}{psi }frac{{partial psi }}{{partial {q_s}}}} ight)}^sigma }} ight]frac{{bar Delta }}{{Delta t}}{xi _s}+ &qquad left[ {{X^{left( 1 ight)}}left( {frac{1}{psi }frac{{partial psi }}{{{Delta _s}{q_s}}}} ight) - {xi _k}frac{partial }{{{Delta _s}{q_s}}}left( {frac{1}{psi }frac{{partial psi }}{{partial {q_k}}}} ight)} ight]q_s^Deltaend{split} $$ | (30) |
根据假设, 所有函数对其变量的混合delta偏导数连续, 因此函数
$$ frac{{bar Delta }}{{Delta t}}frac{{partial {xi _s}}}{{partial {q_s}}} = frac{partial }{{partial {q_s}}}frac{{bar Delta }}{{Delta t}}{xi _s} - frac{{partial {xi _s}}}{{{Delta _{n + k}}q_k^Delta }}frac{{partial {alpha _k}}}{{partial {q_s}}} $$ | (31) |
$$begin{split}& frac{{bar Delta }}{{Delta t}}frac{partial }{{partial q_s^Delta }}frac{{bar Delta }}{{Delta t}}{xi _s} = frac{partial }{{partial q_s^Delta }}frac{{bar Delta }}{{Delta t}}frac{{bar Delta }}{{Delta t}}{xi _s} - frac{partial }{{{Delta _s}{q_s}}}frac{{bar Delta }}{{Delta t}}{xi _s}- &qquad left[ {frac{partial }{{partial q_s^Delta }}{{left( {frac{{partial {xi _s}}}{{{Delta _k}{q_k}}}} ight)}^sigma } - {{left( {frac{{{partial ^2}{xi _s}}}{{{Delta _k}{q_k}partial q_s^Delta }}} ight)}^sigma }} ight]{alpha _k} - &qquad left[ {frac{partial }{{partial q_s^Delta }}{{left( {frac{{partial {xi _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight)}^sigma } - {{left( {frac{{{partial ^2}{xi _s}}}{{{Delta _{n + k}}q_k^Delta partial q_s^Delta }}} ight)}^sigma }} ight]frac{{bar Delta }}{{Delta t}}{alpha _k} - &qquad frac{partial }{{{Delta _{n + k}}q_k^Delta }}frac{{bar Delta {xi _s}}}{{Delta t}}frac{{partial {alpha _k}}}{{partial q_s^Delta }} end{split}$$ | (32) |
注意到
ight)$
$$ frac{Delta }{{Delta t}}left( {frac{1}{psi }frac{{partial psi }}{{partial {q_s}}}} ight){xi _s} = frac{partial }{{{Delta _k}{q_k}}}left( {frac{1}{psi }frac{{partial psi }}{{partial {q_s}}}} ight)q_k^Delta {xi _s} $$ | (33) |
将式(31) ~ 式(33)代入式(30), 得到
$$ begin{split} frac{{bar Delta }}{{Delta t}}I = frac{partial }{{partial q_s^Delta }}left( {frac{{bar Delta }}{{Delta t}}frac{{bar Delta }}{{Delta t}}{xi _s} - {X^{left( 1 ight)}}left( {{alpha _s}} ight)} ight) + {X^{left( 1 ight)}}left( {frac{{partial {alpha _s}}}{{partial q_s^Delta }} + frac{1}{psi }frac{{partial psi }}{{{Delta _s}{q_s}}}q_s^Delta } ight)end{split} $$ | (34) |
将确定方程(25)和式(27)代入上式, 有
$$ frac{{bar Delta }}{{Delta t}}I = 0 $$ | (35) |
因此, 式(28)是该系统的守恒量. 证毕.
定理1可称为时间尺度上Lagrange系统的Lie对称性定理. 式(28)可称为时间尺度上Hojman守恒量, 它是由Lie对称性直接导致的.
对于任意时间尺度, 守恒量(28)中函数
$$ left. begin{split}& frac{partial }{{{Delta _s}{q_s}}}frac{{bar Delta }}{{Delta t}}{xi _s} = frac{partial }{{partial {q_s}}}frac{{bar Delta }}{{Delta t}}{xi _s} & frac{partial }{{{Delta _{n + k}}q_k^Delta }}frac{{bar Delta }}{{Delta t}}{xi _s} =frac{partial }{{partial q_k^Delta }}frac{{bar Delta }}{{Delta t}}{xi _s} & frac{{partial {xi _s}}}{{{Delta _{n + k}}q_k^Delta }} = frac{{partial {xi _s}}}{{partial q_k^Delta }} & frac{partial }{{partial q_s^Delta }}{left( {frac{{partial {xi _s}}}{{{Delta _k}{q_k}}}} ight)^sigma } ={left( {frac{{{partial ^2}{xi _s}}}{{{Delta _k}{q_k}partial q_s^Delta }}} ight)^sigma } & frac{partial }{{partial q_s^Delta }}{left( {frac{{partial {xi _s}}}{{{Delta _{n + k}}q_k^Delta }}} ight)^sigma } = {left( {frac{{{partial ^2}{xi _s}}}{{{Delta _{n + k}}q_k^Delta partial q_s^Delta }}} ight)^sigma } & frac{1}{psi }frac{{partial psi }}{{{Delta _s}{q_s}}} = {left( {frac{1}{psi }frac{{partial psi }}{{partial {q_s}}}} ight)^sigma } & {X^{left( 1 ight)}}left( {frac{1}{psi }frac{{partial psi }}{{{Delta _s}{q_s}}}} ight) = {xi _k}frac{partial }{{{Delta _s}{q_s}}}left( {frac{1}{psi }frac{{partial psi }}{{partial {q_k}}}} ight) end{split} ight}$$ | (36) |
因此
定理2. 对于经典Lagrange系统, 如果无限小变换(22)是Lie对称性的, 且存在函数
ight)$
$$ frac{{partial {alpha _s}}}{{partial {{dot q}_s}}} + frac{{{bar{text{d}}}}}{{{text{d}}t}}ln psi = 0 $$ | (37) |
则
$$ I = frac{1}{psi }frac{partial }{{partial {q_s}}}left( {psi {xi _s}} ight) + frac{1}{psi }frac{partial }{{partial {{dot q}_s}}}left( {psi frac{{{bar{text{d}}}}}{{{text{d}}t}}{xi _s}} ight) = {text{const}}. $$ | (38) |
是该系统的守恒量.
定理2与文献[30]的结果一致.
6.
算例
例. 设时间尺度为
ight}$
$$ L = frac{1}{2}left[ {{{left( {q_1^Delta } ight)}^2} + {{left( {q_2^Delta } ight)}^2}} ight] - {q_2}t - {q_1} $$ | (39) |
试研究该系统的Lie对称性, 并求出对应的Hojman守恒量.
时间尺度上Lagrange方程(5)给出
$$ left. begin{array}{l}dfrac{nabla }{{nabla t}}q_1^Delta + {sigma ^nabla } = 0dfrac{nabla }{{nabla t}}q_2^Delta + {sigma ^nabla }t = 0end{array} ight} $$ | (40) |
注意到, 对于时间尺度上任意函数
ight)$
$$left. begin{split} & dfrac{nabla }{{nabla t}}{u^sigma }left( t ight) = {sigma ^nabla }{u^Delta }left( t ight) & {sigma ^nabla }{u^{Delta ho Delta }}left( t ight) = {u^{Delta Delta ho }}left( t ight) & {sigma ^{nabla sigma }}left( t ight) = {sigma ^Delta }left( t ight) end{split} ight}$$ | (41) |
因此, 方程(40)可解出
$$left. begin{array}{l}q_1^{Delta Delta } = - {sigma ^Delta }left( t ight) = {alpha _1}q_2^{Delta Delta } = - {sigma ^Delta }left( t ight)sigma left( t ight) = {alpha _2}end{array} ight} $$ | (42) |
确定方程(25)给出
$$ left. begin{array}{l}dfrac{{bar Delta }}{{Delta t}}dfrac{{bar Delta }}{{Delta t}}{xi _1} = 0dfrac{{bar Delta }}{{Delta t}}dfrac{{bar Delta }}{{Delta t}}{xi _2} = 0end{array} ight} $$ | (43) |
由于
ight) = 2t$
ight) = t$
$$ left. begin{array}{l}{xi _1} = left[ {{{left( {q_1^Delta } ight)}^2} - 4{t^2}} ight]left( {q_2^Delta + dfrac{4}{3}{t^2}} ight){xi _2} = 1end{array} ight} $$ | (44) |
$$ left. begin{array}{l}{xi _1} = 1{xi _2} = left( {{q_2} + dfrac{4}{{21}}{t^3}} ight)left( {q_1^Delta + 2t} ight)end{array} ight} $$ | (45) |
与生成元式(44)和式(45)相应的变换是Lie对称的. 方程(27)给出
$$ frac{1}{psi }frac{{partial psi }}{{{Delta _1}{q_1}}}q_1^Delta + frac{1}{psi }frac{{partial psi }}{{{Delta _2}{q_2}}}q_2^Delta = 0 $$ | (46) |
方程(46)有解
$$ psi = 1 $$ | (47) |
根据定理1, 由式(44), 式(45)和式(47), 得到
$$ {I_1} = - frac{4}{t}left[ {{q_2}left( {2t} ight) - {q_2}left( t ight)} ight] - frac{{16}}{3}{t^2} = {text{const}}. $$ | (48) |
$$ {I_2} = frac{2}{t}left[ {{q_1}left( {2t} ight) - {q_1}left( t ight)} ight] + 4t = {text{const}}. $$ | (49) |
这是时间尺度上Lie对称性式(44)和式(45)导致的Hojman守恒量. 如果取初始条件为
ight) = 1 $
ight) = 0 $
ight) = 2 $
ight) = 1 $
onerror="this.onerror=null;this.src='https://lxxb.cstam.org.cn/fileLXXB/journal/article/lxxb/2021/10//lxxb2021-413-1.jpg'"
class="figure_img
figure_type1 bbb " id="Figure1" />
图
1
时间尺度
Figure
1.
Simulations of
下载:
全尺寸图片
幻灯片
表
1
时间尺度
Table
1.
The values of
table_type1 ">
$ {mathbb{T}}/{ m{s}} $ | $ {q_1}/{ m{m}} $ | $ {q_2}/{ m{m}} $ | $ {I_1} $ | $ {I_2} $ |
1 | 1 | 0 | ?9.33 | 6 |
2 | 2 | 1 | ?9.33 | 6 |
4 | 0 | ?5 | ?9.33 | 6 |
8 | ?20 | ?81 | ?9.33 | 6 |
16 | ?124 | ?745 | ?9.33 | 6 |
32 | ?588 | ?6169 | ?9.33 | 6 |
64 | ?2540 | ?49785 | ?9.33 | 6 |
下载:
导出CSV
|显示表格
从图1和表1可以看出, 在时间尺度
如取
ight) = t + h$
ight) = h$
$$ left. begin{array}{l}{xi _1} = left[ {{{left( {q_1^Delta } ight)}^2} - {t^2}} ight]left( {q_2^Delta + dfrac{1}{2}{t^2} + dfrac{1}{2}ht} ight){xi _2} = 1end{array} ight}$$ | (50) |
$$left. begin{array}{l}{xi _1} = 1{xi _2} = left( {{q_2} + dfrac{1}{6}{t^3}} ight)left( {q_1^Delta + t} ight)end{array} ight} $$ | (51) |
守恒量式(48)和式(49)成为
$$ {I_1} = - frac{2}{h}left[ {{q_2}left( {t + h} ight) - {q_2}left( t ight)} ight] - tleft( {t + h} ight) = {text{const}}. $$ | (52) |
$$ {I_2} = frac{2}{h}left[ {{q_1}left( {t + h} ight) - {q_1}left( t ight)} ight] + 2t = {text{const}}. $$ | (53) |
仍取上述初始条件, 令
onerror="this.onerror=null;this.src='https://lxxb.cstam.org.cn/fileLXXB/journal/article/lxxb/2021/10//lxxb2021-413-2.jpg'"
class="figure_img
figure_type1 bbb " id="Figure2" />
图
2
时间尺度
Figure
2.
Simulations of
下载:
全尺寸图片
幻灯片
表
2
时间尺度
Table
2.
The values of
table_type1 ">
$ {mathbb{T}}/{ m{s}} $ | $ {q_1} /{ m{m}}$ | $ {q_2}/{ m{m}} $ | $ {I_1} $ | $ {I_2} $ |
1 | 1 | 0 | ?4 | 4 |
2 | 2 | 1 | ?4 | 4 |
3 | 2 | 0 | ?4 | 4 |
4 | 1 | ?4 | ?4 | 4 |
5 | ?1 | ?12 | ?4 | 4 |
6 | ?4 | ?25 | ?4 | 4 |
7 | ?8 | ?44 | ?4 | 4 |
8 | ?13 | ?70 | ?4 | 4 |
9 | ?19 | ?104 | ?4 | 4 |
10 | ?26 | ?147 | ?4 | 4 |
下载:
导出CSV
|显示表格
这里只取了
ight] $
若取
ight) = t$
ight) = 0$
$$ left. begin{array}{l}{xi _1} = left( {dot q_1^2 - {t^2}} ight)left( {{{dot q}_2} + dfrac{1}{2}{t^2}} ight){xi _2} = 1end{array} ight}$$ | (54) |
$$ left. begin{array}{l}{xi _1} = 1{xi _2} = left( {{q_2} + dfrac{1}{6}{t^3}} ight)left( {{{dot q}_1} + t} ight)end{array} ight} $$ | (55) |
守恒量式(48)和式(49)成为
$$ {I_1} = - 2left( {{{dot q}_2} + frac{1}{2}{t^2}} ight) = {text{const}}. $$ | (56) |
$$ {I_2} = 2left( {{{dot q}_1} + t} ight) = {text{const}}. $$ | (57) |
这是经典情形的Hojman守恒量.
7.
结 论
本文将Lie对称性方法拓展到时间尺度上Lagrange系统, 给出了时间尺度上Hojman守恒量. 主要贡献在于: 一是利用时间尺度微积分的基本性质导出了时间尺度上Lagrange系统导数运算的两个重要关系式. 这是推导Hojman守恒量的基础; 二是由Lie对称性直接推导得到了时间尺度上Lagrange系统的Hojman类型的守恒量. 该守恒量不依赖于Lagrange函数的结构而仅取决于Lie对称性变换的生成元. 文中以时间尺度上两自由度系统为例, 给出了