Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin
TIAN Jing,, GUO Shenglian,, LIU Dedi, CHEN Qihui, WANG Qiang, YIN Jiabo, WU Xushu, HE ShaokunState Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China通讯作者:
收稿日期:2019-05-9修回日期:2020-08-25网络出版日期:2020-11-25
基金资助: |
Received:2019-05-9Revised:2020-08-25Online:2020-11-25
Fund supported: |
作者简介 About authors
田晶(1994-), 女, 河南驻马店人, 博士, 主要从事水文水资源研究。E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (3823KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
田晶, 郭生练, 刘德地, 陈启会, 王强, 尹家波, 吴旭树, 何绍坤. 气候与土地利用变化对汉江流域径流的影响. 地理学报[J], 2020, 75(11): 2307-2318 doi:10.11821/dlxb202011003
TIAN Jing, GUO Shenglian, LIU Dedi, CHEN Qihui, WANG Qiang, YIN Jiabo, WU Xushu, HE Shaokun.
1 引言
全球气候变化和人类活动造成的土地利用/覆被变化(Land Use/Cover Change, LUCC)是影响产汇流机制的两大主要因素[1]。全球气候变暖造成大气边界层容纳水汽的能力增强,使得全球许多地区的极端降水强度显著增加,同时改变了这些地区的水文循环速率和径流形成过程[2]。此外,剧烈的人类活动(如水利工程的修建、城市化进程和森林砍伐等)改变了流域下垫面条件和水资源在时空尺度上的分配过程,对流域土壤湿度、蒸散发和流域产汇流过程造成了显著影响[3]。对于全球的大部分流域,气候变化和LUCC共同的趋势将在未来50~100 a内继续发挥重要作用[4],且气候变化和LUCC叠加对径流的影响在不同流域存在较大差异。因此,模拟和预测未来气候和LUCC情景,开展流域径流时空分布和变化规律的研究,对流域水资源规划管理具有重要意义。国内外****为了分析流域径流对全球气候变化和LUCC的响应,相继开展了诸多研究。其研究方法主要包括对比流域试验法、统计分析法和模型模拟法等[5,6,7]。在这些方法中,分布式水文模型模拟法由于综合考虑了流域的空间异质性和水文物理过程,得到了广泛应用[8]。例如,陈启会等[8]基于未来气候情景和历史LUCC情景,建立了金沙江流域的SWAT模型,研究了径流对气候变化和土地利用变化的响应。Chawla等[9]利用VIC模型区分了土地利用和未来气候变化对Ganga流域径流的影响,结果表明径流主要受气候变化的影响,在不同的土地利用类型中,径流对城市和耕地面积的变化较为敏感。然而,目前评估未来径流响应的研究一般基于历史观测的LUCC资料,仅考虑未来气候变化对水文过程的影响[10,11],忽略了未来LUCC对径流的影响。
因此,本文的研究目的是在同时考虑未来情景的气候和LUCC特征的基础上,分析二者对未来径流形成的影响。首先采用降尺度模型,在BCC-CSM1.1和BNU-ESM两种气候模式下,对RCP 4.5和RCP 8.5浓度路径下流域未来降水和气温进行模拟预测和日尺度校正,然后利用CA-Markov(Cellular Automaton-Markov)模型模拟未来LUCC的可能响应情景。最后应用SWAT模型分别模拟不同情景下的径流过程,进而定量分析流域内未来气候变化和LUCC对径流的影响,为两者共同作用下的径流响应研究提供更合理的解释和分析,为气候变化和土地利用变化背景下的流域水资源管理提供依据。
2 研究区域与数据
汉江是长江中游最大的支流,流域面积约15.9万km2。汉江流域处于东亚副热带季风区,冬季受欧亚大陆冷高压影响,夏季受西太平洋副热带高压影响,气候具有明显的季节性。流域内多年平均气温12~16 ℃,年降水量总的趋势是自东南、西南向西北递减,全区域变化在800~1300 mm之间,径流深在300~900 mm之间。流域内LUCC的空间分布具有明显的地形和地域差异性,主要类型有林地、耕地和草地,其次是建设用地、水域和裸地。本文所用的DEM数据来源于美国USGS网站,分辨率为90 m×90 m;历史情景的LUCC数据来源于中国科学院资源环境科学数据中心,分辨率为1 km×1 km。参考国土资源部制定的土地资源遥感调查分类规范,将流域的土地利用进行重分类为以下6类:耕地、林地、草地、水域、建设用地和裸地。土壤数据来源于联合国粮农组织(FAO)的土壤数据,分辨率为1 km×1 km;气象数据来源于中国国家气象局,选取了汉江流域25个国家气象站点(图1)1961—2017年所测得的逐日气象数据资料(包括降水量、最低最高气温、太阳辐射、相对湿度、相对风速);实测径流数据来源于长江委水文局,选取汉江干流安康、白河、丹江口和皇庄4个水文站作为干流主要测站(图1)。
图1
新窗口打开|下载原图ZIP|生成PPT图1汉江流域水系及站点分布
Fig. 1Distribution of water systems and stations in Hanjiang River basin
3 研究方法
本文采用“If-then-what”研究方法,通过构建“未来气候和LUCC情景—驱动水文模型—分析水文响应”的框架来进行未来气候变化和LUCC下的径流响应分析(图2)。图2
新窗口打开|下载原图ZIP|生成PPT图2研究框架示意图
Fig. 2Framework of the proposed methodology
3.1 DBC降尺度模型
由于GCM模式特点为大尺度、低分辨率,其输出结果与区域尺度的实测信息之间存在偏差,故采用降尺度方法建立气候模式与流域水文模型的耦合机制[12]。采用陈杰等[13]提出的DBC降尺度模型来对GCM预测的未来降水、气温进行校正。该方法假定未来和历史气候事件在各分位数上具有相同的偏差,是将分位数映射方法和LOCI(Local Intensity Scaling)相结合的偏差校正方法,在国内外多个流域得到应用[14]。首先,基于LOCI方法校正降水的发生概率,以0.1 mm作为实测降水的发生阈值,依据实测日降水在不同月份的发生频率确定模拟系列各月份的降水阈值,使实测和模拟系列的降水发生频率一致。然后,基于分位数映射法计算实测日降水(气温)和历史期模拟系列在各月份频率分布函数的系统偏差,并推求各分位数对应的校正系数,最后将该系数用于校正长系列的模拟气象数据,具体如下:式中:
3.2 CA-Markov模型
CA-Markov模型充分结合了CA(Celluar Automata)模型的空间动态模拟能力以及Markov模型长期预测的优势,可以很好地从时间和空间上模拟土地利用的变化情况,目前被广泛探讨和应用[15,16]。本文运用CA-Markov模型的具体步骤为:(1)首先分别叠加湖北、河南、陕西省实测的LUCC 2000和LUCC 2010,得到转移概率矩阵和转移面积矩阵。其次,根据3省《土地利用总体规划(2006—2020年)》中2020年规划的各类土地利用类型面积,对2000—2010年的转移概率和面积矩阵进行修改。
(2)考虑到流域实际地形地貌条件和城镇地区发展等因素,通过输入高程、坡度、距离城市、乡村及交通线的数据信息,对不同LUCC类型的转化进行约束和限制,得到不同LUCC类型的适宜性图集。
(3)基于实测的LUCC 2010、修改的转移概率和面积矩阵、各LUCC类型转移的适宜性图集,采用5×5的CA滤波器(一个元胞周围5 km×5 km范围内的矩形空间对该元胞状态改变有显著影响),循环10次,依次模拟得到湖北、陕西、河南省的LUCC 2020。CA-Markov模型模拟的2030—2050年土地利用将保持2010—2020年的变化趋势。
(4)将3省未来同时期的土地合并后,裁剪出汉江流域2020—2050年的LUCC。
Kappa系数能从整体上检验模拟的图像结果与观测的图像数据的一致性程度,广泛应用于土地利用变化模拟精度检验,遥感影像解译精度评价等研究[17],其计算公式如下:
式中:P0为正确模拟的栅格比例;Pc为随机情况下正确模拟的栅格比例;1代表理想状况下正确模拟的栅格比例。Kappa < 0.4时,表明两个图像相似程度较低;0.4 ≤ Kappa ≤ 0.75时,2个图像相似程度一般;Kappa > 0.75时两个图像具有显著的一致性,模拟效果好。
3.3 SWAT模型
SWAT模型是由美国农业部农业研究中心(USDA-ARS)开发的分布式流域水文模型,它首先根据流域的地形因子、河网分布等特征,将整个研究流域划分为若干子流域。在此基础上,进一步按流域的土地利用类型、土壤类型和坡度面积阈值划分水文响应单元HRUs并单独计算产流量,最后通过河道汇流演算求得出口断面的总径流量[18]。采用SWAT-CUP的SUFI-2算法,以1980—1993年为率定期、1994—2000年为检验期以检验SWAT模型的适用性。选取纳什效率系数(NSE)和水量相对误差(RE)作为评价指标对流域内干流水文站的月径流量进行率定。
3.4 情景设置
为分析未来40 a径流对气候变化与LUCC的响应情况,基于基准情景S0(1966—2005年的气象数据和现状LUCC 2010),设置以下3种未来气候与土地利用组合的情景:S1:仅气候变化情景(未来2021—2060年的气象数据和现状LUCC 2010);
S2:仅LUCC情景(基准期1966—2005年的气象数据分别和未来LUCC 2020、LUCC 2030、LUCC 2040和LUCC 2050);
S3:气候变化和LUCC共同影响情景(未来2021—2030年、2031—2040年、2041—2050年和2051—2060年的气象数据分别和对应时期的LUCC 2020、LUCC 2030、LUCC 2040和LUCC 2050)。
最终通过模拟结果的对比,可定量分析气候或土地利用改变对径流的影响。
4 结果分析和讨论
4.1 未来降水气温预测
4.1.1 DBC降尺度模型适用性分析 取1961—1990年为模型率定期,1991—2005年为检验期,图3a~3f和图4a~4f展示了2种气候模式下降尺度前与降尺度后各气象站在检验期的降水、气温模拟效果对比图,方格的值分别表示日降水和气温模拟系列相对于实测系列的相对误差与绝对误差,X轴均代表25个气象站,Y轴分别代表6个评价指标:① 均值;② 均方差;③ 50%分位数;④ 75%分位数;⑤ 90%分位数;⑥ 95%分位数。由图3和图4可知,相较于实测系列,降尺度前模拟降水系列的均值偏高、均方差偏低,50%、75%、90%分位数偏高,95%分位数偏低,存在高估降水均值、低估降水极值的缺陷。降尺度后,降水系列各评价指标的相对误差减少到15%以内,气温系列各指标的绝对误差均在1.5 ℃以内,说明该模型对汉江流域的日降水、最低和最高气温的模拟效果良好。图3
新窗口打开|下载原图ZIP|生成PPT图3BCC-CSM1.1气候模式下汉江流域日降水和气温模拟效果评价
Fig. 3Evaluation of precipitation and temperature simulation results in the Hanjiang River basin under BCC-CSM1.1
图4
新窗口打开|下载原图ZIP|生成PPT图4BNU-ESM气候模式下汉江流域日降水和气温模拟效果评价
Fig. 4Evaluation of precipitation and temperature simulation results in the Hanjiang River basin under BNU-ESM
为分析DBC模型对汉江流域各站点各月降水发生概率的模拟效果,图3g~3h和图4g~4h统计了2种气候模式下降尺度前与降尺度后各气象站点1—12月的湿日百分比对比效果。图中方格的值表示GCM模拟降水系列的湿日百分比相对于实测系列的偏差。可知,降尺度前,25个站点模拟降水系列的各月湿日百分比均显著偏高(+55%),高估了降水发生频率;降尺度后,25个站点模拟降水系列的各月湿日百分比与实测系列均非常接近,所有站点的偏差基本均在±15%以内,说明该模型对汉江流域各月降水发生频率的模拟效果很好。
4.1.2 未来降水和气温 将DBC降尺度模型应用到2种GCM未来输出序列,预估得到RCP 4.5和RCP 8.5代表性浓度路径下汉江流域的未来降水、气温变化情况,统计得到2种模式下多年均值变化情况的集合平均结果(表1)。汉江流域未来时期年降水量、日最高和最低气温相较于基准期均呈现增加趋势,在RCP 4.5和RCP 8.5浓度路径下,将分别增加33.6 mm(+4.0%)、1.8 ℃、1.6 ℃和31.5 mm(+3.7%)、2.5 ℃、2.3 ℃。
Tab. 1
表1
表1未来降水和气温均值变化情况
Tab. 1
全流域 | 基准期 | 未来(2021—2060年) | ||||
---|---|---|---|---|---|---|
(1966—2005年) | RCP 4.5 | RCP 8.5 | ||||
均值 | 均值 | 变化量Δ | 均值 | 变化量Δ | ||
降水(mm) | 849.4 | 883.0 | +33.6 | 880.9 | +31.5 | |
最高气温(℃) | 20.3 | 22.1 | +1.8 | 22.8 | +2.5 | |
最低气温(℃) | 10.5 | 12.1 | +1.6 | 12.8 | +2.3 |
新窗口打开|下载CSV
从年内变化情况来看(图5):RCP 4.5浓度路径下,未来时期月均降水量基本呈增加趋势(7月和10月除外);RCP 8.5浓度路径下,未来枯水期降水大致呈现增加趋势(11月除外),汛期后段(9—10月)呈现减少趋势。日最高、最低气温在2种浓度路径下的年内变化情况一致,均为在春季的增加幅度最小,夏季最大。
图5
新窗口打开|下载原图ZIP|生成PPT图5未来降水和气温年内变化过程
Fig. 5Changes of precipitation and temperature in different months in the future
4.2 未来LUCC预测
4.2.1 CA-Markov模型适用性分析 为了评价CA-Markov模型的适用性,首先将实测的LUCC 1990和LUCC 2000输入到CA-Markov模型中进行叠加分析,获得汉江流域LUCC 1990与LUCC 2000的转移概率矩阵。其次,考虑到流域实际地形地貌条件和城镇地区发展等因素,通过输入高程、坡度、距离城市、乡村及交通线的数据信息,对不同LUCC类型的转化进行约束和限制,得到不同LUCC类型的适宜性图集。最后,基于实测的LUCC 2000、转移概率矩阵和适宜性图集,通过CA-Markov模型模拟得到的汉江流域LUCC 2010如图6b所示。运用模型中的Crosstab模块,比较汉江流域实测的LUCC 2010与模拟的LUCC 2010,得到Kappa系数为0.9(>0.75),表明CA-Markov模型的模拟效果较好,可用于预测汉江流域未来的LUCC情景。图6
新窗口打开|下载原图ZIP|生成PPT图6汉江流域实测LUCC 2010和模拟LUCC 2010、LUCC 2020及LUCC 2050
Fig. 6Measured and simulated LUCC 2010, simulated LUCC 2020 and simulated LUCC 2050 of Hanjiang River basin
4.2.2 未来LUCC情景 汉江流域实测的LUCC 2010及模拟得到的LUCC 2010、LUCC 2020和LUCC 2050分别如图6所示。对比图6c与图6b,可以看出红色代表的建设用地和绿色代表的林地均明显增多;对比图6d与6c,发现红色代表的建设用地和绿色代表的林地又进一步增多。这是由于CA-Markov模型模拟的2030—2050年土地利用保持了2010—2020年的土地利用变化趋势。为了便于分析,表2列出各年各LUCC类型的面积占比。2010—2050年汉江流域内的林地和建设用地将分别增加2.8%、1.2%;耕地和草地面积将分别减少1.5%和2.5%;水域和裸地基本无变化。
Tab. 2
表2
表2汉江流域未来土地利用类型面积占比(%)
Tab. 2
土地类型 | 历史情景 | 未来情景 | |||
---|---|---|---|---|---|
2010 | 2020 | 2030 | 2040 | 2050 | |
耕地 | 35.2 | 34.5 | 34.2 | 33.9 | 33.7 |
林地 | 40.0 | 41.0 | 41.4 | 42.0 | 42.8 |
草地 | 19.2 | 18.6 | 18.3 | 17.7 | 16.7 |
水域 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 |
建设用地 | 2.7 | 3.0 | 3.2 | 3.5 | 3.9 |
裸地 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
新窗口打开|下载CSV
4.3 未来径流响应分析
4.3.1 SWAT模型适用性分析 率定期与检验期内4个水文站的模拟结果如表3所示。各水文站在率定期的NSE均大于0.8,RE均在15%以内。由于剧烈的人类活动(水库、取用水等)影响,自然流域水文循环过程受到破坏,即使采用多站率定的方法来应对流域的空间异质性问题,也难以把所有站的径流都模拟的很好(如皇庄站的检验期);尽管如此,各控制站在率定期和检验期模拟的平均NSE和RE的绝对值分别为0.89、4.1%和0.76、7.9%,说明SWAT模型在汉江流域的模拟结果较好。Tab. 3
表3
表3SWAT模型率定和检验结果
Tab. 3
序号 | 水文站 | 率定期(1980—1993年) | 检验期(1994—2000年) | ||
---|---|---|---|---|---|
NSE | RE(%) | NSE | RE(%) | ||
1 | 安康 | 0.93 | 2.4 | 0.83 | 8.1 |
2 | 白河 | 0.93 | -0.3 | 0.78 | -1.9 |
3 | 丹江口 | 0.87 | 12.1 | 0.75 | 14.5 |
4 | 皇庄 | 0.82 | -1.4 | 0.66 | 7.1 |
平均绝对值 | 0.89 | 4.1 | 0.76 | 7.9 |
新窗口打开|下载CSV
4.3.2 未来气候变化下的径流响应 汉江流域出口2021—2060年平均径流的变化情况如图7所示,可以看出:① 未来40 a内,在RCP 4.5浓度路径下,径流在2037年最大、2026年最小;在RCP 8.5浓度路径下,径流在2052年最大、2025年最小;② 各个时期径流量的变化趋势与降水量的变化趋势完全一致。对2种径流序列进行Mann-Kendall趋势分析结果表明:RCP 4.5和RCP 8.5浓度路径下,其标准正态统计量Z值分别为1.59和1.34。说明在95%置信区间内,2种浓度路径下,汉江流域未来径流序列的增加趋势均不显著(临界值Z = 1.96)。
图7
新窗口打开|下载原图ZIP|生成PPT图7汉江流域未来时期年均径流变化情况
Fig. 7Average runoff changes at annual scale in the future period of Hanjiang River basin
为了分析径流在空间上对气候变化的响应,将干流4个水文站的未来径流量变化情况展示如图8所示。在RCP 4.5浓度路径下,各干流站在未来时期的径流与基准期模拟值相比均有所增加,安康、白河、丹江口和皇庄站分别增加5.68%、6.04%、5.50% 和5.16%;而在RCP 8.5浓度路径下,分别增加5.36%、4.92%、2.82%和2.81%。这是由于与RCP 4.5浓度路径相比,RCP 8.5浓度路径下的降水量相对较低,但气温相对较高。流域的降水量变化对径流量的影响是直接的,二者呈正相关的关系;而气温变化对径流量的影响是间接的,二者成负相关的关系[19]。因此,RCP 4.5浓度路径下的径流量高于RCP 8.5浓度路径。
图8
新窗口打开|下载原图ZIP|生成PPT图8各水文站未来径流量变化
Fig. 8Runoff changes of various hydrological stations in the future
4.3.3 未来LUCC下的径流响应 未来各LUCC情景下,汉江流域出口径流的变化情况如表4所示。在全流域尺度上,LUCC 2020、LUCC 2030、LUCC 2040和LUCC 2050情景下流域出口的多年平均径流相差较小,与S0情景下的模拟径流相比,分别变化+0.06%、+0.10%、+0.73%和+0.07%。随着LUCC 2010—LUCC 2050变化,径流在汛期均呈现增加的趋势,非汛期均呈现减少的趋势。这种丰水期更丰、枯水期更枯的现象将会加剧丰水期的防洪压力、增加枯水期的供需矛盾,不利于汉江流域未来的水资源管理。在几种土地利用类型中,草地和建设用地的产流率高,可以有效增加径流;而林地具有含蓄水源和截留降雨的效应,可以有效保存水分,使形成径流量减少。因此,随着建设用地面积的显著增加,径流在LUCC 2020、LUCC 2030和LUCC 2040情景下不断增加。当林地面积不断增加、草地和耕地面积不断减少的影响(径流减少)大于建设用地面积的影响(径流增加)时,LUCC 2050情景下的地表径流又随之下降。从水资源的角度来看,规划部门若偏向减轻流域内的防洪压力,应控制未来建设用地面积的持续增加,并使退耕的土地多变为林地;若偏重于解决流域内水资源的供需矛盾,应按照如今的发展趋势增加未来建设用地面积,退耕的土地多变为草地。
Tab. 4
表4
表4LUCC情景下汉江流域未来径流变化情况
Tab. 4
时间 | 2010年 | 2020年 | 2030年 | 2040年 | 2050年 | ||||
---|---|---|---|---|---|---|---|---|---|
模拟值 (m3/s) | 模拟值 (m3/s) | 变化率 (%) | 模拟值 (m3/s) | 变化率 (%) | 模拟值 (m3/s) | 变化率 (%) | 模拟值 (m3/s) | 变化率 (%) | |
全年 | 1743 | 1744 | 0.06 | 1745 | 0.10 | 1756 | 0.73 | 1744 | 0.07 |
汛期 | 2620 | 2621 | 0.05 | 2626 | 0.24 | 2656 | 1.36 | 2625 | 0.20 |
非汛期 | 866 | 861 | -0.58 | 863 | -0.31 | 856 | -1.16 | 864 | -0.29 |
新窗口打开|下载CSV
4.3.4 气候变化和LUCC共同影响下的径流响应 在气候变化和LUCC共同影响下,2种浓度路径下汉江流域出口的未来多年平均径流与基准期相比均呈现增加的趋势(表5),且RCP 4.5浓度路径下的增长幅度(+5.10%)高于RCP 8.5浓度路径(+2.67%)。分别将S1、S2、S3与S0情景下的多年平均径流模拟结果进行对比(表5),可以得出:① 未来气候变化、LUCC、气候变化和LUCC共同影响均引起汉江流域径流增加;② 气候变化和LUCC共同影响下的径流增幅最大,表明气候变化和LUCC的叠加对径流产生了叠加的影响,但并不等于气候变化和LUCC单一作用引起的径流增加之和,这是由于气候变化和LUCC之间有相互影响作用,对径流的影响并不是直接的线性叠加;③ 同一情景下,RCP 4.5浓度路径下的径流增幅均大于RCP 8.5浓度路径;④ 同一浓度路径下,未来单一气候变化对汉江流域径流的影响程度显著大于LUCC。
Tab. 5
表5
表53种情景与基准情景相比的径流变化情况
Tab. 5
情景 | 模拟值(m3/s) | 变化率(%) | 情景 | 模拟值(m3/s) | 变化率(%) |
---|---|---|---|---|---|
S1_RCP 4.5 | 1829 | +4.95 | S2_2020 | 1744 | +0.06 |
S1_RCP 8.5 | 1786 | +2.47 | S2_2030 | 1745 | +0.10 |
S3_RCP 4.5 | 1832 | +5.10 | S2_2040 | 1756 | +0.73 |
S3_RCP 8.5 | 1790 | +2.67 | S2_2050 | 1744 | +0.07 |
新窗口打开|下载CSV
表6单独分析了流域气候变化量与径流量变化之间的关系(因未来土地利用变化对径流的影响较小,在此不做单独分析)。径流变化量与降水变化量的比值见表6中最后一列,可以看出:2种情景下流域降水和平均气温均比基准情景高,径流的变化方向与气候因子的变化完全一致,且产流与降水变化量的比值也为正常值,再次论证了SWAT模型模拟结果的可信度。
Tab. 6
表6
表6未来时期气候及径流变化量
Tab. 6
情景 | ΔP(mm) | ΔT(℃) | ΔR(m3/s) | ΔR/ΔP |
---|---|---|---|---|
S1_RCP 4.5 | 33.6↑ | 1.7↑ | 86↑ | 2.56 |
S1_RCP 8.5 | 31.5↑ | 2.4↑ | 43↑ | 1.37 |
新窗口打开|下载CSV
4.4 不确定性分析与讨论
气候变化及其影响研究属于“If-then-what”类型,根据气候模式的输出结果模拟预测未来的变化影响尽管存在着不确定性,但特定的情景仍是帮助确定未来可能发生的气候变化的基本途径[20,21]。气候变化影响评价的不确定性包括未来排放情景、气候模式、降尺度技术、水文模型等。国内外****研究发现[22,23,24,25],相对于排放情景和降尺度方法,GCM的选择是导致气候变化影响评价不确定性的最大因素。在评价一个地区气候变化对未来水文水资源的影响时,如果只以一种模式模拟的情景作为依据,则很可能会得出有失偏颇的结论。因此,本文选择中国常用的2种气候模式BCC-CSM1.1和BNU-ESM,采用历史实测气象资料对2种气候模式模拟的历史情景进行检验,以降低单一气候模式预测的不确定性。选用代表中排放(RCP 4.5)和高排放(RCP 8.5)的2种情景,降低碳排放情景预测的不确定性。采用能同时兼顾降水发生频率和降水分布的DBC降尺度模型,对汉江流域未来降水气温进行校正。通过不同气候模式、碳排放情景和偏差校正方法,减少各个环节的不确定性,确保汉江流域气候水文模拟预测结果的合理性和实用性。
5 结论
在2种全球气候模式BCC-CSM1.1和BNU-ESM下,基于DBC降尺度模型得到汉江流域未来降水气温系列;采用CA-Markov模型预测未来LUCC情景值;通过设置不同气候变化和LUCC情景组合,输入SWAT模型模拟汉江流域的未来径流过程,定量评估气候变化和LUCC对未来径流的影响,得出如下结论:(1)未来气候变化下的径流响应:在2种气候模式下,与基准期(1966—2005年)模拟值相比,未来40 a平均径流模拟值在RCP 4.5浓度路径下增幅为4.95%,明显高于RCP 8.5浓度路径的2.47%。
(2)未来LUCC下的径流响应:在全流域尺度上,4种未来土地利用情景下流域出口的多年平均径流相差较小,与S0情景下的模拟径流相比,分别变化+0.06%、+0.10%、 +0.73%和+0.07%。
(3)未来气候变化和LUCC共同影响下的径流响应:与S1、S2情景相比,S3情景下的径流变化幅度最大,表明气候和LUCC的叠加对汉江流域径流的影响产生增加的作用。与未来LUCC相比,气候变化对径流的影响更加显著。
气候变化和LUCC对汉江流域水文水资源的影响评价存在许多不确定性,有待在不确定性的量化和分解方面继续深入研究探讨。本文的研究结果将有助于未来气候变化和LUCC共同影响下汉江流域的水资源管理和生态环境保护规划设计。此外,未来气候变化与LUCC对径流的影响随着不同的气候特征与流域的变化而有所不同。因此,有必要将本文采用的研究框架应用于其他流域,从而有助于更多流域未来的水资源管理。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
URLPMID:30348951 [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
URLPMID:26259438 [本文引用: 1]
0.8 and Nash-Sutcliffe efficiency valve (Ens) > 0.75, suggesting that SWAT model was appropriate for simulating runoff response to land use change and climate variability in Liuxihe watershed. According to the integrated scenario simulation, the annual runoff increased by 11.23 m3 x s(-1) from 2001 to 2010 compared with the baseline period from 1991 to 2000, among which, the land use change caused an annual runoff reduction of 0.62 m3 x s(-1), whereas climate variability caused an annual runoff increase of 11.85 m3 x s(-1). Apparently, the impact of climate variability was stronger than that of land use change. On the other hand, the scenario simulation of extreme land use showed that compared with the land use in 2000, the annual runoff of the farmland scenario and the grassland scenario increased by 2.7% and 0.5% respectively, while that of the forest land scenario were reduced by 0.7%, which suggested that forest land had an ability of diversion closure. Furthermore, the scenario simulation of climatic variability indicated that the change of river runoff correlated positively with precipitation change (increase of 11.6% in annual runoff with increase of 10% in annual precipitation) , but negatively with air temperature change (reduction of 0.8% in annual runoff with increase of 1 degrees C in annual mean air temperature), which showed that the impact of precipitation variability was stronger than that of air temperature change. Therefore, in face of climate variability, we need to pay attention to strong rainfall forecasts, optimization of land use structure and spatial distribution, which could reduce the negative hydrological effects (such as floods) induced by climate change.]]>
,
PMID:26259438 [本文引用: 1]
,
DOI:10.1007/s11442-020-1716-9URL [本文引用: 2]
,
DOI:10.5194/hess-19-3633-2015URL [本文引用: 1]
,
DOI:10.1016/j.jhydrol.2017.11.004URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.3390/w9070475URL [本文引用: 1]
,
DOI:10.1016/j.jhydrol.2012.11.062URL [本文引用: 1]
,
DOI:10.1016/j.jhydrol.2018.08.053URL [本文引用: 1]
DOI:10.11821/dlxb201503009URL [本文引用: 1]
China has been experiencing the exceptionally drastic land-use/cover changes (LUCC) in the last decades. Many techniques focused on the simulation of the single type of land-use change. However, simulating changes between different types of land-use is much more difficult than simulating change for a single type of land-use. The key to simulations based on the Cellular Automata (CA) model is how to define the transition rules. This paper built a localized land-use competition CA model to examine land-use change rules for several land-use candidates under different localized land-use patterns. By this method, the potential transformation amount of each land-use type was calculated and an optimum transition rule was used to balance the amount of land-use changes of complicated types during the simulation period. The total area of each land-use type was predicted by Markov analysis as the global variable during the whole simulation period. This CA-Markov method was adopted to simulate LUCC in Dalian Economic and Technological Development Zone in 1998 and 2009, followed by a comparative experiment. The results show that: (1) The established test method is feasible for exploring the interaction between various land-use classes; (2) This model had high simulation precision, and the Kappa coefficients in urban area, agricultural area and undeveloped area were 0.762, 0.634 and 0.678, respectively; (3) The model proposed in this paper shows a symbolic way to studying the conversion among different land-use types, which could be used to improve the interactive relationship of LUCC.
,
[本文引用: 1]
DOI:10.11821/xb200802006URL [本文引用: 1]
A macro-micro integrated land use change model, Grey-Cellular automata (CA) -Multi-Criterion Decision-Making (MCDM)-Geographic Information System (GIS) based model (GCMG for short) which can simulate human decision making process was proposed. The GCMG model borrows the theoretical hypothesis of CLUE-S model which supposes that regional land use change is driven by its land use requirement and the land use distribution is in dynamic balance with land use demands and regional natural resources and socio-economic conditions. The GCMG model consists of both non-spatial and spatial part. The non-spatial part, so called macro model, calculates the changes of land use demand in the future based on experiential relationship of land use and its dominating drivers using the grey model. The spatial part, also called micro model, completes the land use allocation process whose total quantity is calculated by the non-spatial part with a combined method of MCDM, GIS and CA model. In the spatial part, firstly MCDM method was used to simulate the human decision making process for land use change considering socio-economic and bio-physical conditions; the results of which was brought into conversion rule of CA model; and the integration was finally implemented in GIS to model the land use allocation. To illustrate the functioning of GCMG model and its validation, it is applied in Longhai County to simulate land use change in 2010. As one of the typical counties at coastal area of Fujian Province, great changes in land use have taken place in Longhai County over the past decades, including the garden plots expansion, town land for urban and rural housing, and land for industrial and mining purpose. Firstly the GCMG simulation results are compared with map of the actual distribution of land use in 2000 for validation. The Kappa equals to 0.93 in the simulation at 10 m×10 m grid level and has gained satisfactory results. Then the validated model is applied to simulate the land use conversion probabilities under different decision-making scenarios. The results show that the basic farmland protection policy will determine the future land use change pattern. The application of GCMG model indicated that it can both simulate the land use demand at macro level and land suitability at micro level, thus possessing the ability of studying the multi-level land use system.
,
[本文引用: 1]
,
DOI:10.4236/jgis.2012.46059URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
DOI:10.11820/dlkxjz.2010.07.007URL [本文引用: 1]
In this paper, the climate change projections in East China made by the climate models in the IPCC-AR4 were assessed by simulation evaluation and uncertainty analysis. By comparing individual simulation of the 21 IPCC AR4 models with the observations and with each other as well, it is demonstrated that the simulation abilities of different models vary widely. Only models of NCAR-CCSM3 and MRI-CGCM2.3.2 have small root mean square errors for both temperature and precipitation simulations in East China. It has been shown that, under the scenario A1B, multi-model ensemble mean can fairly well illustrate the spatial patterns of annual mean temperature and precipitation. Nevertheless, it can hardly reflect local fine structure of the distributions because of their low spatial resolutions. Moreover, there is a significant systematic deviation in multi-model ensemble mean for temperature projection. It underestimates the annual mean temperature by more than 1.6℃, and the difference between simulation and observation exceeds the extent of the uncertainty which is defined by one-fold standard deviation of inter-models’ simulations. The standard deviation of annual precipitation is up to 26.7% of the multi-model ensemble mean. Therefore it would be quite questionable if IPCC-AR4 multi-model ensemble means of temperature and precipitation in East China are directly used as climate change projection.
,
[本文引用: 1]
URL [本文引用: 1]
In order to analyze and assess the impact of climate change on regional hydrology and water resources, three indices including average annual precipitation,the trend index and Hurst coefficients reflecting the continuity of hydrology series are calculated on the bases of measured annual precipitation series in the east of China from 1956 to 2000,and then compared with those calculated on the bases of the simulated annual precipitation series from each of three climate models(CGCMA3,MPI-ECHAM5 and Average GCM).It is found that each index values between the observed and simulated series are different quantitatively and even contradictory qualitatively.This indicates that the uncertainty is significant in the application of models.Similarly,average annual runoff,the trend index and annual runoff of different drought years for the future annual runoff series from 2001 to 2050 also have significant uncertainty. Future annual runoff series is produced by using the predicted annual precipitation and temperature data from three climate models.Finally,some suggestions on climate models and its application are proposed in this study.
,
[本文引用: 1]
,
DOI:10.1016/j.scitotenv.2018.12.055URL [本文引用: 1]
,
DOI:10.1016/j.jhydrol.2018.08.080URL [本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1016/j.jhydrol.2010.10.037URL [本文引用: 1]