2.
3.
4.
5.
The influence of geographical distance on the dissemination of internet information in the internet society
HUANG Xinnan1,2,3,4,5, SUN Bindong1,2,3,4,5, ZHANG Tinglin,1,2,3,4,51. 2.
3.
4.
5.
通讯作者:
收稿日期:2018-05-31修回日期:2019-12-11网络出版日期:2020-04-25
基金资助: |
Received:2018-05-31Revised:2019-12-11Online:2020-04-25
Fund supported: |
作者简介 About authors
黄鑫楠(1993-),男,河南平顶山人,硕士,研究方向为信息与城市地理E-mail:huangxn0111@126.com。
摘要
关键词:
Abstract
Keywords:
PDF (2775KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
黄鑫楠, 孙斌栋, 张婷麟. 地理距离对互联网社会中网络信息传播的影响. 地理学报[J], 2020, 75(4): 722-735 doi:10.11821/dlxb202004005
HUANG Xinnan.
1 引言
距离是地理学一直以来探讨的核心问题和涉及地理学科安身立命的本质问题[1,2]。地理距离是空间现象动态演化的重要影响因素,推动或阻碍着不同地区间空间作用和相互联系的产生。传统意义上,地理距离一方面阻碍有形事物在空间中的传输,另一方面也是无形信息传播时所需克服的重要成本。不过,由于互联网技术的快速演进以及移动终端的普及化,日益革新的信息技术不断地冲击并挑战着地理距离这一传统的规律。互联网不仅极大的降低了信息传输与交流的成本,而且丰富了信息传输内容的多样性。同时,随着手机等移动通讯设备的发展使得人们对信息的接收也变得十分便捷。地理距离影响的信息传播和扩散似乎将要成为历史。在互联网时代下,地理距离是否仍然重要受到了普遍质疑。20世纪90年代以来,部分****提出了“地理学的终结”“距离已死”的观点[3,4],认为地理距离将不再重要,由于信息传播的同时性,地理实体空间终会被网络虚拟空间所替代[5,6,7]。一些较为激进的****认为,互联网使用的日益增加,将导致地方发展、区域管理、组织形式和个人生活的巨大改变,空间接近的优势将被减弱,同时互联网的瞬时性和有效性使得地理空间向同质化方向发展[8]。
不过也有研究认为虽然信息技术带来了巨大的改变和影响,但是地理距离仍然起着不可忽略的作用。首先,有形事物的运输成本仍然是不可跨越的阻碍。随着互联网的快速发展,企业对“及时生产”的要求有所提高,提供相关配套的生产部门进而会对地理空间的相互邻近更为敏感[9]。宋周莺等发现信息化时代下“时间成本”的重要性进一步提高,使得供应商对空间邻近产生了更高的需求[10]。
其次,无形的信息传播同样被发现与距离具有相关性。如手机联系具有距离衰减的特性[11-12]。而且人作为互联网使用的主体,其在传统空间中的社会交往方式在互联网空间中会有所表现,反映出一定的地域根植性[13]。王波等发现新浪微博用户在网络社区中与本地人和较为相熟的人之间交流更为频繁[14],此外还分析了互联网中城市间相互搜索的层次结构以及距离和相关因素的影响[15-16]。路紫等发现网络社区中好友的空间分布随距离的增加而衰减[17],而且地理距离仍然是虚拟旅游行为的限制因素之一[18]。孙中伟等研究表明,地理根植性也表现在门户网站新闻讨论者的省区分布中[19]。国外****在信息技术对人们沟通联系和社交网络的影响等方面的研究同样发现地理距离和现实生活中的社会关系对信息交流有着重要影响[20-22]。例如,Balazs等发现使用网络社交媒体的用户比重与到达国家首都城市的距离呈现出负相关关系[21],表明地理距离在网络社区中的作用仍然存在;Mok等在调查研究中发现,美国北约克地区居民间的电话交流和面对面交流分别集中在160 km和8 km的范围内[22]。
最后,实体的地理空间与虚拟的网络空间具有一定程度的相互联系和相互影响[23,24],信息基础设施在空间上的不均衡分布和地理区位等因素均影响了虚拟空间的网络体系、空间格局和可达性等[25,26,27]。对长三角区域创新的城市网络研究指出,城市间的创新网络更多受城市地理区位和地理邻近性的影响[28]。
总之,由于信息传播的即时性、同时性,地理距离对于信息传播的影响是否不重要了或者在信息传播方面地理是否已死,还没有取得一致的认识,相关研究中仍存在一些不足之处。① 虽然部分研究也关注了信息与距离关系,但主要是简单相关分析,或者只控制距离和经济两个变量进行回归分析,会存在遗漏变量的问题,使结论不可靠。因为人作为搜索信息行为的主体,会受到如人口数量、年龄阶段等相关因素的影响,从而影响到对信息化影响估计的准确性。② 目前在探讨地理距离影响的研究中,缺失对地理距离在信息传播与关注中动态作用的分析,而基本只关心研究阶段内的静态特征。③ 现有的地理学对于互联网空间中人与人之间相互联系的研究,多数基于个人对于一定信息的主动搜索,对于信息传播的关注还相对较少。
为了弥补这些学术上的不足之处,本文从一个事件信息在不断传播过程中被选择和接收的角度,分析距离因素能否影响互联网时代的信息的关注与传播,并探讨其中可能的机制,以揭示地理因素在虚拟信息网络中仍不能忽略的影响作用。本文在克服以往文献不足方面做出了一定的尝试和探索。首先,在遗漏变量方面,本文控制了城市人口的年龄结构、人口数量、地域文化等更多的影响因素,减少了可能存在的遗漏变量问题。其次,在结果的稳健性方面,“奔跑吧兄弟”与“爸爸去哪儿”两档综艺节目的播出地在不同的省市,通过结果的对比分析,提高了结果的稳健性和说服力。最后,本文将播放期分为了不同阶段,动态观察每个阶段中地理距离所起到的作用以及变化趋势,丰富了以往研究的时间维度。
2 研究思路与方法
2.1 研究思路与分析框架
本文以综艺节目“奔跑吧兄弟”与“爸爸去哪儿”为例,基于百度公司发布的两个节目的关注度指数计算人均节目关注度,运用ArcGIS软件的空间分析功能,展示并分析节目关注度的时空变化情况;并构建OLS回归模型,分别从省级和城市两个尺度检验地理距离对两档节目传播的影响。经济学认为资源具有一定的稀缺性,对事物所做出的选择具有一定的成本。随着信息社会的发展,大量信息充斥在网络平台之中,在人的时间与精力总是有限的情况下,注意力资源已然具有了较强的稀缺属性[29,30]。在时间碎片化的时代背景下,注意力资源显得尤为重要。关注信息是信息被选择接收的结果,选择关注一种信息则具有一定的潜在成本。传播学领域将受众群体的特征以及传播的内容作为研究的主要因素。互联网为代表的信息技术的作用下,带来了现实地理空间的剧烈变化,同时塑造了网络为主导的虚拟空间。但是,互联网时代的剧烈变化仍无法解除受众在信息传播中受到地理根植性的束缚,信息受众群体便具有一定的区域性特征以及区域间的相互差异性。互联网时代下产生于网络世界的赛博空间也不能摆脱真实空间对其的影响与映射,例如现实生活中的以人群相互邻近性与区域性为代表的地理根植性对虚拟空间必将产生相互影响。在传统的地理距离衰减规律中,地理距离可以通过影响运输成本从而影响事物的分布与状态。在地理根植性理论和经济学中的成本理论的基础上,本文提出理论分析框架(图1),其核心假说是地理距离可以通过作用于相应人群对特定信息的选择接收的成本从而影响一个事件的网络传播与关注。地理距离对地理格局的影响主要存在两条作用路径:① 地理距离越近,地理特征、文化特征等区域特点越相似,相互联系可能性越大[31];② 地理距离越近,物质运输和非物质联系成本越低。信息社会中信息传播的即时性降低的主要是第二条路径里的非物质联系成本即信息成本,当然长期来看,还会通过改变区域特点包括文化特征等继续减弱联系成本。为验证以上假说,本文的核心目标是,通过控制包含文化等地理因素影响的第一条路径,对地理距离对于信息传播成本进行实证检验,并根据理论框架尝试性解释地理距离在信息传播过程中的作用机制。
图1
新窗口打开|下载原图ZIP|生成PPT图1地理距离影响信息传播的理论分析框架
Fig. 1The theoretical framework for understanding how geographical distance affects information dissemination
2.2 数据来源与特征
百度指数(Baidu Index)是目前应用最为广泛的词频搜索大数据平台,通过统计百度引擎用户上亿次的网络搜索量,得到不同关键词在网络搜索中的数据加权和,从而给出相应的词频指数。截至2015年12月,中国已具有5.66亿的网络搜索用户,其中百度的综合搜索渗透率超过90%位居搜索引擎第一名,且与其他搜索引擎拉开较大差距[32],体现了百度数据在用户搜索方面的代表性。因此采用百度指数研究综艺节目的搜索情况变化,具有一定的普遍性和可信度。本文利用百度指数网站中的“区域选块功能”,通过手动记录网页上每个所选择地区在“奔跑吧兄弟”和“爸爸去哪儿”两档节目播出时段内每天的百度指数数值,共获取了31个省和直辖市以及287个地级市尺度下各个地区搜索节目的百度指数。需要说明的是,由于百度指数是通过统计词频加权求和,因此并不是原始的搜索量数据。尽管如此,由于百度指数可有效表示关键词在网络搜索中相对数量的差异,已在科学研究中得到普遍应用[33,34,35,36]。具体而言,百度指数越高,代表关键词的搜索频次越多。“奔跑吧兄弟”和“爸爸去哪儿”是2013年至2014年中收视前茅且富有讨论度的综艺节目,拥有众多的观看群体。播出节目的浙江卫视、湖南卫视均是星级卫视,全国的卫视覆盖率均在90%以上,具有很强的代表性。通过检索不同地区在节目播放期间的百度指数发现,两档综艺节目关注度的变化趋势具有一定的规律性。图2中,“奔跑吧兄弟”和“爸爸去哪儿”的百度指数在全国总体的变化曲线中大体呈现出3个阶段,即前期的低关注阶段、中期关注度稳步增长阶段和后期的高关注阶段。同时两档综艺节目在各个省和地级市的变化规律与全国总体的趋势规律保持相似。并且在观察了2012年“中国好声音第一季”和2015年“欢乐喜剧人第一季”播出时段的百度指数后,作者同样发现了近似的增长变化特征。
图2
新窗口打开|下载原图ZIP|生成PPT图2“奔跑吧兄弟第一季”与“爸爸去哪儿第一季”百度指数的时间情况
Fig. 2The temporal evolution of the Baidu Index for "Chinese Running Man" and "Where Are We Going, Dad"
为了进行更为细致的特征分析,根据图中的变化特点,把每个节目百度指数的3个阶段进一步细分为4个时段,对每个时段的百度指数平均值进行研究。“奔跑吧兄弟”以2014年10月5号—10月19号为开播前期,以2014年10月20号—11月30号为中前期,以2014年12月1号—12月31号中后期,以2014年1月1号—1月19号为后期。“爸爸去哪儿”节目以2013年10月7号—10月13号为前期,以2013年10月14号—10月27号为中前期,以2013年10月28号—11月25号为中后期,以2013年11月26号—12月29号为后期。
百度指数的统计与地区内搜索总量相关,地区内网民越多,搜索量越大,百度指数响应也越高。因此,搜索总量的高低不能有效的代表地区对综艺节目的真正关注程度。本文在百度关注指数基础上计算地区人均节目关注度作为分析指标。人均节目关注度计算方式:
式中:Aij表示j地区在i时段内节目每天的平均关注程度;Vij表示j地区在第i时段内每天的人均节目关注度;i表示节目播出的4个不同的时段,i = 1, 2, 3, 4;Bij表示j地区在第i时段内,每一天的对应节目的百度指数;Di表示第i阶段内的时间天数;Nj表示所在地区的网民数量。
本文分别从省级尺度和地级市两个尺度对节目的人均关注度进行分析。省级尺度31个省和直辖市(不包括港澳台地区),各省网民数据来源于中国互联网信息中心;地级市尺度由于没有直接的城市网民数量,而城市的互联网接户数或城市总人口数均无法完全代表城市的网民数量。根据中国互联网信息中心公布的数据显示,城镇网民数量约占城镇人口的70%,农村网民数量约占农村人口的30%[37]。同时,参考了城乡互联网普及率数据,对各个地级市的城市网民数量进行推算,公式如下:
该公式推算出的各城市网民数量的总和与互联网信息中心提供的当年的总网民数量最为相近。不过,由于不同城市互联网渗透率不同,统一采用这一指标会带来测量误差。为此,本文尝试做了稳健性检验。采用每个城市互联网接户数作为网民代理变量,回归结果与采用上述推算数据结果保持一致。因为考虑到接户数并不完全等同于网民总数,还包括移动互联网用户,所以本文在策略上采取了前者推算指标。
2.3 模型与变量
本文探讨地理距离对节目关注度影响的模型形式如下:式中:因变量(Prog-perc)为上文所述及的人均节目关注度Vij;核心解释变量地理距离(dist)是各地级市到播出卫视所在地的在空间上的直线距离(省级尺度上则表示该地区省会城市到播出地城市的地理距离);地区经济发展水平采用人均GDP(GDP per capita),不仅会影响该地区基础设施建设,还会对人们的生活方式、行为习惯等多个方面产生影响,从而对人们使用互联网和关注节目信息产生影响。此外,地区的人口年龄结构(age)对节目的关注也会起到不可忽视的作用。当一个地区年轻人口比例较多时,该地区对综艺节目等相关内容产生关注。因此,将地区年龄结构分为0~14岁、15~29岁、30~39岁和40岁以上的年龄比例代入模型。新经济地理理论认为规模集聚会存在溢出效应,为了检验人均关注度是否受到集聚影响,在模型中加入了网民数量(netizen)。人是互联网的行为主体,而人所处的地域环境与地方文化的不同会导致人群的行为方式的不同。参考方创琳等所提供的中国人文地理综合区划中的划分标准[38]以及结合传统的中国地理综合区划,将地级市与所处省份分别归类为东北地区、华东地区、华南地区、华北地区、西北地区、西南地区、华中地区,共七大区域。将地区所处区域作为控制不同地方文化特征的虚拟变量(culture)代入模型中,所属区划内的省或市赋值为1,其他地区则为0,以控制文化和地理环境作用对不同城市节目关注度的影响。人均GDP和地区文化特征都可能存在与地理距离的相关性或耦合性,将以上两个因素代入模型,从而排除地区文化特征和人均GDP的干扰,以便真实识别距离因素自身的影响。此外,模型中β0表示常数项,ε为残差。
各省的网民数量来源于中国互联网络信息中心发布的第34次和第35次《中国互联网络发展状况统计报告》。各省的人均GDP数据来源于《2014年中国统计年鉴》《2015年中国统计年鉴》。地级市人均GDP来自于《2014年中国城市统计年鉴》和《2015年中国城市统计年鉴》。最后,省份与城市两个尺度的人口年龄结构均来源于2010年第六次人口普查数据。由于2010年与2013年、2014年年份相近,在较短的时间内,城市年龄结构变化微小,限于数据可得性,所以利用2010年第六次人口普查中的城市年龄结构代替2013年、2014年各城市年龄结构。
3 节目关注度的时空变化
借助ArcGIS空间分析软件,通过自然分级法(Natural Breaks)对4个时段内各省网民的人均关注度进行分级显示,生成省级综艺节目关注度时空变化图(图3~图4)。可以看出,地理距离、文化因素、社会经济发展水平以及人口和网民总量等因素都是影响节目关注度的潜在因素,这也是计量模型中控制这些变量的依据。同时,各个时段关注度发生着不同的变化可以表明分析框架中将受众人群划分为优先响应人群和潜在关注人群的合理性,以及显示着信息关注成本的存在。假设受众群体不存在对信息选择和接收的隐性成本,同时也没有优先和潜在关注受众之间的区别,那么初期与后期的信息关注度则相差不大,即初期理应立刻呈现和后期较为相似的响应水平。由图2中显示的搜索量在随时间变化而不断增加的情况下,关注度在地理空间上呈现出不同的响应状态的现象则是对分析框架中受众划分和存在关注成本的有力印证。图3
新窗口打开|下载原图ZIP|生成PPT图32014年浙江卫视“奔跑吧兄弟”节目人均关注度时空变化
Fig. 3The spatio-temporal evolution of program's audience attention ("Chinese Running Man" in Zhejiang TV in 2014)
图4
新窗口打开|下载原图ZIP|生成PPT图42013年湖南卫视“爸爸去哪儿”节目人均关注度时空变化
Fig. 4The spatio-temporal evolution of program's audience attention ("Where Are We Going, Dad" in Hunan TV in 2013)
就图3和图4中显示的变化特征而言,经济水平较好的地区的节目关注度普遍较高。在各个时段内东南沿海关注度普遍高于中西部地区,两档节目关注度变化中均有所体现。
节目播出卫视所在省份对节目保持着较高关注度,在节目播放初期和中期尤为明显。浙江省与湖南省分别作为节目播出地,在节目初期本省的节目关注度远高于周边地区与国内大部分区域。节目中期,本省地区的人均节目关注度相对于其他地区而言依然处于一定的领先地位。随着时段的向后推移,本省与其他地区的节目关注度差异在中后期有着逐渐缩小的趋势。这一现象一定程度上反映了受众人群的地理根植性特点。本省的受众人群已形成对本地媒体的收视习惯,长期的收视行为使得省内收视人群对本省的卫视具有良好的关注粘性,成为快速选择和接收信息的优先响应人群。地理空间较为邻近的省份在节目播放初期关注度相对较高,体现出了地理距离成为本文探讨的核心解释变量的合理性和必要性。
节目播出中后期,河南、河北、山东地区关注度后来者居上,关注度呈高响应态势。注意到这些省份具有网民数量众多的共同特征,从而具有更多的潜在关注人群,在节目播出中后期能够爆发出对节目关注应有的潜力。根据该现象,虽然本文采用的是人均关注度指标,但仍将地区网民人口数作为控制变量放入回归模型之中,以便更加准确的刻画和判断地理距离对信息关注的影响。
东北地区呈现较高的响应状态,表现出一定的地理区域特征。东北地区网民数量较少,与播出卫视所在地相隔较远,同时经济发展水平也并不突出,但在两档节目各阶段均呈现出较高的关注程度,与地方文化特征有关。相关研究表明,不同城市和区域的受众群体对媒介的接触和使用也具有较大的差异[39,40,41,42,43]。究其原因有两点:① 两档节目的播出时间分别为9月和10月,与东北地区秋冬季节相一致。受特殊的气候条件所限制,冬季期间人们习惯于下班后留在家中进行休闲娱乐活动,为关注综艺节目提供了有利的条件;② 从地域文化来讲,东北人对于娱乐文化具有普遍偏好,从而成为了对节目信息的优先响应人群以及具有较多基数的潜在关注人群。另根据《2017主播职业报告》中显示,就全国男性而言,北方男孩更愿意做主播,东北三省的男性主播占比已高达63.3%[44]。
4 实证结果与分析
4.1 省级样本结果
以地理距离为研究的核心变量,在省级尺度的OLS回归分析中控制其他影响因素的条件下,以观察地理距离变量在4个时段中所起到的作用以及变化趋势(表1)。模型2与模型4分别在模型1和模型3基础上增加了区域的虚拟变量。结果显示,大多数模型中,在控制了相关因素的条件下,地理距离呈现出与因变量显著的负相关。由此表明,城市距离播出卫视所在地的距离越远,节目的人均关注度便会越小。模型1与模型3中,随着时间变化,地理距离负相关系数与显著性水平均有着明显的减弱趋势。该结果表明,在信息传播与被关注的初始阶段,地理距离起到了较为明显的作用,较远地区对信息源所在地的信息关注与响应程度低于邻近信息源的地区,地理距离的作用会随着时间的推移而慢慢减弱。模型2与模型4中,地理距离系数在控制了区域虚拟变量的条件下虽然随时段变化较小,但整体上仍然呈现影响减弱趋势。Tab. 1
表1
表1省级尺度的回归结果
Tab. 1
变量 | 模型1:爸爸去哪儿 (解释变量未纳入区域虚拟变量) | 模型2:爸爸去哪儿 (解释变量纳入区域虚拟变量) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
初期 | 前中期 | 中后期 | 后期 | 初期 | 前中期 | 中后期 | 后期 | ||||||||||||
人均GDP(ln) | -0.001 | 0.010 | 0.048 | 0.049 | -0.008 | -0.004 | 0.024 | 0.008 | |||||||||||
(-0.03) | (0.23) | (1.12) | (1.19) | (-0.14) | (-0.07) | (0.46) | (0.17) | ||||||||||||
地理距离(ln) | -0.469*** | -0.353*** | -0.293** | -0.195* | -0.519*** | -0.460*** | -0.463*** | -0.433*** | |||||||||||
(-5.25) | (-3.42) | (-2.54) | (-1.77) | (-3.35) | (-3.29) | (-3.54) | (-4.14) | ||||||||||||
网民数量(ln) | -0.045 | 0.049 | 0.090 | 0.088 | -0.177** | -0.097 | -0.059 | -0.058 | |||||||||||
(-0.56) | (0.60) | (1.08) | (1.20) | (-2.35) | (-1.29) | (-0.84) | (-1.11) | ||||||||||||
14岁以下比例 | -8.327*** | -7.953*** | -6.883*** | -6.352*** | -9.173*** | -8.918*** | -7.794*** | -7.264*** | |||||||||||
(-5.91) | (-5.51) | (-4.46) | (-4.06) | (-5.36) | (-5.39) | (-5.25) | (-6.14) | ||||||||||||
15~29岁比例 | 4.794** | 4.615** | 4.210* | 3.759* | 2.064 | 1.322 | 1.093 | 0.748 | |||||||||||
(2.26) | (2.27) | (2.03) | (1.88) | (0.95) | (0.58) | (0.47) | (0.43) | ||||||||||||
30~39岁比例 | -1.304 | -1.440 | -2.153 | -3.473 | 3.789 | 3.729 | 3.462 | 3.460 | |||||||||||
(-0.22) | (-0.26) | (-0.40) | (-0.77) | (0.63) | (0.67) | (0.60) | (0.74) | ||||||||||||
东北地区 | -0.268 | -0.188 | -0.092 | -0.052 | |||||||||||||||
(-0.95) | (-0.74) | (-0.31) | (-0.21) | ||||||||||||||||
华北地区 | 0.103 | 0.230 | 0.287 | 0.352* | |||||||||||||||
(0.47) | (1.07) | (1.30) | (1.81) | ||||||||||||||||
华东地区 | 0.043 | 0.109 | 0.095 | 0.039 | |||||||||||||||
(0.16) | (0.54) | (0.50) | (0.24) | ||||||||||||||||
华南地区 | 0.053 | 0.149 | 0.149 | 0.078 | |||||||||||||||
(0.27) | (1.02) | (0.98) | (0.67) | ||||||||||||||||
华中地区 | -0.408 | -0.467* | -0.550** | -0.644*** | |||||||||||||||
(-1.41) | (-1.97) | (-2.32) | (-3.31) | ||||||||||||||||
西北地区 | -0.580** | -0.415** | -0.345* | -0.287* | |||||||||||||||
(-2.72) | (-2.16) | (-1.88) | (-2.02) | ||||||||||||||||
常数项 | 2.587* | 2.468* | 1.841 | 2.045 | 3.861** | 4.107*** | 3.604*** | 3.867*** | |||||||||||
样本量 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | |||||||||||
R2 | 0.678 | 0.695 | 0.668 | 0.660 | 0.850 | 0.852 | 0.831 | 0.856 | |||||||||||
变量 | 模型3:奔跑吧兄弟 (解释变量未纳入区域虚拟变量) | 模型4:奔跑吧兄弟 (解释变量纳入区域虚拟变量) | |||||||||||||||||
初期 | 前中期 | 中后期 | 后期 | 初期 | 前中期 | 中后期 | 后期 | ||||||||||||
人均GDP(ln) | 0.339 | 0.289 | 0.307 | 0.299 | 0.393* | 0.290 | 0.256 | 0.206 | |||||||||||
(1.21) | (0.96) | (1.06) | (0.28) | (1.79) | (1.15) | (1.04) | (0.85) | ||||||||||||
地理距离(ln) | -0.190** | -0.172* | -0.124 | -0.081 | -0.266* | -0.247* | -0.235* | -0.258** | |||||||||||
(-2.16) | (-1.88) | (-1.29) | (0.10) | (-1.96) | (-1.91) | (-1.99) | (-2.13) | ||||||||||||
网民数量(ln) | -0.099* | -0.059 | -0.033 | 0.014 | -0.125** | -0.110* | -0.091 | -0.045 | |||||||||||
(-1.93) | (-1.07) | (-0.56) | (0.07) | (-2.15) | (-1.75) | (-1.59) | (-0.74) | ||||||||||||
14岁以下比例 | -4.616* | -5.018* | -4.380 | -4.319 | -2.317 | -3.376 | -2.508 | -2.302 | |||||||||||
(-1.84) | (-1.85) | (-1.56) | (2.87) | (-0.92) | (-1.26) | (-0.99) | (-0.92) | ||||||||||||
15~29岁比例 | 0.630 | 0.209 | -0.219 | -0.960 | 1.410 | -0.473 | -1.454 | -2.281 | |||||||||||
(0.35) | (0.11) | (-0.12) | (1.93) | (0.76) | (-0.21) | (-0.76) | (-1.10) | ||||||||||||
30~39岁比例 | -3.073 | -5.084 | -5.641 | -4.507 | -0.848 | -0.847 | -0.925 | 0.606 | |||||||||||
(-0.80) | (-1.24) | (-1.26) | (4.78) | (-0.19) | (-0.18) | (-0.20) | (0.14) | ||||||||||||
东北地区 | 0.317 | 0.248 | 0.376 | 0.409 | |||||||||||||||
(1.20) | (0.89) | (1.46) | (1.58) | ||||||||||||||||
华北地区 | 0.150 | 0.295 | 0.503** | 0.578*** | |||||||||||||||
(0.75) | (1.34) | (2.52) | (2.93) | ||||||||||||||||
华东地区 | -0.101 | -0.076 | -0.003 | -0.076 | |||||||||||||||
(-0.44) | (-0.29) | (-0.01) | (-0.32) | ||||||||||||||||
华南地区 | -0.111 | 0.007 | 0.109 | 0.090 | |||||||||||||||
(-0.59) | (0.04) | (0.61) | (0.54) | ||||||||||||||||
华中地区 | -0.287* | -0.173 | -0.169 | -0.227 | |||||||||||||||
(-1.79) | (-1.03) | (-1.18) | (-1.63) | ||||||||||||||||
西北地区 | -0.283* | -0.256 | -0.087 | -0.004 | |||||||||||||||
(-1.82) | (-1.64) | (-0.64) | (-0.03) | ||||||||||||||||
常数项 | -0.293 | 0.912 | 0.736 | 0.816 | -1.410 | 0.648 | 1.081 | 1.680 | |||||||||||
样本量 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | |||||||||||
R2 | 0.705 | 0.687 | 0.622 | 0.577 | 0.849 | 0.831 | 0.833 | 0.832 |
新窗口打开|下载CSV
人均GDP对节目关注度并未起到显著的作用,这与通常的认知并不相符。在个人维度方面,个人的经济收入水平极大程度上会直接影响自身的日常行为与生活习惯;在空间维度方面,真实的经济空间很难不对虚拟的网络空间产生影响。造成该结果的一个重要原因是省级尺度下只有31个省、市、自治区作为样本,样本量较少会导致回归结果显著性不足。下文以地级市作为样本的实证研究弥补了这一不足,提高了回归结果的可靠性。
4.2 地级及以上城市样本结果
从表2中可以看出,在控制了社会经济属性和区域特征等相关变量后,两个模型中距离因素均呈现出较强的负显著,即两档综艺节目关注度都随着距离的增加而显著降低。时间趋势上来看,地理距离在后期的影响作用均弱于节目播出前期,所得变化趋势与省级回归结果相一致。结果表明,地理距离在信息传播与接收的过程中确实起到了作用,尤其在信息传播初期更为明显。Tab. 2
表2
表2城市样本的回归结果
Tab. 2
变量 | 模型1:(解释变量未纳入区域虚拟变量) | 模型2:(解释变量纳入区域虚拟变量) | |||||||
---|---|---|---|---|---|---|---|---|---|
奔跑吧兄弟 | 爸爸去哪儿 | 奔跑吧兄弟 | 爸爸去哪儿 | ||||||
初期关注度 | 后期关注度 | 初期关注度 | 后期关注度 | 初期关注度 | 后期关注度 | 初期关注度 | 后期关注度 | ||
人均GDP(ln) | 0.385*** | 0.371*** | 0.450*** | 0.476*** | 0.341*** | 0.291*** | 0.393*** | 0.387*** | |
(6.88) | (6.57) | (6.15) | (6.06) | (5.96) | (5.45) | (5.58) | (5.15) | ||
地理距离(ln) | -0.071*** | -0.032* | -0.138*** | -0.041** | -0.091*** | -0.065*** | -0.095*** | -0.064*** | |
(-4.93) | (-1.94) | (-4.24) | (-2.21) | (-4.65) | (-4.61) | (-6.33) | (-3.10) | ||
网民数量(ln) | -0.029 | 0.024 | 0.037 | 0.012 | -0.064 | 0.005 | -0.040 | -0.066 | |
(-0.76) | (0.63) | (0.71) | (0.20) | (-1.47) | (0.11) | (-0.75) | (-0.99) | ||
14岁以下比例 | -4.800*** | -4.553*** | -5.516*** | -4.392*** | -4.136*** | -3.300*** | -7.517*** | -5.451*** | |
(-6.13) | (-5.54) | (-5.54) | (-4.50) | (-4.99) | (-4.14) | (-6.68) | (-5.16) | ||
15~29岁比例 | 2.744*** | 2.685*** | 3.348*** | 4.795*** | 3.330*** | 3.059*** | 2.995*** | 4.838*** | |
(3.69) | (3.69) | (3.47) | (4.61) | (4.07) | (4.07) | (2.85) | (3.87) | ||
30~39岁比例 | 4.553*** | 3.203** | 2.746 | 1.666 | 6.077*** | 6.735*** | 3.096* | 4.292** | |
(3.40) | (2.48) | (1.57) | (0.84) | (4.22) | (5.29) | (1.67) | (2.15) | ||
东北地区 | 0.227*** | 0.388*** | -0.369*** | -0.148 | |||||
(2.87) | (4.88) | (-3.54) | (-1.10) | ||||||
华北地区 | 0.198** | 0.481*** | -0.019 | 0.242* | |||||
(2.34) | (5.62) | (-0.19) | (1.88) | ||||||
华东地区 | 0.059 | 0.163* | 0.076 | 0.107 | |||||
(0.59) | (1.72) | (0.64) | (0.78) | ||||||
华南地区 | 0.072 | 0.128 | 0.230* | 0.112 | |||||
(0.66) | (1.16) | (1.96) | (0.71) | ||||||
华中地区 | -0.192** | -0.171* | -0.024 | -0.159 | |||||
(-2.10) | (-1.93) | (-0.25) | (-1.24) | ||||||
西北地区 | -0.197* | -0.044 | -0.397*** | -0.358* | |||||
(-1.92) | (-0.42) | (-2.83) | (-1.93) | ||||||
常数项 | -11.19*** | -11.12*** | -11.59*** | -12.48*** | -10.52*** | -10.60*** | -10.12*** | -10.45*** | |
样本量 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | 287 | |
R2 | 0.645 | 0.598 | 0.601 | 0.584 | 0.694 | 0.702 | 0.653 | 0.635 |
新窗口打开|下载CSV
由表2可知,人均生产总值表示该城市发展的经济水平,对关注度呈现显著正影响,符合理论预期。一方面经济水平较好的地区具有更为完善网络基础设施[25, 45]和较高的信息化水平;另一方面受众的经济属性影响着受众对信息的选择和接收。已有研究表明,经济水平越高则相应娱乐消费水平越高。年龄结构结果也符合认知和现实,即14岁以下的比例越高,关注度越低;15~29岁的人群比例越高,关注度越高。
在两个模型中,网民数量因素不论在前期与后期均未起到作用,表明节目中后期部分地区所爆发的关注度潜力并非由于地区网民人口众多而带来的。部分地区虚拟变量在回归结果中显著表明了区域特征对节目信息关注和响应的影响。以西南地区作为虚拟变量中的参照变量,东北地区和华北地区对于“奔跑吧兄弟”的节目关注度相对偏高,西北地区则相对偏低。
通过对比地理距离与经济、年龄结构和区域特征标准化后系数的作用大小可知,地理距离虽然起到了一定的作用,但经济因素的作用仍然大于地理距离,真实的经济空间对信息关注的影响更为重要。此外,地理距离所发挥的作用主要集中在前中期。地理距离的作用机制在节目中后期便出现明显的减弱,而经济因素在各个时段均能够一直起到稳定且显著的作用。同时,年龄结构和区域特征在信息播放中后期作用效果有了一定的提升,表明在中后期对潜在受众人群的激发作用更多来自于年龄结构和区域特点的影响。
5 结论与讨论
本文采用全国省级样本和地级及以上城市样本两套数据,基于对“爸爸去哪儿”与“奔跑吧兄弟”两档综艺节目的网络搜索关注度分析,探讨了地理距离对于信息网络传播的影响。研究发现,在控制了其他因素之后,实体空间中的地理距离在网络信息传播与接收中仍然起到不可忽视的作用,即离播出地区距离越远,关注度相对越低,尤其在信息传播初期更为明显;随着时间的推移,地理距离的作用也逐渐变弱。关于地理距离对关注度的作用,本文给出以下解释。首先,本省和相邻地区在信息播放初期与中期的响应均较高,反映了地理距离降低了本省和相邻地区受众人群接收信息的成本。从地理根植性而言,由于长期生活习惯的影响,人们搜索信息行为必然会受到现实生活需要的限制,例如人们习惯于关注发生在当地的新闻事件,对本地区卫视具有更高的收视关注[39]。同时根据地理距离衰减规律,相互邻近区域现实生活中的相互作用和影响更大,周边地区也易形成搜索邻近地区信息的行为习惯[15],例如,由于地缘和语言文化跟港澳相对亲近,广东省受众群体对香港地区的媒体有着更高的关注[39]。因此降低了本地区和邻近地区产生的相关信息的接收成本,在信息传播初期形成较高的优先响应。其次,邻近地区前期和中期具有较高的响应,反映出以人为基础的社交网络在互联网信息关注空间下的地理根植性。已有研究表明,互联网时代下社交好友的地理空间分布仍具有地理根植性,即使用社交网络的好友用户的分布仍受到地理距离的制约,例如微博等社交空间中的联系好友大部分以邻近地区为主[13, 17]。同时,社交网络中的信息扩散是信息传播的重要方式,朋友之间通过分享或转发相关信息可以提高该信息的接收程度。相关研究已证明,互联网时代下人们往往与邻近地区的好友保持更为密切和频繁的交流与联系[13-14, 17, 22]。具体而言,省内优先了解节目信息的年轻人通过现代媒介形式,将节目信息向邻近省份的好友扩散,本地的信息往往熟人之间能够得到更快捷的传播。信息通过好友与熟人的传播,使得邻近地区选择和接收特定信息的成本降低。因此地理距离影响了信息优先接收的人群,同时通过现实空间的社交邻近影响潜在人群对信息的选择与接收,从而体现在对节目前中期较高的关注度上。
本文研究回应了互联网兴起以来,学界对距离是否已死的争论。本文研究表明,即使是在互联网即时信息传播状态下,地理因素依然通过地理根植性和地理距离衰减规律影响信息的选择接收和关注。由此带来的学术启示为,即使在信息即时传输的当下,地理距离并没有消亡,也进一步确认了地理学科的不可或缺性。
本文为地理距离对于信息传播的影响研究提供了新的证据。与已有相似研究的相同点在于,均强调一定地域空间中人际关系网络在互联网空间中的根植性。不同的是,本文从信息选择接收而不是信息主动搜索的视角展开分析,而且动态地揭示了不同时段下地理距离的作用变化,也关注到了地域文化特征等相关的地理因素的作用。本文的不足在于,对于研究结论的解释主要是基于逻辑判断和已有文献基础,缺少基于数据的实证性研究,这为后续研究提供了探索的方向。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.2307/143141URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1111/ijur.1982.6.issue-3URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1080/13658816.2012.689838URL [本文引用: 1]
,
DOI:10.1007/s10109-016-0236-8URL [本文引用: 1]
DOI:10.1002/1097-0142(197308)32:2<380::aid-cncr2820320214>3.0.co;2-2URLPMID:4722919 [本文引用: 3]
,
DOI:10.1002/1097-0142(197308)32:2<380::aid-cncr2820320214>3.0.co;2-2URLPMID:4722919 [本文引用: 3]
DOI:10.18306/dlkxjz.2016.08.007URL [本文引用: 2]
The rapid development of information and communication technologies has brought numerous electronic communication modes ((mobile) phone, short message service, email, and recently the popular online social networking sites) that have been expected to influence the role of spatial and relational distances in interpersonal interactions. Based on online "traces" of Sina micro-blog users' interactions in the last two weeks, respondents in our questionnaire survey were required to record and answer questions of (1) who did you interact more often, locals or non-locals and (2) who did you interact more often, acquaintances or strangers in real life. Answers were used in our analysis of the role of spatial distance and relational distance in online social networks. Our findings show that (1) there is a clear tendency of respondents interacting with locals and acquaintances in their real life; (2) respondents' tendency to interact with locals and acquaintances is impacted by their socioeconomic traits, living environment, and information and communication technologies use; (3) theoretically online social networking sites enable users to overcome the distance decay effects and thereby to enlarge their social networks. However, spatial and relational distances sustained the social networks in real life in interpersonal interactions in online social networks.
,
DOI:10.18306/dlkxjz.2016.08.007URL [本文引用: 2]
The rapid development of information and communication technologies has brought numerous electronic communication modes ((mobile) phone, short message service, email, and recently the popular online social networking sites) that have been expected to influence the role of spatial and relational distances in interpersonal interactions. Based on online "traces" of Sina micro-blog users' interactions in the last two weeks, respondents in our questionnaire survey were required to record and answer questions of (1) who did you interact more often, locals or non-locals and (2) who did you interact more often, acquaintances or strangers in real life. Answers were used in our analysis of the role of spatial distance and relational distance in online social networks. Our findings show that (1) there is a clear tendency of respondents interacting with locals and acquaintances in their real life; (2) respondents' tendency to interact with locals and acquaintances is impacted by their socioeconomic traits, living environment, and information and communication technologies use; (3) theoretically online social networking sites enable users to overcome the distance decay effects and thereby to enlarge their social networks. However, spatial and relational distances sustained the social networks in real life in interpersonal interactions in online social networks.
[本文引用: 2]
,
[本文引用: 2]
,
DOI:10.1016/j.cities.2018.07.013URL [本文引用: 1]
[本文引用: 3]
,
[本文引用: 3]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1002/1097-4679(194910)5:4<409::aid-jclp2270050414>3.0.co;2-jURLPMID:15406576 [本文引用: 1]
,
DOI:10.1111/tesg.2016.107.issue-3URL [本文引用: 1]
,
DOI:10.1177/0042098010377363URL [本文引用: 3]
,
[本文引用: 1]
,
DOI:10.1111/j.0020-2754.1998.00291.xURL [本文引用: 1]
DOI:10.11821/xb200403015URL [本文引用: 2]
Advanced information and telecommunication technology has brought human being into a new information age, resulting in the emerging of an informational, global, and networked society. In the 1990s, the rapid growth of the Internet not only had strong impacts on the social and economic fields, but also restructured the organizations of global physical and virtual spaces. In recent years, the scholarly research on Internet has rapidly increased in many fields such as urban geography in the western developed countries. However, little research on the cities of developing countries exists in the Internet studies literature, and almost none addresses the topic of China, despite of their obvious implications for urban development in China. This paper seeks to fill this gap and understand the impact of Internet on the urban system in China. Based on the measurement of Internet backbone networks, it analyses the spatial structure of the Internet city network and ranks these cities in China. Beijing, Shanghai and Guangzhou and their linkages constitute the core level of long-distance telecommunication network. The investments in infrastructure are rewriting the map of competitive advantage of cities. An urban network of the information network cities is emerging in which the geographical factor plays an important role.
,
DOI:10.11821/xb200403015URL [本文引用: 2]
Advanced information and telecommunication technology has brought human being into a new information age, resulting in the emerging of an informational, global, and networked society. In the 1990s, the rapid growth of the Internet not only had strong impacts on the social and economic fields, but also restructured the organizations of global physical and virtual spaces. In recent years, the scholarly research on Internet has rapidly increased in many fields such as urban geography in the western developed countries. However, little research on the cities of developing countries exists in the Internet studies literature, and almost none addresses the topic of China, despite of their obvious implications for urban development in China. This paper seeks to fill this gap and understand the impact of Internet on the urban system in China. Based on the measurement of Internet backbone networks, it analyses the spatial structure of the Internet city network and ranks these cities in China. Beijing, Shanghai and Guangzhou and their linkages constitute the core level of long-distance telecommunication network. The investments in infrastructure are rewriting the map of competitive advantage of cities. An urban network of the information network cities is emerging in which the geographical factor plays an important role.
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
URL [本文引用: 1]
URL [本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
DOI:10.3969/j.issn.1002-5006.2013.011.011URL [本文引用: 1]
Tourists overflowing during the “Golden Week” is not an uncommon situation in China today. Predicting tourist flows is significant for tourist attractions management and planning. Most existing methods rely on well-structured statistical data published by the government. This approach is limited in two aspects: 1) there may be significant delay in the predication, since governmentally published data are usually hysteretic; 2) the sample size can be small, leading to inaccurate prediction results. Recently, researchers in the economic and management domainshave started to use internet search engines as data collecting tools for economic behavior monitoring and prediction. Internet search records can reflect concerns and interests of potential tourists, and provide alarge volume of unstructured or semi-structured data for studying tourism economic behavior.This paper proposes a novel approach for predicting tourist flow based on the Baidu Index. Baidu is the global leading Chinese search engine. The Baidu Index provides search history containing different keywords on a daily basis dating back to 2006. In this paper, we conduct a case study using search data related to the Forbidden Cityfrom the Baidu Index and statistical data of tourist flows in the Forbidden City. The presented approach uses the econometric cointegration theory and Granger causality analysis to find relationships between the internet search data and the actual tourist flow. The paper compares analysis results obtained by two kinds of predictive models with or without considering Baidu Index. The study shows that there is a long-term equilibrium relationship and Granger causal relation between the observed number of tourists and a set of related keywords in the Baidu Index. It indicates a positive correlation between the increasingBaidu keyword search index and the increasingobserved tourist flow.In our study, we first build a predication model based on a autoregressive moving average (ARMA) with baseline features of visitors’ number. We then use a autoregressive distributed lag model(ARDL) by including the Baidu Index. The ARDL model improves the prediction accuracy of the training sample by 12.4%, and the testing sample by 14.5%. Our approach can predict the number of daily visitors of the Forbidden City using the one or two days lagging data from the Baidu Index, while the previous forecasting method requires data of a much longer period. In conclusion, it improves the timeliness and accuracy of the prediction, and provides tourism management departments with better evidence for decision-making.The governmentally published data can only reflect a few narrow aspects of the visitors’ needs. The large volume of various unstructured data obtained from the Internet is more comprehensive and timely. The analytical model based on these data has better precision in tourist flow prediction. Some valuable information, such as actual desire and action of visitors, which are hardly presented by the structural data, can be extracted as well. To the best of our knowledge, this paper presents the first attempt to construct a model for correlating Internet search data based on the Baidu Index and actual tourism flow, and provides a new perspective for tourist flow prediction research.
,
DOI:10.3969/j.issn.1002-5006.2013.011.011URL [本文引用: 1]
Tourists overflowing during the “Golden Week” is not an uncommon situation in China today. Predicting tourist flows is significant for tourist attractions management and planning. Most existing methods rely on well-structured statistical data published by the government. This approach is limited in two aspects: 1) there may be significant delay in the predication, since governmentally published data are usually hysteretic; 2) the sample size can be small, leading to inaccurate prediction results. Recently, researchers in the economic and management domainshave started to use internet search engines as data collecting tools for economic behavior monitoring and prediction. Internet search records can reflect concerns and interests of potential tourists, and provide alarge volume of unstructured or semi-structured data for studying tourism economic behavior.This paper proposes a novel approach for predicting tourist flow based on the Baidu Index. Baidu is the global leading Chinese search engine. The Baidu Index provides search history containing different keywords on a daily basis dating back to 2006. In this paper, we conduct a case study using search data related to the Forbidden Cityfrom the Baidu Index and statistical data of tourist flows in the Forbidden City. The presented approach uses the econometric cointegration theory and Granger causality analysis to find relationships between the internet search data and the actual tourist flow. The paper compares analysis results obtained by two kinds of predictive models with or without considering Baidu Index. The study shows that there is a long-term equilibrium relationship and Granger causal relation between the observed number of tourists and a set of related keywords in the Baidu Index. It indicates a positive correlation between the increasingBaidu keyword search index and the increasingobserved tourist flow.In our study, we first build a predication model based on a autoregressive moving average (ARMA) with baseline features of visitors’ number. We then use a autoregressive distributed lag model(ARDL) by including the Baidu Index. The ARDL model improves the prediction accuracy of the training sample by 12.4%, and the testing sample by 14.5%. Our approach can predict the number of daily visitors of the Forbidden City using the one or two days lagging data from the Baidu Index, while the previous forecasting method requires data of a much longer period. In conclusion, it improves the timeliness and accuracy of the prediction, and provides tourism management departments with better evidence for decision-making.The governmentally published data can only reflect a few narrow aspects of the visitors’ needs. The large volume of various unstructured data obtained from the Internet is more comprehensive and timely. The analytical model based on these data has better precision in tourist flow prediction. Some valuable information, such as actual desire and action of visitors, which are hardly presented by the structural data, can be extracted as well. To the best of our knowledge, this paper presents the first attempt to construct a model for correlating Internet search data based on the Baidu Index and actual tourism flow, and provides a new perspective for tourist flow prediction research.
[本文引用: 1]
,
[本文引用: 1]
URL [本文引用: 1]
,
URL [本文引用: 1]
URL [本文引用: 1]
URL [本文引用: 1]
DOI:10.11821/dlxb201702001URL [本文引用: 1]
The comprehensive regionalization of Chinese human geography is based on the rules governing regional differentiation of Chinese physical geography factors. Based on regional differences and similarities in human factors, this study divides the whole country into two levels of relatively independent, complete and organically linked human geographic units. As a fundamental, comprehensive, cutting-edge, practical and important task, the comprehensive regionalization of human geography highlights the characteristics, regional and sub-regional features, complexity and variety of spatial differences between factors of Chinese human geography. It is capable of promoting the development of human geography based on local conditions, providing basic scientific support to national and local development strategies, such as the Belt and Road Strategy, new urbanization and environmental awareness, and creating a sound geopolitical environment in key areas. Using results from existing physical and human geography zoning studies, and in accordance with the principles of synthesis, dominant factors, the relative consistency of the natural environment, the relative consistency of economic and social development, the consistency of the regional cultural landscape, the continuity of spatial distribution and the integrity of county-level administrative divisions, and taking as its basis the division of human geography into 10 major factors (natural condition, the economy, population, culture, ethnicity, agriculture, transportation, urbanization, the settlement landscape and administrative divisions), this paper constructs an index system for the comprehensive regionalization of Chinese human geography through a combination of top-down and bottom-up zoning and spatial clustering analysis. In this study, Chinese human geography is divided into eight regions (first level) and 66 sub-regions (second level). The eight human geography regions are (I) Northeast China, (II) North China, (III) East China, (IV) Central China, (V) South China, (VI) Northwest China, (VII) Southwest China, and (VIII) Qinghai and Tibet. This zoning proposal fills gaps in studies involving the non-comprehensive regionalization of Chinese human geography. Each human geography region and sub-region has different topographical, climatic, ecological, population, urbanization, economic development, settlement landscape, regional cultural and ethno-religious attributes. This proposal on the comprehensive regionalization of Chinese human geography dovetails closely with previous studies on comprehensive regionalization in Chinese physical geography, Chinese economic zoning, and Chinese agriculture zoning. It shows that, under the dual roles of nature and humans, there are certain rules of regional differentiation that govern the comprehensive regionalization of Chinese human geography.
,
DOI:10.11821/dlxb201702001URL [本文引用: 1]
The comprehensive regionalization of Chinese human geography is based on the rules governing regional differentiation of Chinese physical geography factors. Based on regional differences and similarities in human factors, this study divides the whole country into two levels of relatively independent, complete and organically linked human geographic units. As a fundamental, comprehensive, cutting-edge, practical and important task, the comprehensive regionalization of human geography highlights the characteristics, regional and sub-regional features, complexity and variety of spatial differences between factors of Chinese human geography. It is capable of promoting the development of human geography based on local conditions, providing basic scientific support to national and local development strategies, such as the Belt and Road Strategy, new urbanization and environmental awareness, and creating a sound geopolitical environment in key areas. Using results from existing physical and human geography zoning studies, and in accordance with the principles of synthesis, dominant factors, the relative consistency of the natural environment, the relative consistency of economic and social development, the consistency of the regional cultural landscape, the continuity of spatial distribution and the integrity of county-level administrative divisions, and taking as its basis the division of human geography into 10 major factors (natural condition, the economy, population, culture, ethnicity, agriculture, transportation, urbanization, the settlement landscape and administrative divisions), this paper constructs an index system for the comprehensive regionalization of Chinese human geography through a combination of top-down and bottom-up zoning and spatial clustering analysis. In this study, Chinese human geography is divided into eight regions (first level) and 66 sub-regions (second level). The eight human geography regions are (I) Northeast China, (II) North China, (III) East China, (IV) Central China, (V) South China, (VI) Northwest China, (VII) Southwest China, and (VIII) Qinghai and Tibet. This zoning proposal fills gaps in studies involving the non-comprehensive regionalization of Chinese human geography. Each human geography region and sub-region has different topographical, climatic, ecological, population, urbanization, economic development, settlement landscape, regional cultural and ethno-religious attributes. This proposal on the comprehensive regionalization of Chinese human geography dovetails closely with previous studies on comprehensive regionalization in Chinese physical geography, Chinese economic zoning, and Chinese agriculture zoning. It shows that, under the dual roles of nature and humans, there are certain rules of regional differentiation that govern the comprehensive regionalization of Chinese human geography.
[本文引用: 3]
,
[本文引用: 3]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
URL [本文引用: 1]
URL [本文引用: 1]
URL [本文引用: 1]
The rapid development of information technology, especially the use of mobile information technology recently, has shocked traditional geographic space intensely. The paper took 3G base station as a case , analyzed their distribution pattern at the national and regional level and tried to probe into the spatial development characteristics of 3G base station in China. First, the article finds that 3G base station show a uneven distribution at the national level; Next, by establishing the index system of evaluating the city mobile information infrastructure development along with other critical data, the paper classifies the selected 48 cities and summarizes their geospatial difference of 3G base station. Third, the paper finds that the scale of 3G base station in the Yangtze River Delta region has widened in recent two years and gradually matches with other indicators. Lastly, the article briefly discusses the formation mechanism of this phenomenon.
,
URL [本文引用: 1]
The rapid development of information technology, especially the use of mobile information technology recently, has shocked traditional geographic space intensely. The paper took 3G base station as a case , analyzed their distribution pattern at the national and regional level and tried to probe into the spatial development characteristics of 3G base station in China. First, the article finds that 3G base station show a uneven distribution at the national level; Next, by establishing the index system of evaluating the city mobile information infrastructure development along with other critical data, the paper classifies the selected 48 cities and summarizes their geospatial difference of 3G base station. Third, the paper finds that the scale of 3G base station in the Yangtze River Delta region has widened in recent two years and gradually matches with other indicators. Lastly, the article briefly discusses the formation mechanism of this phenomenon.