Energy and environmental unified efficiency of industrial sub-sectors and its influemcing factors in China
WANGJuan1,, ZHAOTao1,, ZHANGXiaohu2 1. College of Management and Economics, Tianjin University, Tianjin 300072, China2. College of Civil Aviation, Nanjing University of Aeronautics and Astronautic, Nanjing 210016, China 通讯作者:赵涛,E-mail:tonyzhaotju@163.com 收稿日期:2015-06-21 修回日期:2015-09-7 网络出版日期:2016-02-01 版权声明:2016《资源科学》编辑部《资源科学》编辑部 基金资助:教育部人文社会科学规划基金项目(15YJA790091).教育部哲学社会科学研究重大课题攻关项目(15JZD021) 作者简介: -->作者简介:王娟,女,山西临汾市人,博士生,主要研究方向为低碳经济与循环经济。E-mail:wangjuan_tju@163.com
关键词:工业行业;能源和环境效率;DEA模型;Truncated模型;投资策略;中国 Abstract As an energy-intensity sector, the industrial sector consumes 70% of energy and generates more than 50% of CO2 in China. According to data spanning 36 industrial sub-sectors from 2006 to 2012, we adopted a non-radial DEA model which combined Natural Disposability and Managerial Disposability to study energy and environmental unified efficiency. Input indicators including fixed assets, energy and labor were considered as inputs under Natural Disposability, and R&D investment was regarded as an input under Managerial Disposability. The government promotes R&D investment on energy-saving technology and equipment in the industrial sector in China’s National Plan on Climate Change. This study also verified whether R&D investment was effective for different industrial sub-sectors to reduce undesirable outputs based on DEA modeling. Truncated regression modeling was adopted to analyze factors driving energy and environmental unified efficiency. We found that thirty-two sub-sectors had great room to improve their energy and environmental performance except for four sub-sectors (e.g. tobacco products industry). The unified efficiency scores of three sub-sectors including the coal mining and washing industry, chemical raw materials and chemical products manufacturing industry and non-metallic mineral products industry were all below 0.8, while the non-metallic mineral industry was 0.472 in this case. In 2012, R&D investment was effective for 16 sectors including coal mining and washing industry. Energy mix, technological innovation and market competition had significant impacts on unified efficiency. The proportion of coal consumption had a negative influence on unified efficiency, and the relationship between the ratio of R&D investments and unified efficiency was positive.
Keywords:Industrial sub-sectors;Energy and environmental efficiency;DEA model;Truncated regression model;Investment strategy;China -->0 PDF (3788KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 王娟, 赵涛, 张啸虎. 2006-2012年中国工业行业能源和环境综合效率及其影响因素[J]. , 2016, 38(2): 311-320 https://doi.org/10.18402/resci.2016.02.13 WANGJuan, ZHAOTao, ZHANGXiaohu. Energy and environmental unified efficiency of industrial sub-sectors and its influemcing factors in China[J]. 资源科学, 2016, 38(2): 311-320 https://doi.org/10.18402/resci.2016.02.13
以中国工业36个子行业2006-2012年的数据为基础,根据模型(1)和模型(3)计算得到各子行业的能源和环境综合效率值以及相应的投资策略,结果如表2所示。烟草制造业、黑色金属冶炼和压延加工业及计算机、通信和其他电子设备制造业和仪器仪表制造业从2006-2012年均是有效的,这些行业的垄断程度和进入壁垒都较高,同时具有较强的经济实力,企业内部新技术研发和技术改进的能力较强。接下来表现较好的行业有石油和天然气开采业、家具制造业等8个行业,其7年的综合效率平均值在0.950~1.000之间。13个行业的综合效率平均值在0.900~0.950之间,例如黑色金属矿采选业和有色金属矿采选业等。煤炭开采和洗选业、化学原料和化学制品制造业以及非金属矿物制品业表现最差,其综合效率均值分别为0.779、0.683和0.472。其中煤炭开采和洗选业由于行业规模不断扩大,竞争日益激烈,导致供求不平衡,自2010年以来产业附加值逐年下降,环境污染较大,所以其综合效率较低。其余8个行业的综合效率均值在0.800到0.900之间,例如石油加工、炼焦和核燃料加工业仅为0.810,其为高耗能高污染的资源型产业,在节能减排方面仍需加强。由分析可以看出,只有4个行业位于前沿面上,其余32个行业均需要进一步提高自身的效率值,尤其煤炭开采和洗选业、化学原料和化学制品制造业以及非金属矿物制品业等三个行业具有很大改善空间。可见,国家提出的一系列政策和项目的完成对于提高能源和环境绩效仍需继续践行。 显示原图|下载原图ZIP|生成PPT 图12006-2012年中国工业三大子部门与工业综合效率对比 -->Figure 1Comparison of unified efficiency among three sub-sectors and the whole industrial sector from 2006 to 2012 -->
图1为采矿业、制造业和电力、热力、燃气及水生产和供应业三个部门以及工业整个行业2006-2012年综合效率均值的对比及其变化趋势。总体来看,电力、热力、燃气及水生产和供应业表现最好,且效率值从2006-2012年均高于工业整个行业,此外在2006年、2007年和2012年均为有效。制造业2006-2012年的效率值均较低,并且均低于工业整个行业的平均值。因为制造业包含很多高碳行业,整体重制造、轻研发,技术开发和技术创新能力较弱,给环境带来较大压力,加之中国劳动力成本低,发达国家把大量高污染的制造业转移到中国加剧了中国的环境问题。采矿业2006-2012年的效率值介于制造业和电力、热力、燃气及水生产和供应业之间,并且均高于工业整个行业。因此,在效率改善方面应该将重点放在制造业上。从变化趋势方面讲,没有呈现明显的逐渐升高或者逐渐降低的趋势,但有一定的波动性。 Table 3 表3 表3中国工业能源和环境综合效率影响因素及其计算方法 Table 3Influence factors and computational method of unified energy and environmental efficiency of China’s industrial sector
煤炭开采和洗选业、化学原料和化学制品制造业以及非金属矿物制品业是中国工业各子行业中能源和环境绩效最差的行业,将这些高耗能行业作为重点改革对象,提出以下政策建议: (1)煤炭开采和洗选业要加快采用高效采掘、运输、洗选工艺和设备,加快煤层气抽采利用,推广应用二氧化碳驱煤层气技术。 (2)中国应该继续加大结构调整力度,引导基础化学原料制造行业优化升级,在《石油和化学工业“十二五”发展规划》[23]的基础上,对化学原料和化学制品制造业的部分产能过剩产业实施严格的总量控制措施;优化非金属矿物制品品种结构,从而降低单位产品二氧化碳排放强度。 (3)政府需重点推进电力、钢铁、建材、有色、化工和石化等高能耗、高碳行业重大节能技术与装备研发,开展能源梯级综合利用技术研发,同时控制其产能过度扩张,提高新建项目准入门槛,制定重点行业单位产品温室气体排放标准。优化工业企业空间布局,在符合国家产业政策的前提下,鼓励高碳行业通过区域有序转移实现集群发展。 The authors have declared that no competing interests exist.
Liu LC, Liang QM, WangQ.Accounting for China's regional carbon emissions in 2002 and 2007: Production-based versus consumption-based principles [J]. , 2015, 103:384-392. [本文引用: 1]
WangK, Wei YM.China’s regional industrial energy efficiency and carbon emissions abatement costs [J]. , 2014, 130: 617-631. [本文引用: 2]
[4]
KeJ, PriceL, OhshitaS, et al.China's industrial energy consumption trends and impacts of the top-1000 enterprises energy-saving program and the ten key energy-saving projects [J]. , 2012, 50: 562-569. [本文引用: 1]
[5]
Wang ZH, Zeng HL, Wei YM, et al.Regional total factor energy efficiency: An empirical analysis of industrial sector in China [J]. , 2012, 97(9): 115-123. [本文引用: 1]
[LiL, Han LY.Study on the efficiency evaluation of China’s industrial development based on the energy-economics-environment DEA model [J]. , 2008, 28(5): 93-95.] [本文引用: 2]
[Wang KL, Yang BC, YangL.Analysis on China’s energy efficiency and potentials of energy conservation and emissions reduction from the perspective of environmental impact [J]. , 2012, 24(8): 40-50.] [本文引用: 1]
[MengX, Kong QX, Wang LJ.Regional disparity analysis of industrial energy efficiency in double triangle deltas [J]. , 2013, 35(6):1202-1210.] [本文引用: 2]
[SUNGuangsheng, YANGXianming, HUANGYi.Industrial energy efficiency in China (1987-2005)-trend, conservation potential and influential factors [J]. , 2012, (11): 29-39.] [本文引用: 1]
[12]
LiH, ShiJ.Energy efficiency analysis on Chinese industrial sectors: An improved Super-SBM model with undesirable outputs [J]. , 2014, 65(4): 97-107. [本文引用: 2]
[13]
SueyoshiT, GotoM.Investment strategy for sustainable society by development of regional economies and prevention of industrial pollutions in Japanese manufacturing sectors [J]. , 2014, 42(1): 299-312. [本文引用: 2]
[14]
ZhouP, Ang BW, Poh KL.A survey of data envelopment analysis in energy and environmental studies [J]. , 2008, 189(1): 1-18. [本文引用: 1]
[15]
CharnerA, Cooper WW, RhodesE.Measuring the efficiency of decision making units [J]. , 1978, 2(6):429-444. [本文引用: 1]
[16]
WangK, LuB, Wei YM.China’s regional energy and environmental efficiency: A range-adjusted measure based analysis [J]. , 2013, 112:1403-1415. [本文引用: 1]
[17]
SimarL, Wilson PW.Estimation and inference in two-stage, semi-parametric models of production processes [J]. , 2007, 136(1):31-64. [本文引用: 1]
[18]
WijesiriM, ViganòL, MeoliM.Efficiency of microfinance institutions in Sri Lanka: A two-stage double bootstrap DEA approach [J]. , 2015, 47: 74-83. [本文引用: 1]
[19]
Lee BL, Worthington AC.Technical efficiency of mainstream airlines and low-cost carriers: New evidence using bootstrap data envelopment analysis truncated regression [J]. , 2014, 38(3): 15-20. [本文引用: 1]
[Wang SS, Qu XE.Research on total factor energy efficiency change of China manufacturing industry considering environmental effects: Based on DEA-Malmquist index empirical study [J]. , 2011, 21(8): 130-137.]