The regulatory mechanisms of behavioral and cognitive aging
Jie Yuan,1,2, Shiqing Cai1,21. Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China 2. CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
Supported by the National Natural Science Foundation of China No.91949206
作者简介 About authors 袁洁,2010年毕业于华中科技大学生命科学与技术学院,获理学学士学位。2010—2018年就读于中国科学院大学,在神经科学研究所离子通道调控研究组攻读博士学位,导师为蔡时青研究员。目前在美国约翰霍普金斯大学接受博士后训练。博士期间主要探究健康衰老的调控机制。通过全基因组RNAi筛选,找到一系列调控衰老相关行为退化的候选基因,揭示了新的神经系统衰老的基因调控网络;从中鉴定了两个全新的抗衰老基因靶标,并详细阐明了它们以及它们在哺乳动物中的同源基因在衰老相关行为和认知功能退化中的作用,为如何实现健康衰老提供了全新的线索;此外,还揭示了表观遗传抑制线粒体功能在衰老大脑和神经退行性疾病发生和发展中发挥重要作用,为老年性疾病的干预方法开发提供了方向。博士论文《表观遗传调控因子BAZ-2和SET-6调节衰老的机制研究》获得2020年中国科学院优秀博士学位论文。
Abstract With the increase of life expectancy, the world’s population is aging rapidly. Previous work in the field of aging greatly increases our understanding of biological mechanisms underlying longevity. Researchers have unraveled a number of longevity pathways conserved from yeast to mammals. However, recent evidence shows that mechanisms regulating the life span and those regulating age-related behavioral decline could be dissociated. The regulatory mechanisms underlying behavioral and cognitive aging is largely unknown. Previous work has described a significant age-related decline in cognitive behaviors including episodic memory, working memory, processing speed, as well as motor function deterioration and circadian dysfunction. With the advance of neuroscience and technology, more and more studies have focused on the age-related changes in structure and function of the brain. In this review, we briefly describe the deterioration of cognitive function and other behaviors in the aging process, and survey the role of age-related changes in brain structure and network, neuron morphology and function, transcriptome in brain and some conserved biological pathways on age-related cognitive and behavioral decline. Further studies on the mechanisms underpinning age-related cognitive and behavioral decline may provide clues not only for improving the quality of life for the ageing population, but also for developing intervention approaches for neurodegenerative diseases. Keywords:aging;cognitive function;behavioral deterioration;synapse;neurotransmitter;mitochondrion;oxidative stress;epigenetic
PDF (1100KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究. 遗传[J], 2021, 43(6): 545-570 doi:10.16288/j.yczz.21-060 Jie Yuan. The regulatory mechanisms of behavioral and cognitive aging. Hereditas(Beijing)[J], 2021, 43(6): 545-570 doi:10.16288/j.yczz.21-060
正常衰老过程中人类的行为衰退包括认知能力退化,运动能力降低和节律紊乱等。认知功能的衰退主要包括工作记忆、情节记忆、信息处理速度以及注意力等在衰老过程中显著退化。运动能力减退主要是运动速度减缓和运动协调性变差。节律紊乱主要表现为节律行为的幅度和周期长度的扰乱。大脑是行为和认知功能的控制中心,大脑衰老导致了这些行为功能的退化。 Fig. 1Age-related decline in cognitive, motor and circadian behaviors
大量研究认为衰老过程中线粒体功能降低主要由于线粒体DNA突变累积所致[151,152,153],在人类大脑衰老过程中线粒体DNA的突变确实是增加的[154,155,156]。为了研究线粒体DNA突变是不是衰老的一个重要原因,科学家构建了表达突变形式的线粒体 DNA 聚合酶(该酶只保留了DNA聚合的功能,失去了校对修复功能)的转基因小鼠模型,该转基因小鼠表现出明显的早衰表型,如毛发减少、驼背、生育力下降并且寿命显著缩短,其线粒体 DNA 突变累积明显增加,但有意思的是ROS水平和氧化损伤水平并没有增加[152,157]。值得注意的是这种转基因小鼠线粒体DNA突变累积的频率要比正常衰老过程中线粒体DNA突变累积的频率高得多[148],另外衰老大脑是伴随有ROS水平增加、氧化损伤累积的,因此正常衰老过程中线粒体DNA突变所起的作用还有待进一步研究。我们实验室的工作发现表观遗传因子BAZ2B和EHMT1可通过抑制线粒体功能相关基因的表达,从而抑制线粒体功能[158]。在衰老的大脑中这两个因子表达量增加,暗示衰老大脑中表观遗传的变化对线粒体功能缺陷有重要贡献。
中国科学院脑科学与智能技术卓越创新中心(原神经科学研究所)离子通道调控研究组于2009年组建,组长为蔡时青研究员,他于2019年获国家****科学基金资助。课题组研究方向主要包括两个方面,一方面是健康衰老的分子生物学机制研究,前期通过分析寿命与衰老相关行为退化的关系,发现有些长寿途径虽然延长了寿命但不能延缓老年动物神经递质减少以及相关的行为功能退化,提高神经递质可改善老年动物行为能力;之后以神经递质系统在衰老中的变化为衰老的标记,通过解析个体之间衰老速度差异的遗传基础,发现了一条新的胶质细胞-神经元信号通路调控衰老速度;同时进行全基因组筛选寻找调控行为退化的基因,找到一系列候选基因,阐明了两个全新的抗衰老靶标基因调节认知衰老的机制。另一方面是离子通道功能调控机制研究,利用线虫模式动物和哺乳动物细胞系,结合遗传学、生物化学、电生理等手段系统性地研究钾离子通道的表达和运输机制;构建了线虫离子通道疾病动物模型,通过小分子化合物筛选发现了可以纠正致病突变体功能的化合物,并探究其机制。实验室相关研究成果已发表在Nature、Mol Cell、Journal of Neuroscience和Nat Commun等国际著名期刊。
McCayCM, CrowellMF, MaynardLA. The effect of retarded growth upon the length of life span and upon the ultimate body size 1935. Nutrition, 1989, 5(3): 155-171; discussion 172. [本文引用: 1]
GavrilovLA, GavrilovaNS. Evolutionary theories of aging and longevity Sci World J, 2002,2:339-356. [本文引用: 1]
ShayJW, WrightWE. Hayflick, his limit, and cellular ageing Nat Rev Mol Cell Biol, 2000,1(1):72-76. [本文引用: 1]
JiangH, JuZ, RudolphKL. Telomere shortening and ageing Z Gerontol Geriatr, 2007,40(5):314-324. [本文引用: 1]
JinK. Modern biological theories of aging Aging Dis, 2010,1(2):72-74. [本文引用: 1]
KlassMR. A method for the isolation of longevity mutants in the nematode caenorhabditis elegans and initial results Mech Ageing Dev, 1983,22(3-4):279-286. [本文引用: 1]
KenyonC, ChangJ, GenschE, RudnerA, TabtiangR. A c. Elegans mutant that lives twice as long as wild type Nature, 1993,366(6454):461-464. [本文引用: 1]
KenyonCJ. The genetics of ageing Nature, 2010,464(7288):504-512. [本文引用: 1]
YeomanM, ScuttG, FaragherR. Insights into cns ageing from animal models of senescence Nat Rev Neurosci, 2012,13(6):435-445. [本文引用: 2]
WangM, GamoNJ, YangY, JinLE, WangXJ, LaubachM, MazerJA, LeeD, ArnstenAF. Neuronal basis of age-related working memory decline Nature, 2011,476(7359):210-213. [本文引用: 2]
WestRL. An application of prefrontal cortex function theory to cognitive aging Psychol Bull, 1996,120(2):272-292. [本文引用: 2]
BucknerRL. Memory and executive function in aging and ad: Multiple factors that cause decline and reserve factors that compensate Neuron, 2004,44(1):195-208. [本文引用: 2]
KirovaAM, BaysRB, LagalwarS. Working memory and executive function decline across normal aging, mild cognitive impairment, and alzheimer's disease Biomed Res Int, 2015,2015:748212. [本文引用: 1]
ZelinskiEM, BurnightKP. Sixteen-year longitudinal and time lag changes in memory and cognition in older adults Psychol Aging, 1997,12(3):503-513. [本文引用: 1]
R?nnlundM, NybergL, B?ckmanL, NilssonLG. Stability, growth, and decline in adult life span development of declarative memory: Cross-sectional and longitudinal data from a population-based study Psychol Aging, 2005,20(1):3-18. [本文引用: 1]
CarstensenLL, LockenhoffCE. Aging, emotion, and evolution: The bigger picture Ann N Y Acad Sci, 2003,1000:152-179. [本文引用: 1]
WilliamsLM, BrownKJ, PalmerD, LiddellBJ, KempAH, OlivieriG, PedutoA, GordonE. The mellow years?: Neural basis of improving emotional stability over age J Neurosci, 2006,26(24):6422-6430. [本文引用: 1]
CarstensenLL, FungHH, CharlesST. Socioemotional selectivity theory and the regulation of emotion in the second half of life Motiv Emotion, 2003,27(2):103-123. [本文引用: 1]
MattayVS, FeraF, TessitoreA, HaririAR, DasS, CallicottJH, WeinbergerDR. Neurophysiological correlates of age-related changes in human motor function Neurology, 2002,58(4):630-635. [本文引用: 1]
SeidlerRD, BernardJA, BurutoluTB, FlingBW, GordonMT, GwinJT, KwakY, LippsDB. Motor control and aging: Links to age-related brain structural, functional, and biochemical effects Neurosci Biobehav Rev, 2010,34(5):721-733. [本文引用: 2]
FaulknerJA, LarkinLM, ClaflinDR, BrooksSV. Age-related changes in the structure and function of skeletal muscles Clin Exp Pharmacol Physiol, 2007,34(11):1091-1096. [本文引用: 1]
TsukaharaS, TanakaS, IshidaK, HoshiN, KitagawaH. Age-related change and its sex differences in histoarchitecture of the hypothalamic suprachiasmatic nucleus of f344/n rats Exp Gerontol, 2005,40(3):147-155. [本文引用: 1]
RobertsDE, KillianyRJ, RoseneDL. Neuron numbers in the hypothalamus of the normal aging rhesus monkey: Stability across the adult lifespan and between the sexes J Comp Neurol, 2012,520(6):1181-1197. [本文引用: 1]
SatohA, ImaiSI, GuarenteL. The brain, sirtuins, and ageing Nat Rev Neurosci, 2017,18(6):362-374. [本文引用: 1]
ChangHC, GuarenteL. Sirt1 mediates central circadian control in the scn by a mechanism that decays with aging Cell, 2013,153(7):1448-1460. [本文引用: 2]
AndersonND, CraikFI. 50 years of cognitive aging theory J Gerontol B Psychol Sci Soc Sci, 2017,72(1):1-6. [本文引用: 1]
PerssonJ, SylvesterCY, NelsonJK, WelshKM, JonidesJ, Reuter-LorenzPA. Selection requirements during verb generation: Differential recruitment in older and younger adults Neuroimage, 2004,23(4):1382-1390. [本文引用: 1]
LoganJM, SandersAL, SnyderAZ, MorrisJC, BucknerRL. Under-recruitment and nonselective recruitment: Dissociable neural mechanisms associated with aging Neuron, 2002,33(5):827-840. [本文引用: 1]
RosenAC, PrullMW, O'HaraR, RaceEA, DesmondJE, GloverGH, YesavageJA, GabrieliJDE. Variable effects of aging on frontal lobe contributions to memory Neuroreport, 2002,13(18):2425-2428. [本文引用: 1]
Andrews-HannaJR, SnyderAZ, VincentJL, LustigC, HeadD, RaichleME, BucknerRL. Disruption of large-scale brain systems in advanced aging Neuron, 2007,56(5):924-935. [本文引用: 1]
ResnickSM, PhamDL, KrautMA, ZondermanAB, DavatzikosC. Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain J Neurosci, 2003,23(8):3295-3301. [本文引用: 1]
BurkeSN, BarnesCA. Neural plasticity in the ageing brain Nat Rev Neurosci, 2006,7(1):30-40. [本文引用: 4]
PakkenbergB, GundersenHJ. Neocortical neuron number in humans: Effect of sex and age J Comp Neurol, 1997,384(2):312-320. [本文引用: 1]
WestMJ, ColemanPD, FloodDG, TroncosoJC. Differences in the pattern of hippocampal neuronal loss in normal ageing and alzheimer's disease Lancet, 1994,344(8925):769-772. [本文引用: 1]
MerrillDA, RobertsJA, TuszynskiMH. Conservation of neuron number and size in entorhinal cortex layers ii, iii, and v/vi of aged primates J Comp Neurol, 2000,422(3):396-401. [本文引用: 1]
KeukerJI, LuitenPG, FuchsE. Preservation of hippocampal neuron numbers in aged rhesus monkeys Neurobiol Aging, 2003,24(1):157-165. [本文引用: 1]
MerrillDA, ChibaAA, TuszynskiMH. Conservation of neuronal number and size in the entorhinal cortex of behaviorally characterized aged rats J Comp Neurol, 2001,438(4):445-456. [本文引用: 1]
RappPR, GallagherM. Preserved neuron number in the hippocampus of aged rats with spatial learning deficits Proc Natl Acad Sci USA, 1996,93(18):9926-9930. [本文引用: 1]
PetersA, MorrisonJH, RoseneDL, HymanBT. Feature article: Are neurons lost from the primate cerebral cortex during normal aging? Cereb Cortex, 1998,8(4):295-300. [本文引用: 1]
SmithDE, RappPR, McKayHM, RobertsJA, TuszynskiMH. Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons J Neurosci, 2004,24(18):4373-4381. [本文引用: 1]
ScheibelME, LindsayRD, TomiyasuU, ScheibelAB. Progressive dendritic changes in aging human cortex Exp Neurol, 1975,47(3):392-403. [本文引用: 1]
NakamuraS, AkiguchiI, KameyamaM, MizunoN. Age-related changes of pyramidal cell basal dendrites in layers iii and v of human motor cortex: A quantitative golgi study Acta Neuropathol, 1985,65(3-4):281-284. [本文引用: 1]
de BrabanderJM, KramersRJ, UylingsHB. Layer- specific dendritic regression of pyramidal cells with ageing in the human prefrontal cortex Eur J Neurosci, 1998,10(4):1261-1269. [本文引用: 1]
PetersA, SetharesC, MossMB. The effects of aging on layer 1 in area 46 of prefrontal cortex in the rhesus monkey Cereb Cortex, 1998,8(8):671-684. [本文引用: 1]
MarkhamJA, JuraskaJM. Aging and sex influence the anatomy of the rat anterior cingulate cortex Neurobiol Aging, 2002,23(4):579-588. [本文引用: 1]
HallTC, MillerAKH, CorsellisJAN. Variations in human purkinje-cell population according to age and sex Neuropath Appl Neuro, 1975,1(3):267-292. [本文引用: 1]
AndersenBB, GundersenHJ, PakkenbergB. Aging of the human cerebellum: A stereological study J Comp Neurol, 2003,466(3):356-365. [本文引用: 1]
NandyK. Morphological changes in the cerebellar cortex of aging macaca nemestrina Neurobiol Aging, 1981,2(1):61-64. [本文引用: 1]
RogersJ, ZornetzerSF, BloomFE, MervisRE. Senescent microstructural changes in rat cerebellum Brain Res, 1984,292(1):23-32. [本文引用: 1]
SturrockRR. Changes in neuron number in the cerebellar cortex of the ageing mouse J Hirnforsch, 1989,30(4):499-503. [本文引用: 1]
Woodruff-PakDS, FoyMR, AkopianGG, LeeKH, ZachJ, NguyenKP, ComalliDM, KennardJA, AgelanA, ThompsonRF. Differential effects and rates of normal aging in cerebellum and hippocampus Proc Natl Acad Sci USA, 2010,107(4):1624-1629. [本文引用: 1]
ZhangC, HuaT, ZhuZ, LuoX. Age-related changes of structures in cerebellar cortex of cat J Biosci, 2006,31(1):55-60. [本文引用: 1]
QuackenbushLJ, NgoH, PentneyRJ. Evidence for nonrandom regression of dendrites of purkinje neurons during aging Neurobiol Aging, 1990,11(2):111-115. [本文引用: 1]
PetersA, SetharesC, LuebkeJI. Synapses are lost during aging in the primate prefrontal cortex Neuroscience, 2008,152(4):970-981. [本文引用: 1]
DumitriuD, HaoJ, HaraY, KaufmannJ, JanssenWG, LouW, RappPR, MorrisonJH. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment J Neurosci, 2010,30(22):7507-7515. [本文引用: 1]
ArnstenAF, PaspalasCD, GamoNJ, YangY, WangM. Dynamic network connectivity: A new form of neuroplasticity Trends Cogn Sci, 2010,14(8):365-375. [本文引用: 1]
UemuraE. Age-related changes in the subiculum of macaca mulatta: Synaptic density Exp Neurol, 1985,87(3):403-411. [本文引用: 2]
AdamsMM, DonohueHS, LinvilleMC, IversenEA, NewtonIG, Brunso-BechtoldJK. Age-related synapse loss in hippocampal ca3 is not reversed by caloric restriction Neuroscience, 2010,171(2):373-382. [本文引用: 1]
GeinismanY, GaneshinaO, YoshidaR, BerryRW, DisterhoftJF, GallagherM. Aging, spatial learning, and total synapse number in the rat ca1 stratum radiatum Neurobiol Aging, 2004,25(3):407-416. [本文引用: 1]
NicholsonDA, YoshidaR, BerryRW, GallagherM, GeinismanY. Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments J Neurosci, 2004,24(35):7648-7653. [本文引用: 1]
MorrisonJH, BaxterMG. The ageing cortical synapse: Hallmarks and implications for cognitive decline Nat Rev Neurosci, 2012,13(4):240-250. [本文引用: 1]
BondareffW, GeinismanY. Loss of synapses in the dentate gyrus of the senescent rat Am J Anat, 1976,145(1):129-136. [本文引用: 1]
GeinismanY, BondareffW, DodgeJT. Partial deafferentation of neurons in the dentate gyrus of the senescent rat Brain Res, 1977,134(3):541-545. [本文引用: 1]
FanWJ, YanMC, WangL, SunYZ, DengJB, DengJX. Synaptic aging disrupts synaptic morphology and function in cerebellar purkinje cells Neural Regen Res, 2018,13(6):1019-1025. [本文引用: 1]
Cruz-SánchezFF, CardozoA, TolosaE. Neuronal changes in the substantia nigra with aging: A golgi study J Neuropathol Exp Neurol, 1995,54(1):74-81. [本文引用: 1]
ItzevD, LolovaI, LolovS, UsunoffKG. Age-related changes in the synapses of the rat's neostriatum Arch Physiol Biochem, 2001,109(1):80-89. [本文引用: 1]
MarcuzzoS, Dall'oglioA, RibeiroMF, AchavalM, Rasia-FilhoAA. Dendritic spines in the posterodorsal medial amygdala after restraint stress and ageing in rats Neurosci Lett, 2007,424(1):16-21. [本文引用: 1]
RubinowMJ, DrogosLL, JuraskaJM. Age-related dendritic hypertrophy and sexual dimorphism in rat basolateral amygdala Neurobiol Aging, 2009,30(1):137-146. [本文引用: 1]
BarnesCA. Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat J Comp Physiol Psychol, 1979,93(1):74-104. [本文引用: 1]
BarnesCA , McNaughton BL. Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence J Physiol, 1980,309:473-485. [本文引用: 2]
LuebkeJI, ChangYM, MooreTL, RoseneDL. Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex Neuroscience, 2004,125(1):277-288. [本文引用: 1]
LiuJ, ZhangB, LeiH, FengZ, HsuAL, XuXZ. Functional aging in the nervous system contributes to age-dependent motor activity decline in c. Elegans Cell Metab, 2013,18(3):392-402. [本文引用: 1]
MooreCI, BrowningMD, RoseGM. Hippocampal plasticity induced by primed burst, but not long-term potentiation, stimulation is impaired in area ca1 of aged fischer 344 rats Hippocampus, 1993,3(1):57-66. [本文引用: 1]
NorrisCM, KorolDL, FosterTC. Increased susceptibility to induction of long-term depression and long-term potentiation reversal during aging J Neurosci, 1996,16(17):5382-5392. [本文引用: 1]
ListerJP, BarnesCA. Neurobiological changes in the hippocampus during normative aging Arch Neurol, 2009,66(7):829-833. [本文引用: 1]
RisL, GodauxE. Synapse specificity of long-term potentiation breaks down with aging Learn Mem, 2007,14(3):185-189. [本文引用: 1]
BackmanL, NybergL, LindenbergerU, LiSC, FardeL. The correlative triad among aging, dopamine, and cognition: Current status and future prospects Neurosci Biobehav Rev, 2006,30(6):791-807. [本文引用: 1]
ChowdhuryR, Guitart-MasipM, LambertC, DayanP, HuysQ, DüzelE, DolanRJ. Dopamine restores reward prediction errors in old age Nat Neurosci, 2013,16(5):648-653. [本文引用: 1]
KarrerTM, JosefAK, MataR, MorrisED, Samanez- LarkinGR. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: A meta-analysis Neurobiol Aging, 2017,57:36-46. [本文引用: 1]
ReevesS, BenchC, HowardR. Ageing and the nigrostriatal dopaminergic system Int J Geriatr Psychiatry, 2002,17(4):359-370. [本文引用: 1]
ArnstenAF, CaiJX, SteereJC, Goldman-RakicPS. Dopamine d2 receptor mechanisms contribute to age-related cognitive decline: The effects of quinpirole on memory and motor performance in monkeys J Neurosci, 1995,15(5 Pt 1):3429-3439. [本文引用: 1]
MelanconMO, LorrainD, DionneIJ. Exercise and sleep in aging: Emphasis on serotonin Pathol Biol (Paris), 2014,62(5):276-283. [本文引用: 1]
MeltzerCC, SmithG , DeKosky ST, Pollock BG, Mathis CA, Moore RY, Kupfer DJ, Reynolds CF, 3rd. Serotonin in aging, late-life depression, and alzheimer's disease: The emerging role of functional imaging Neuropsychopharmacol, 1998,18(6):407-430. [本文引用: 2]
WesterP, HardyJA, MarcussonJ, NybergP, WinbladB. Serotonin concentrations in normal aging human brains: Relation to serotonin receptors Neurobiol Aging, 1984,5(3):199-203. [本文引用: 1]
McEnteeWJ, CrookTH. Serotonin, memory, and the aging brain Psychopharmacology (Berl), 1991,103(2):143-149. [本文引用: 1]
MiguezJM, AldegundeM, Paz-ValinasL, RecioJ, Sanchez-BarceloE. Selective changes in the contents of noradrenaline, dopamine and serotonin in rat brain areas during aging J Neural Transm (Vienna), 1999,106(11-12):1089-1098. [本文引用: 1]
PetkovVD, StanchevaSL, PetkovVV, AlovaLG. Age-related changes in brain biogenic monoamines and monoamine oxidase Gen Pharmacol, 1987,18(4):397-401. [本文引用: 1]
BhaskaranD, RadhaE. Monoamine levels and monoamine oxidase activity in different regions of rat brain as a function of age Mech Ageing Dev, 1983,23(2):151-160. [本文引用: 1]
HerreraAJ, MachadoA, CanoJ. The influence of age on neurotransmitter turnover in the rat's superior colliculus Neurobiol Aging, 1991,12(4):289-294. [本文引用: 1]
StemmelinJ, LazarusC, CasselS, KelcheC, CasselJC. Immunohistochemical and neurochemical correlates of learning deficits in aged rats Neuroscience, 2000,96(2):275-289. [本文引用: 1]
RodriguezJJ, NoristaniHN, VerkhratskyA. The serotonergic system in ageing and alzheimer's disease Prog Neurobiol, 2012,99(1):15-41. [本文引用: 1]
KarrerTM , McLaughlin CL, Guaglianone CP, Samanez-Larkin GR. Reduced serotonin receptors and transporters in normal aging adults: A meta-analysis of pet and spect imaging studies Neurobiol Aging, 2019,80:1-10. [本文引用: 1]
FazioP, SchainM, VarnasK, HalldinC, FardeL, VarroneA. Mapping the distribution of serotonin transporter in the human brainstem with high-resolution pet: Validation using postmortem autoradiography data Neuroimage, 2016,133:313-320. [本文引用: 1]
YamamotoM, SuharaT, OkuboY, IchimiyaT, SudoY, InoueM, TakanoA, YasunoF, YoshikawaK, TanadaS. Age-related decline of serotonin transporters in living human brain of healthy males Life Sci, 2002,71(7):751-757. [本文引用: 1]
WongDF, Wagner JrHN, DannalsRF, LinksJM, FrostJJ, RavertHT, WilsonAA, RosenbaumAE, GjeddeA, DouglassKH. Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain Science, 1984,226(4681):1393-1396. [本文引用: 1]
FonnumF. Glutamate: A neurotransmitter in mammalian brain J Neurochem, 1984,42(1):1-11. [本文引用: 1]
OrregoF, VillanuevaS. The chemical nature of the main central excitatory transmitter: A critical appraisal based upon release studies and synaptic vesicle localization Neuroscience, 1993,56(3):539-555. [本文引用: 1]
KaiserLG, SchuffN, CashdollarN, WeinerMW. Age-related glutamate and glutamine concentration changes in normal human brain: 1h mr spectroscopy study at 4 t Neurobiol Aging, 2005,26(5):665-672. [本文引用: 1]
ZahrNM, MayerD, RohlfingT, ChanraudS, GuM, SullivanEV, PfefferbaumA. In vivo glutamate measured with magnetic resonance spectroscopy: Behavioral correlates in aging Neurobiol Aging, 2013,34(4):1265-1276. [本文引用: 1]
SegoviaG, PorrasA, Del ArcoA, MoraF. Glutamatergic neurotransmission in aging: A critical perspective Mech Ageing Dev, 2001,122(1):1-29. [本文引用: 1]
SaransaariP, OjaSS. Age-related changes in the uptake and release of glutamate and aspartate in the mouse brain Mech Ageing Dev, 1995,81(2-3):61-71. [本文引用: 1]
NajlerahimA, FrancisPT, BowenDM. Age-related alteration in excitatory amino acid neurotransmission in rat brain Neurobiol Aging, 1990,11(2):155-158. [本文引用: 1]
ClaytonDA, GrosshansDR, BrowningMD. Aging and surface expression of hippocampal nmda receptors J Biol Chem, 2002,277(17):14367-14369. [本文引用: 1]
MagnussonKR, BrimBL, DasSR. Selective vulnerabilities of n-methyl-d-aspartate (nmda) receptors during brain aging Front Aging Neurosci, 2010,2:11. [本文引用: 1]
MagnussonKR, CotmanCW. Age-related changes in excitatory amino acid receptors in two mouse strains Neurobiol Aging, 1993,14(3):197-206. [本文引用: 1]
YangYJ, ChenHB, WeiB, WangW, ZhouPL, ZhanJQ, HuMR, YanK, HuB, YuB. Cognitive decline is associated with reduced surface glur1 expression in the hippocampus of aged rats Neurosci Lett, 2015,591:176-181. [本文引用: 1]
MagnussonKR. Aging of glutamate receptors: Correlations between binding and spatial memory performance in mice Mech Ageing Dev, 1998,104(3):227-248. [本文引用: 1]
ParedesRG, AgmoA. Gaba and behavior: The role of receptor subtypes Neurosci Biobehav Rev, 1992,16(2):145-170. [本文引用: 1]
GaoF, EddenRA, LiM, PutsNA, WangG, LiuC, ZhaoB, WangH, BaiX, ZhaoC, WangX, BarkerPB. Edited magnetic resonance spectroscopy detects an age-related decline in brain gaba levels Neuroimage, 2013,78:75-82. [本文引用: 1]
PetersA. Structural changes that occur during normal aging of primate cerebral hemispheres Neurosci Biobehav Rev, 2002,26(7):733-741. [本文引用: 1]
PetraliaRS, MattsonMP, YaoPJ. Communication breakdown: The impact of ageing on synapse structure Ageing Res Rev, 2014,14:31-42. [本文引用: 1]
LuT, PanY, KaoSY, LiC, KohaneI, ChanJ, YanknerBA. Gene regulation and DNA damage in the ageing human brain Nature, 2004,429(6994):883-891. [本文引用: 2]
McCarrollSA, MurphyCT, ZouS, PletcherSD, ChinCS, JanYN, KenyonC, BargmannCI, LiH. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging Nat Genet, 2004,36(2):197-204. [本文引用: 1]
WruckW, AdjayeJ. Meta-analysis of human prefrontal cortex reveals activation of gfap and decline of synaptic transmission in the aging brain Acta Neuropathol Commun, 2020,8(1):26. [本文引用: 1]
HamS, LeeSV. Advances in transcriptome analysis of human brain aging Exp Mol Med, 2020,52(11):1787-1797. [本文引用: 1]
FraserHB, KhaitovichP, PlotkinJB, P??boS, EisenMB. Aging and gene expression in the primate brain PLoS Biol, 2005,3(9):e274. [本文引用: 1]
LeeCK, WeindruchR, ProllaTA. Gene-expression profile of the ageing brain in mice Nat Genet, 2000,25(3):294-297. [本文引用: 1]
JiangCH, TsienJZ, SchultzPG, HuY. The effects of aging on gene expression in the hypothalamus and cortex of mice Proc Natl Acad Sci USA, 2001,98(4):1930-1934. [本文引用: 1]
MengS, XiaWC, PanM, JiaYJ, HeZL, GeW. Proteomics profiling and pathway analysis of hippocampal aging in rhesus monkeys BMC Neurosci, 2020,21(1):2. [本文引用: 1]
LiYC, YuHT, ChenCY, LiSP, ZhangZJ, XuH, ZhuFQ, LiuJJ, SpencerPS, DaiZL, YangXF. Proteomic profile of mouse brain aging contributions to mitochondrial dysfunction, DNA oxidative damage, loss of neurotrophic factor, and synaptic and ribosomal proteins Oxid Med Cell Longev, 2020,2020:5408452. [本文引用: 1]
VanguilderHD, FreemanWM. The hippocampal neuroproteome with aging and cognitive decline: Past progress and future directions Front Aging Neurosci, 2011,3:8. [本文引用: 1]
CribbsDH, BerchtoldNC, PerreauV, ColemanPD, RogersJ, TennerAJ, CotmanCW. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: A microarray study J Neuroinflammation, 2012,9:179. [本文引用: 1]
LiangWS, ReimanEM, VallaJ, DunckleyT, BeachTG, GroverA, NiedzielkoTL, SchneiderLE, MastroeniD, CaselliR, KukullW, MorrisJC, HuletteCM, SchmechelD, RogersJ, StephanDA. Alzheimer's disease is associated with reduced expression of energy metabolism genes neurons Proc Natl Acad Sci USA, 2008,105(11):4441-4446. [本文引用: 1]
MillerJA, OldhamMC, GeschwindDH. A systems level analysis of transcriptional changes in alzheimer's disease and normal aging J Neurosci, 2008,28(6):1410-1420. [本文引用: 1]
MattsonMP, GleichmannM, ChengA. Mitochondria in neuroplasticity and neurological disorders Neuron, 2008,60(5):748-766. [本文引用: 1]
López-OtínC, BlascoMA, PartridgeL, SerranoM, KroemerG. The hallmarks of aging Cell, 2013,153(6):1194-1217. [本文引用: 1]
HaraY, YukF, PuriR, JanssenWGM, RappPR, MorrisonJH. Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment Proc Natl Acad Sci USA, 2014,111(1):486-491. [本文引用: 1]
NavarroA, BoverisA. The mitochondrial energy transduction system and the aging process Am J Physiol Cell Physiol, 2007,292(2):C670-686. [本文引用: 4]
NavarroA, BoverisA. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging Am J Physiol Regul Integr Comp Physiol, 2004,287(5):R1244-1249. [本文引用: 1]
ShigenagaMK, HagenTM, AmesBN. Oxidative damage and mitochondrial decay in aging Proc Natl Acad Sci USA, 1994,91(23):10771-10778. [本文引用: 1]
VenkateshappaC, HarishG, MahadevanA, Srinivas BharathMM, ShankarSK. Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: Implications for neurodegeneration in alzheimer's disease Neurochem Res, 2012,37(8):1601-1614. [本文引用: 1]
ParadiesG, PetrosilloG, PistoleseM, RuggieroFM. The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles FEBS Lett, 2000,466(2-3):323-326. [本文引用: 1]
SunN, YouleRJ, FinkelT. The mitochondrial basis of aging Mol Cell, 2016,61(5):654-666. [本文引用: 2]
MouchiroudL, HoutkooperRH, MoullanN, KatsyubaE, RyuD , CantóC, Mottis A, Jo YS, Viswanathan M, Schoonjans K, Guarente L, Auwerx J. The nad(+)/ sirtuin pathway modulates longevity through activation of mitochondrial upr and foxo signaling Cell, 2013,154(2):430-441. [本文引用: 2]
ZhaoZZ, YuZY, HouYX, ZhangL, FuAL. Improvement of cognitive and motor performance with mitotherapy in aged mice Int J Biol Sci, 2020,16(5):849-858. [本文引用: 1]
LinMT, BealMF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases Nature, 2006,443(7113):787-795. [本文引用: 1]
KujothGC, HionaA, PughTD, SomeyaS, PanzerK, WohlgemuthSE, HoferT, SeoAY, SullivanR, JoblingWA, MorrowJD, Van RemmenH, SedivyJM, YamasobaT, TanokuraM, WeindruchR, LeeuwenburghC, ProllaTA. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging Science, 2005,309(5733):481-484. [本文引用: 2]
KauppilaTES, KauppilaJHK, LarssonNG. Mammalian mitochondria and aging: An update Cell Metab, 2017,25(1):57-71. [本文引用: 1]
RichterC, ParkJW, AmesBN. Normal oxidative damage to mitochondrial and nuclear-DNA is extensive Proc Natl Acad Sci USA, 1988,85(17):6465-6467. [本文引用: 1]
Corral-DebrinskiM, HortonT, LottMT, ShoffnerJM, BealMF, WallaceDC. Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age Nat Genet, 1992,2(4):324-329. [本文引用: 1]
LinMT, SimonDK, AhnCH, KimLM, BealMF. High aggregate burden of somatic mtdna point mutations in aging and alzheimer's disease brain Hum Mol Genet, 2002,11(2):133-145. [本文引用: 1]
StefanatosR, SanzA. The role of mitochondrial ros in the aging brain FEBS Lett, 2018,592(5):743-758. [本文引用: 1]
ChakrabartiS, MunshiS, BanerjeeK, ThakurtaIG, SinhaM, BaghMB. Mitochondrial dysfunction during brain aging: Role of oxidative stress and modulation by antioxidant supplementation Aging Dis, 2011,2(3):242-256. [本文引用: 1]
FosterTC. Calcium homeostasis and modulation of synaptic plasticity in the aged brain Aging Cell, 2007,6(3):319-325. [本文引用: 1]
BodhinathanK, KumarA, FosterTC. Redox sensitive calcium stores underlie enhanced after hyperpolarization of aged neurons: Role for ryanodine receptor mediated calcium signaling J Neurophysiol, 2010,104(5):2586-2593. [本文引用: 1]
SerranoF, KlannE. Reactive oxygen species and synaptic plasticity in the aging hippocampus Ageing Res Rev, 2004,3(4):431-443. [本文引用: 1]
HuD, SerranoF, OuryTD, KlannE. Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase J Neurosci, 2006,26(15):3933-3941. [本文引用: 1]
LeeWH, KumarA, RaniA, HerreraJ, XuJ, SomeyaS, FosterTC. Influence of viral vector-mediated delivery of superoxide dismutase and catalase to the hippocampus on spatial learning and memory during aging Antioxid Redox Signal, 2012,16(4):339-350. [本文引用: 1]
SchaarCE, DuesDJ, SpielbauerKK, MachielaE, CooperJF, SenchukM, HekimiS, Van RaamsdonkJM. Mitochondrial and cytoplasmic ros have opposing effects on lifespan PLoS Genet, 2015,11(2):e1004972. [本文引用: 1]
BackP, BraeckmanBP, MatthijssensF. Ros in aging caenorhabditis elegans: Damage or signaling? Oxid Med Cell Longev, 2012,2012:608478. [本文引用: 1]
SenaLA, ChandelNS. Physiological roles of mitochondrial reactive oxygen species Mol Cell, 2012,48(2):158-167. [本文引用: 1]
RubinszteinDC, Mari?oG, KroemerG. Autophagy and aging Cell, 2011,146(5):682-695. [本文引用: 1]
TomaruU, TakahashiS, IshizuA, MiyatakeY, GohdaA, SuzukiS, OnoA, OharaJ, BabaT, MurataS, TanakaK, KasaharaM. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities Am J Pathol, 2012,180(3):963-972. [本文引用: 1]
JuhászG, ErdiB, SassM, NeufeldTP. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in drosophila Genes Dev, 2007,21(23):3061-3066. [本文引用: 1]
HaraT, NakamuraK, MatsuiM, YamamotoA, NakaharaY, Suzuki-MigishimaR, YokoyamaM, MishimaK, SaitoI, OkanoH, MizushimaN. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice Nature, 2006,441(7095):885-889. [本文引用: 1]
KomatsuM, WaguriS, ChibaT, MurataS, IwataJ, TanidaI, UenoT, KoikeM, UchiyamaY, KominamiE, TanakaK. Loss of autophagy in the central nervous system causes neurodegeneration in mice Nature, 2006,441(7095):880-884. [本文引用: 1]
SimonsenA, CummingRC, BrechA, IsaksonP, SchubertDR, FinleyKD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult drosophila Autophagy, 2008,4(2):176-184. [本文引用: 1]
MelendezA, TalloczyZ, SeamanM, EskelinenEL, HallDH, LevineB. Autophagy genes are essential for dauer development and life-span extension in c. Elegans Science, 2003,301(5638):1387-1391. [本文引用: 1]
HansenM, ChandraA, MiticLL, OnkenB, DriscollM, KenyonC. A role for autophagy in the extension of lifespan by dietary restriction in c. Elegans PLoS Genet, 2008,4(2):e24. [本文引用: 1]
NixonRA. The role of autophagy in neurodegenerative disease Nat Med, 2013,19(8):983-997. [本文引用: 1]
FischerDF, van DijkR, van TijnP, HoboB, VerhageMC, van der SchorsRC, LiKW, van MinnenJ, HolEM, van LeeuwenFW. Long-term proteasome dysfunction in the mouse brain by expression of aberrant ubiquitin Neurobiol Aging, 2009,30(6):847-863. [本文引用: 1]
KlaipsCL, JayarajGG, HartlFU. Pathways of cellular proteostasis in aging and disease J Cell Biol, 2018,217(1):51-63. [本文引用: 1]
WalshJG, MuruveDA, PowerC. Inflammasomes in the cns Nat Rev Neurosci, 2014,15(2):84-97. [本文引用: 1]
CondeJR, StreitWJ. Microglia in the aging brain J Neuropathol Exp Neurol, 2006,65(3):199-203. [本文引用: 1]
GossJR, FinchCE, MorganDG. Age-related changes in glial fibrillary acidic protein mrna in the mouse brain Neurobiol Aging, 1991,12(2):165-170. [本文引用: 1]
HayakawaN, KatoH, ArakiT. Age-related changes of astorocytes, oligodendrocytes and microglia in the mouse hippocampal ca1 sector Mech Ageing Dev, 2007,128(4):311-316. [本文引用: 1]
CotrinaML, NedergaardM. Astrocytes in the aging brain J Neurosci Res, 2002,67(1):1-10. [本文引用: 1]
MenetV, GimenezYRM, SandillonF, PrivatA. Gfap null astrocytes are a favorable substrate for neuronal survival and neurite growth Glia, 2000,31(3):267-272. [本文引用: 1]
SatohA, ImaiS, GuarenteL. The brain, sirtuins, and ageing Nat Rev Neurosci, 2017,18(6):362-374. [本文引用: 2]
HefendehlJK, NeherJJ, SühsRB, KohsakaS, SkodrasA, JuckerM. Homeostatic and injury-induced microglia behavior in the aging brain Aging Cell, 2014,13(1):60-69. [本文引用: 1]
WongWT. Microglial aging in the healthy cns: Phenotypes, drivers, and rejuvenation Front Cell Neurosci, 2013,7:22. [本文引用: 1]
PetersA, JosephsonK, VincentSL. Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesusmonkey cerebral cortex Anat Rec, 1991,229(3):384-398. [本文引用: 1]
LoaneDJ, DeighanBF, ClarkeRM, GriffinRJ, LynchAM, LynchMA. Interleukin-4 mediates the neuroprotective effects of rosiglitazone in the aged brain Neurobiol Aging, 2009,30(6):920-931. [本文引用: 1]
DownerEJ, CowleyTR, LyonsA, MillsKH, BerezinV, BockE, LynchMA. A novel anti-inflammatory role of ncam-derived mimetic peptide, fgl Neurobiol Aging, 2010,31(1):118-128. [本文引用: 1]
ChristensenK, JohnsonTE, VaupelJW. The quest for genetic determinants of human longevity: Challenges and insights Nat Rev Genet, 2006,7(6):436-448. [本文引用: 1]
Brooks-WilsonAR. Genetics of healthy aging and longevity Hum Genet, 2013,132(12):1323-1338. [本文引用: 1]
GoldbergTE, WeinbergerDR. Genes and the parsing of cognitive processes Trends Cogn Sci, 2004,8(7):325-335. [本文引用: 2]
HarrisSE, DearyIJ. The genetics of cognitive ability and cognitive ageing in healthy older people Trends Cogn Sci, 2011,15(9):388-394. [本文引用: 1]
Tapia-ArancibiaL, AliagaE, SilholM, ArancibiaS. New insights into brain bdnf function in normal aging and alzheimer disease Brain Res Rev, 2008,59(1):201-220. [本文引用: 1]
GooneyM, MessaoudiE, MaherFO, BramhamCR, LynchMA. Bdnf-induced ltp in dentate gyrus is impaired with age: Analysis of changes in cell signaling events Neurobiol Aging, 2004,25(10):1323-1331. [本文引用: 1]
WisdomNM, CallahanJL, HawkinsKA. The effects of apolipoprotein e on non-impaired cognitive functioning: A meta-analysis Neurobiol Aging, 2011,32(1):63-74. [本文引用: 1]
HerskindAM , McGue M, Holm NV, Sorensen TI, Harvald B, Vaupel JW. The heritability of human longevity: A population-based study of 2872 danish twin pairs born 1870-1900 Hum Genet, 1996,97(3):319-323. [本文引用: 1]
vBHJ, IachineI, SkyttheA, VaupelJW, McGueM, KoskenvuoM, KaprioJ, PedersenNL, ChristensenK. Genetic influence on human lifespan and longevity Hum Genet, 2006,119(3):312-321. [本文引用: 1]
ShadyabAH , LaCroix AZ. Genetic factors associated with longevity: A review of recent findings Ageing Res Rev, 2015,19:1-7. [本文引用: 1]
NewmanAB, MurabitoJM. The epidemiology of longevity and exceptional survival Epidemiol Rev, 2013,35:181-197. [本文引用: 1]
GurlandBJ, PageWF, PlassmanBL. A twin study of the genetic contribution to age-related functional impairment J Gerontol A Biol Sci Med Sci, 2004,59(8):859-863. [本文引用: 1]
AkbarianS, BeeriMS, HaroutunianV. Epigenetic determinants of healthy and diseased brain aging and cognition JAMA Neurol, 2013,70(6):711-718. [本文引用: 1]
HorvathS, RajK. DNA methylation-based biomarkers and the epigenetic clock theory of ageing Nat Rev Genet, 2018,19(6):371-384. [本文引用: 1]
JonesMJ, GoodmanSJ, KoborMS. DNA methylation and healthy human aging Aging Cell, 2015,14(6):924-932. [本文引用: 1]
HernandezDG, NallsMA, GibbsJR , Arepalli S, van der Brug M, Chong S, Moore M, Longo DL, Cookson MR, Traynor BJ, Singleton AB. Distinct DNA methylation changes highly correlated with chronological age in the human brain Hum Mol Genet, 2011,20(6):1164-1172. [本文引用: 1]
NumataS, YeT, HydeTM, Guitart-NavarroX, TaoR, WiningerM, ColantuoniC, WeinbergerDR, KleinmanJE, LipskaBK. DNA methylation signatures in development and aging of the human prefrontal cortex Am J Hum Genet, 2012,90(2):260-272. [本文引用: 1]
TangB, DeanB, ThomasEA. Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders Transl Psychiatry, 2011,1:e64. [本文引用: 1]
AkbarianS, BeeriMS, HaroutunianV. Epigenetic determinants of healthy and diseased brain aging and cognition JAMA Neurol, 2013,70(6):711-718. [本文引用: 1]
HaettigJ, StefankoDP, MultaniML, FigueroaDX , McQuown SC, Wood MA. Hdac inhibition modulates hippocampus-dependent long-term memory for object location in a cbp-dependent manner Learn Mem, 2011,18(2):71-79. [本文引用: 1]
ReolonGK, MaurmannN, WereniczA, GarciaVA, SchroderN, WoodMA, RoeslerR. Posttraining systemic administration of the histone deacetylase inhibitor sodium butyrate ameliorates aging-related memory decline in rats Behav Brain Res, 2011,221(1):329-332. [本文引用: 1]
FischerA, SananbenesiF, MungenastA, TsaiLH. Targeting the correct hdac(s) to treat cognitive disorders Trends Pharmacol Sci, 2010,31(12):605-617. [本文引用: 1]
ChuangDM, LengY, MarinovaZ, KimHJ, ChiuCT. Multiple roles of hdac inhibition in neurodegenerative conditions Trends Neurosci, 2009,32(11):591-601. [本文引用: 1]
BaltanS, MurphySP, DanilovCA, BachledaA, MorrisonRS. Histone deacetylase inhibitors preserve white matter structure and function during ischemia by conserving atp and reducing excitotoxicity J Neurosci, 2011,31(11):3990-3999. [本文引用: 1]
WangCM, TsaiSN, YewTW, KwanYW, NgaiSM. Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8 Biogerontology, 2010,11(1):87-102. [本文引用: 1]
WoodJG, HillenmeyerS, LawrenceC, ChangCY, HosierS, LightfootW, MukherjeeE, JiangN, SchorlC, BrodskyAS, NerettiN, HelfandSL. Chromatin remodeling in the aging genome of drosophila Aging Cell, 2010,9(6):971-978. [本文引用: 1]
LinL, LiuA, LiHQ, FengJ, YanZ. Inhibition of histone methyltransferases ehmt1/2 reverses amyloid- beta-induced loss of ampar currents in human stem cell-derived cortical neurons J Alzheimers Dis, 2019,70(4):1175-1185. [本文引用: 1]
ZhengY, LiuAY, WangZJ, CaoQ, WangW, LinL, MaKJ, ZhangF, WeiJ, MatasE, ChengJ, ChenGJ, WangX, YanZ. Inhibition of ehmt1/2 rescues synaptic and cognitive functions for alzheimer's disease Brain, 2019,142(3):787-807. [本文引用: 1]
AndersonRM, WeindruchR. The caloric restriction paradigm: Implications for healthy human aging Am J Hum Biol, 2012,24(2):101-106. [本文引用: 1]
LeclercE, TrevizolAP, GrigolonRB, SubramaniapillaiM , McIntyre RS, Brietzke E, Mansur RB. The effect of caloric restriction on working memory in healthy non-obese adults CNS Spectr, 2020,25(1):2-8. [本文引用: 1]
WitteAV, FobkerM, GellnerR, KnechtS, Fl?elA. Caloric restriction improves memory in elderly humans Proc Natl Acad Sci USA, 2009,106(4):1255-1260. [本文引用: 1]
Dal-PanA, PifferiF, MarchalJ, PicqJL, AujardF. Cognitive performances are selectively enhanced during chronic caloric restriction or resveratrol supplementation in a primate PLoS One, 2011,6(1):e16581. [本文引用: 1]
GoodrickCL. Effects of lifelong restricted feeding on complex maze performance in rats Age, 1984,7(1):1-2. [本文引用: 1]
Fontán-LozanoA, Sáez-CassanelliJL , Inda MC, de los Santos-Arteaga M, Sierra-Domínguez SA, López-Lluch G, Delgado-García JM, Carrión AM. Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on nr2b subunits of the nmda receptor J Neurosci, 2007,27(38):10185-10195. [本文引用: 1]
HyunDH, EmersonSS, JoDG , Mattson MP, de Cabo R. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging Proc Natl Acad Sci USA, 2006,103(52):19908-19912. [本文引用: 1]
AdamsMM, ShiL, LinvilleMC, ForbesME, LongAB, BennettC, NewtonIG, CarterCS, SonntagWE, RiddleDR, Brunso-BechtoldJK. Caloric restriction and age affect synaptic proteins in hippocampal ca3 and spatial learning ability Exp Neurol, 2008,211(1):141-149. [本文引用: 1]
MattsonMP. The impact of dietary energy intake on cognitive aging Front Aging Neurosci, 2010,2:5. [本文引用: 1]
ProllaTA, MattsonMP. Molecular mechanisms of brain aging and neurodegenerative disorders: Lessons from dietary restriction Trends Neurosci, 2001,24(11 Suppl):S21-31. [本文引用: 1]
ErikssonPS, PerfilievaE, Bj?rk-ErikssonT, AlbornAM, NordborgC, PetersonDA, GageFH. Neurogenesis in the adult human hippocampus Nat Med, 1998,4(11):1313-1317. [本文引用: 1]
LeeJ, DuanW, MattsonMP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice J Neurochem, 2002,82(6):1367-1375. [本文引用: 1]
LongoVD, KennedyBK. Sirtuins in aging and age-related disease Cell, 2006,126(2):257-268. [本文引用: 1]
CohenHY, MillerC, BittermanKJ, WallNR, HekkingB, KesslerB, HowitzKT , Gorospe M, de Cabo R, Sinclair DA. Calorie restriction promotes mammalian cell survival by inducing the sirt1 deacetylase Science, 2004,305(5682):390-392. [本文引用: 1]
MichánS, LiY, ChouMM, ParrellaE, GeH, LongJM, AllardJS, LewisK, MillerM, XuW, MervisRF, ChenJ, GuerinKI, SmithLE , McBurney MW, Sinclair DA, Baudry M, de Cabo R, Longo VD. Sirt1 is essential for normal cognitive function and synaptic plasticity J Neurosci, 2010,30(29):9695-9707. [本文引用: 1]
GaoJ, WangWY, MaoYW, Gr?ffJ, GuanJS, PanL, MakG, KimD, SuSC, TsaiLH. A novel pathway regulates memory and plasticity via sirt1 and mir-134 Nature, 2010,466(7310):1105-1109. [本文引用: 1]
HerranzD, Mu?oz-MartinM, Ca?ameroM, MuleroF, Martinez-PastorB, Fernandez-CapetilloO, SerranoM. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer Nat Commun, 2010,1:3. [本文引用: 1]
NgF, WijayaL, TangBL. Sirt1 in the brain-connections with aging-associated disorders and lifespan Front Cell Neurosci, 2015,9:64. [本文引用: 1]
GomesAP, PriceNL, LingAJ, MoslehiJJ, MontgomeryMK, RajmanL, WhiteJP, TeodoroJS, WrannCD, HubbardBP, MerckenEM , Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA. Declining nad(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging Cell, 2013,155(7):1624-1638. [本文引用: 1]
YoshinoJ, MillsKF, YoonMJ, ImaiS. Nicotinamide mononucleotide, a key nad(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice Cell Metab, 2011,14(4):528-536. [本文引用: 1]
JohnsonS, WozniakDF, ImaiS. Ca1 nampt knockdown recapitulates hippocampal cognitive phenotypes in old mice which nicotinamide mononucleotide improves NPJ Aging Mech Dis, 2018,4:10. [本文引用: 1]
FerrisLT, WilliamsJS, ShenCL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function Med Sci Sports Exerc, 2007,39(4):728-734. [本文引用: 1]
CotmanCW, BerchtoldNC. Exercise: A behavioral intervention to enhance brain health and plasticity Trends Neurosci, 2002,25(6):295-301. [本文引用: 1]
Gómez-PinillaF, YingZ, RoyRR, MolteniR, EdgertonVR. Voluntary exercise induces a bdnf-mediated mechanism that promotes neuroplasticity J Neurophysiol, 2002,88(5):2187-2195. [本文引用: 1]
VaynmanS, YingZ, Gomez-PinillaF. Hippocampal bdnf mediates the efficacy of exercise on synaptic plasticity and cognition Eur J Neurosci, 2004,20(10):2580-2590. [本文引用: 1]
MoonHY, BeckeA, BerronD, BeckerB, SahN, BenoniG, JankeE, LubejkoST, GreigNH, MattisonJA , Duzel E, van Praag H. Running-induced systemic cathepsin b secretion is associated with memory function Cell Metab, 2016,24(2):332-340. [本文引用: 1]
GrossAL, MungasDM, CranePK, GibbonsLE , MacKay-Brandt A, Manly JJ, Mukherjee S, Romero H, Sachs B, Thomas M, Potter GG, Jones RN. Effects of education and race on cognitive decline: An integrative study of generalizability versus study-specific results Psychol Aging, 2015,30(4):863-880. [本文引用: 1]
ValenzuelaMJ, SachdevP. Brain reserve and dementia: A systematic review Psychol Med, 2006,36(4):441-454. [本文引用: 1]
FarmerME, KittnerSJ, RaeDS, BartkoJJ, RegierDA. Education and change in cognitive function. The epidemiologic catchment area study Ann Epidemiol, 1995,5(1):1-7. [本文引用: 1]
FratiglioniL, Paillard-BorgS, WinbladB. An active and socially integrated lifestyle in late life might protect against dementia Lancet Neurol, 2004,3(6):343-353. [本文引用: 1]
SmallBJ, DixonRA , McArdle JJ, Grimm KJ. Do changes in lifestyle engagement moderate cognitive decline in normal aging? Evidence from the victoria longitudinal study Neuropsychology, 2012,26(2):144-155. [本文引用: 1]
L?vdénM, B?ckmanL, LindenbergerU, SchaeferS, SchmiedekF. A theoretical framework for the study of adult cognitive plasticity Psychol Bull, 2010,136(4):659-676. [本文引用: 1]
MayA. Experience-dependent structural plasticity in the adult human brain Trends Cogn Sci, 2011,15(10):475-482. [本文引用: 1]
DraganskiB, GaserC, BuschV, SchuiererG, BogdahnU, MayA. Neuroplasticity: Changes in grey matter induced by training Nature, 2004,427(6972):311-312. [本文引用: 1]
KempermannG, KuhnHG, GageFH. Experience- induced neurogenesis in the senescent dentate gyrus J Neurosci, 1998,18(9):3206-3212. [本文引用: 1]
LammingDW, YeL, SabatiniDM, BaurJA. Rapalogs and mtor inhibitors as anti-aging therapeutics J Clin Invest, 2013,123(3):980-989. [本文引用: 1]
BittoA, ItoTK, PinedaVV , LeTexier NJ, Huang HZ, Sutlief E, Tung H, Vizzini N, Chen B, Smith K, Meza D, Yajima M, Beyer RP, Kerr KF, Davis DJ, Gillespie CH, Snyder JM, Treuting PM, Kaeberlein M. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice eLife, 2016,5:e16351. [本文引用: 1]
HarrisonDE, StrongR, SharpZD, NelsonJF, AstleCM, FlurkeyK, NadonNL, WilkinsonJE, FrenkelK, CarterCS, PahorM, JavorsMA, FernandezE, MillerRA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice Nature, 2009,460(7253):392-395. [本文引用: 1]
HalloranJ, HussongSA, BurbankR, PodlutskayaN, FischerKE, SloaneLB, AustadSN, StrongR, RichardsonA, HartMJ, GalvanV. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice Neuroscience, 2012,223:102-113. [本文引用: 1]
Van SkikeCE, LinAL, Roberts BurbankR, HalloranJJ, HernandezSF, CuvillierJ, SotoVY, HussongSA, JahrlingJB, JavorsMA, HartMJ, FischerKE, AustadSN, GalvanV. Mtor drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging Aging Cell, 2020,19(1):e13057. [本文引用: 1]
CaccamoA, MajumderS, RichardsonA, StrongR, OddoS. Molecular interplay between mammalian target of rapamycin (mtor), amyloid-beta, and tau: Effects on cognitive impairments J Biol Chem, 2010,285(17):13107-13120. [本文引用: 1]
SpilmanP, PodlutskayaN, HartMJ, DebnathJ, GorostizaO, BredesenD, RichardsonA, StrongR, GalvanV. Inhibition of mtor by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of alzheimer's disease PLoS One, 2010,5(4):e9979. [本文引用: 1]
TalboomJS, VelazquezR, OddoS. The mammalian target of rapamycin at the crossroad between cognitive aging and alzheimer's disease NPJ Aging Mech Dis, 2015,1:15008. [本文引用: 1]
CastellanoJM, KirbyED, Wyss-CorayT. Blood-borne revitalization of the aged brain JAMA Neurol, 2015,72(10):1191-1194. [本文引用: 1]
Wyss-CorayT. Ageing, neurodegeneration and brain rejuvenation Nature, 2016,539(7628):180-186. [本文引用: 1]
VilledaSA, LuoJ, MosherKI, ZouB, BritschgiM, BieriG, StanTM, FainbergN, DingZQ, EggelA, LucinKM, CzirrE, ParkJS, Couillard-DesprésS, AignerL, LiG, PeskindER, KayeJA, QuinnJF, GalaskoDR, XieXS, RandoTA, Wyss-CorayT. The ageing systemic milieu negatively regulates neurogenesis and cognitive function Nature, 2011,477(7362):90-94. [本文引用: 2]
KatsimpardiL, LittermanNK, ScheinPA, MillerCM, LoffredoFS, WojtkiewiczGR, ChenJW, LeeRT, WagersAJ, RubinLL. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors Science, 2014,344(6184):630-634. [本文引用: 2]
CastellanoJM, MosherKI, AbbeyRJ , McBride AA, James ML, Berdnik D, Shen JC, Zou B, Xie XS, Tingle M, Hinkson IV, Angst MS, Wyss-Coray T. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice Nature, 2017,544(7651):488-492. [本文引用: 1]