Research progress of plant cytogenetics in Jiangsu province
Haiyan Wang1, Zhiyun Gong2, Jiafu Jiang1, Baoliang Zhou1, Qunfeng Lou1, Qinghe Cao3, Mengli Xi4, Peidu Chen1, Minghong Gu2, Tianzhen Zhang6, Fadi Chen1, Jinfeng Chen1, Zongyun Li5, Xiue Wang11. State Key Laboratory of Crop Genetics & Germplasm Enhancement/JCIC-MCP, Nanjing Agricultural University, College of Agriculture, Nanjing 201195, China; 2. Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of Ministry of Education/, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China 3.Xuzhou Institute of Agricultural Sciences of the Xuhuai District, Jiangsu, Xuzhou 221131, China 4.Nanjing Forestry University, Nanjing 210037, China 5.School of Life Sciences Jiangsu Normal University, Xuzhou 221116, China 6.College of Agriculture and Biotechnology Zhejiang University, Hangzhou 310058, China
supported by the National Key Research and Development Program of China No. 2016YFD0102001.2016YFD0102001 International Cooperation and Exchange Programme of the National Natural Science Foundation of China No.31661143005 the National Natural Science Foundation of China No.31771782
作者简介 About authors 作者简介:王海燕,博士,教授,研究方向:植物分子细胞遗传学。E-mail:hywang@njau.edu.cn。
Abstract Cytogenetics was established based on the “Chromosome theory of inheritance”, proposed by Boveri and Sutton and evidenced by Morgan’s lab in early stage of the 20 th centrary. With rapid development of related research areas, especially molecular genetics, cytogenetics developed from traditional into a new era, molecular cytogenetics in late 1960s. Featured by an established technique named DNA in situ hybridization (ISH), molecular cytogenetics has been applied in various research areas. ISH provids vivid and straightforward figures showing the virtual presence of DNA, RNA or proteins. In combination with genomics and cell biology tools, ISH and derived techniques have been widely used in studies of the origin, evolution, domestication of human, animal and plant, as well as wide hybridization and chromosome engineering. The physical location and order of DNA sequences revealed by ISH enables the detection of chromosomal re-arrangments among related species and gaps of assembled genome sequences. In addition, ISH using RNA or protein probes can reveal the location and quantification of transcripted RNA or translated protein. Since the 1970s, scientists from universities or institutes belonging to the Jiangsu Society of Genetics have initiated cytogenetics researches using various plant species. In recent years, research platforms for molecular cytogenetics have also been well established in Nanjing Agricultural University, Yangzhou University, Nanjing Forestry University, Jiangsu Xuhuai Academy of Agricultural Sciences, and Jiangsu Normal University. The application of molecular cytogenetics in plant evolution, wide hybridization, chromosome engineering, chromosome biology, genomics has been successful. Significant progresses have been achieved, both in basic and applied researches. In this paper, we will review main research progresses of plant cytogenetics in Jiangsu province, and discuss the potential development of this research area. Keywords:Jiangsu Genetics Society;molecular and cytogenetics;DNA in situ hybridization;chromosome engineering;geneomics
PDF (941KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 王海燕, 龚志云, 蒋甲福, 周宝良, 娄群峰, 曹清河, 席梦利, 陈佩度, 顾铭洪, 张天真, 陈发棣, 陈劲枫, 李宗芸, 王秀娥. 江苏省植物细胞遗传学研究回顾与展望. 遗传[J], 2021, 43(5): 397-424 doi:10.16288/j.yczz.20-448 Haiyan Wang. Research progress of plant cytogenetics in Jiangsu province. Hereditas(Beijing)[J], 2021, 43(5): 397-424 doi:10.16288/j.yczz.20-448
20世纪初期,美国遗传学家Sutton和德国生物学家Boveri提出“遗传的染色体学说”,该学说的证明标志着细胞遗传学的诞生和成熟。以美国康奈尔大学为核心的科学家利用玉米作为研究对象,阐明了植物性状遗传变异的细胞学基础,建立和完善了植物细胞遗传的理论和技术体系。日本的Kihara教授和美国的Sears教授以异源六倍体小麦(Triticum aesticum L.)及其祖先种为研究对象,建立了麦类植物细胞遗传学技术,并将其应用于异源多倍体小麦的基因组分析、非整倍体创制和鉴定、小麦远缘杂交等研究,阐明了小麦3个亚基因组的起源、麦类植物不同亚基因组染色体间的部分同源关系。此后,研究者们在很多植物物种中开展了细胞遗传研究,建立了染色体核型分析、染色体构型分析和染色体分带等经典细胞遗传学核心技术,为物种的起源、系统分类、以及植物遗传改良等提供了基础的细胞学信息。伴随遗传物质的发现、DNA双螺旋结构解析、探针标记技术和显微技术等不断取得突破,分子遗传学理论和技术快速发展,并向细胞遗传学不断渗透,20世纪60年代末期美国耶鲁大学Gall等科学家在动物中建立的DNA分子原位杂交(in situ hybridization, ISH)技术,成为分子细胞遗传学这一分支学科建立的里程碑。该技术很快被用于植物细胞遗传学研究,并得到快速发展和广泛应用,为植物遗传育种、基因组学和分子生物学研究提供了直观有效的研究手段。ISH伴随相关学科的发展不断发展,杂交利用的探针分子可以是DNA、RNA和蛋白抗体;DNA探针包括基因组DNA、重复序列DNA、BAC等人工染色体克隆、单拷贝基因DNA、寡核苷酸探针库等;探针标记物包括放射性分子、半抗原、荧光素等;杂交的对象包括有丝分裂中期染色体、减数分裂粗线期或中期I染色体、间期核DNA纤维。由此建立了genomic in situ hybridization (GISH)、multi-color fluorescence in situ hybridization (FISH)、BAC-FISH、fibre-FISH、oligo-FISH、oligo-painting、immuno-staining、seqFISH、rmFISH等新技术,通过形象地展示DNA、RNA、蛋白质在细胞中的实际位置,揭示DNA序列之间的实际位置和顺序、亲缘物种间的进化关系和结构重排、基因组拼接序列的质量、转录水平RNA和翻译水平蛋白质的位置和数量变化等。
Zhang等[95]利用FISH技术研究20个甜瓜属物种的45S和5S rDNA的位点分布,发现5S rDNA位点变异明显大于45S rDNA,二者具有不同的进化模式,5S rDNA有从中间位置向端部位置进化的趋势,但保持了保守的位点数量,而45S rDNA则显示出位点数量增加的趋势,但位置相对保守;Yang等[100]利用5种不同地理来源和染色体数目的四个甜瓜属物种(C. sativus, C. hystrix, C. melo, C. anguria和 C. metuliferus)进行重复序列FISH,发现黄瓜、甜瓜和酸黄瓜的亲缘关系较近,C. anguria和C. metuliferus的亲缘关系较近,而与其他三个物种亲缘关系较远。这些研究有助于更全面地认识该属的基因组进化和系统发育关系。
利用黄瓜分子标记筛选出的黄瓜Fosmid克隆做探针进行FISH,比较其在黄瓜与甜瓜染色体的定位,发现黄瓜与甜瓜的着丝粒发生了重新定位[101]。Yang等[102]根据构建的黄瓜高密度遗传图谱和组装的黄瓜基因组草图,筛选出特异的Fosmid克隆为探针进行黄瓜和其野生变种C. sativus var. hardwickii的粗线期染色体比较涂染,研究其遗传分化,发现两个种群之间在异染色质的数量和分布以及染色体重排方面存在显著差异,研究结果支持这两个黄瓜种群的亚种地位,并表明C. sativus var. hardwickii是栽培黄瓜的祖先。
棉花染色体数量多,形态相似且较短小,未建立染色体分带等核型分析技术,因而难以准确识别特定染色体。GISH技术提供了有效鉴定手段。以野生种斯特提棉(G. sturtianum Willis)为探针,在陆地棉(G. hirsutum L)标准系TM-1体细胞有丝分裂中期染色体上进行GISH,可以鉴定出栽培棉中的外源染色体[110]。以A1基因组的阿非利加草棉(G. herbaceum L var. africanum)和C1基因组的斯特提棉两个棉种的DNA同时为探针进行GISH,可以清晰地区分At、Dt和C1基因组染色体,且重复性好,这一棉花多色GISH技术体系成功应用于种间杂种的鉴定[110]。对引自澳大利亚CSIRO的陆地棉与澳洲棉(G. australe F.v. M.) (G2基因组)六倍体杂种(基因组组成为AtAtDtDtG2G2)进行的多色GISH,可清晰地区分At、Dt和G2基因组染色体[110]。
Wang 等[111,112,113]开发了基于棉花连锁群(染色体)的特异BAC克隆,获得第一套多倍体植物四倍体棉染色体特异的BAC克隆,利用BAC-FISH杂交信号可作为染色体特异的细胞学标记,准确地识别出棉花26条染色体。Wang 等[113]利用棉花高密度遗传图谱的SSR分子标记筛选出了20个BAC克隆,与 45S 和5S rDNA相结合,构成了由22个探针混合形成的鸡尾酒式文库,以亚洲棉江陵中棉有丝分裂中期染色体为靶标,一次FISH产生的信号可以同时识别亚洲棉的13对染色体,且与陆地棉A染色体亚组的部分同源染色体一一对应,获得了亚洲棉稳定可靠的标准核型,实现了亚洲棉染色体的准确识别。
A:澳洲棉-亚洲棉人工合成六倍体(2n=AADDGG=78)的多色FISH鉴定)。红色:Digoxigenin-dUTP标记的澳洲棉(GG) (Gossypium australe);Biotin绿色亚洲棉(AA) (G. arboreum)为探针;蓝色:DAPI套染;B:北京植物园野菊(C. indicum) 5S rDNA和45S rDNA的oligo-FISH检测。蓝色:DAPI套染;红色:TAMRA标记的5S rDNA信号;绿色:FAM标记的45S rDNA信号;C:毛果杨中期染色体的oligo-FISH。红色:地高辛标记的1号染色体;绿色:生物素标记的4号染色体,黄色:生物素和地高辛标记的13号染色体。 Fig. 3Application of FISH in Gossypium, Chrysanthemum and Medicago truncatula
陈发棣等[144]通过对不同倍性的几种中国野生菊之间杂种F1减数分裂期染色体的配对分析,研究中国野生菊的亲缘关系和演化过程。发现甘菊和菊花脑虽然是两个亲缘关系较近的二倍体,但已发生了某种程度的分化;南京野菊(C. indicum)和尖叶野菊(C. indicum var. acutum)是含有相同染色体组的异源四倍体;毛华菊为异源六倍体,其染色体在减数分裂中期I(MI)均能较好地配成二价体。尖叶野菊(4x)与菊花脑(2x)、南京野菊(4x)与毛华菊(6x)的F1,染色体配对构型分别接近于9I+9II和9I+18II,表明菊花脑或其近缘种是尖叶野菊染色体组的供体之一,南京野菊或其近缘种是毛华菊两个染色体组的供体。
A: I. pes-tigridis(2n=2x=28); B: I. trifida(2n=2x=30); C: I. tabascana(2n=4x=60); D: I. batatas ‘Xushu18’(2n=6x=90)。 Fig. 4Chromosome preparation of root-tip cells at mitotic metaphase in four Ipomoea species
GillBS, FriebeB, EndoTR . Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum) , 1991,34(5):830-839. [本文引用: 1]
RayburnAL, GillBS . Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes , 1985,76(2):78-81. [本文引用: 1]
RayburnAL, GillBS . Molecular identification of the D-genome chromosomes of wheat , 1986,77(4):253-255. [本文引用: 1]
RayburnAL, GillBS . Molecular analysis of the D-genome of the Triticeae , 1987,73(3):385-388. [本文引用: 1]
MukaiY, NakaharaY, YamamotoM . Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes , 1993,36(3):489-494. [本文引用: 1]
ZhangW, ZhangRQ, FengYG, BieTD, ChenPD . Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin , 2013,58(8):890-897. [本文引用: 2]
DolezelJ, KubalakováM, PauxE, BartosJ, FeuilletC . Chromosome-based genomics in the cereals , 2007,15(1):51-66. [本文引用: 1]
YanY, LiuDJ . Production and cytogenetics of intergeneric hybrid between Roegneria ciliaris and Triticum aestivum Sci Agric Sin, 1987,20(6):17-21. [本文引用: 1]
WengYQ, LiuDJ . Morphology, scab resistance and cytogenetics of inter generic hybrids of Triticum aestivum L. with Roegneria C. Koch (Agropyron) species Sci Agric Sin, 1989,22(5):1-7. [本文引用: 1]
JiangJM, LiuDJ . Morphology and cytogenetics of intergeneric hybrid between Roegneria kamoji and Hordeum vulgare Acta Genet Sin, 1990: 373-376. [本文引用: 1]
ChenPD, WangZT, WangSL, WangL, WangYZ, LiuDJ . Transfer of useful germplasm form Leymus racemosus Lam. to common wheat. III. Development of addition lines with wheat scab resistance , 1995,22(3):206-210. [本文引用: 1]
PeiGZ, ChenPD, LiuDJ . A cytogenetic analysis of some powdery mildew resistant strains of the hybrid progeny between wheat and H. villosa J Nanjing Agric Univ, 1986,9(1):1-9. [本文引用: 1]
ChenPD, QiLL, ZhouB, ZhangSZ, LiuDJ . Development and molecular cytogenetic analysis of wheat- Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew , 1995,91(6-7):1125-1128. [本文引用: 1]
LiWL, ChenPD, QiLL, LiuDJ . Isolation, characterization and application of a species-specific repeated sequence from Haynaldia villosa , 1995,90(3-4):526-533. [本文引用: 1]
XuLY, YangJX, XuanP, LiuDJ, YangSH . Analysis the relative relationship of wheat- Thinopyron using the C-banding of pollen mother cell and ditelosomics Sci Agric Sin, 1996,29(4):23-28. [本文引用: 1]
LiuWX, ChenPD, LiuDJ . Development of Triticum aestivum-Leymus racemosus translocation lines by irradiating adult plants at meiosis Acta Bot Sin, 1999,41(5):463-467. [本文引用: 1]
QiZJ, LiuDJ, ChenPD . Development and identification of T. aestivum-S. cereale-H. villosa double translocation line 1RS·1BL, 6VS·6AL via chromosome C-banding and dual color FISH Acta Genet Sin, 2001,28(3):267-273. [本文引用: 2]
ChenFD, ChenPD, WangSL . Development of wheat-alien lines with added Leymus racemosus chromosomes and 6VS/6AL translocation chromosomes Acta Bot Sin, 2001,43(4):359-363. [本文引用: 1]
ZhuangLF, QiZJ, YingJ, ChenPD, LiuDJ . Development and identification of a set of Triticum aestivum-Thinopyrum bessarabicum disomic alien addition lines Acta Genet Sin, 2003,30(10):919-925. [本文引用: 1]
ChenPD, LiuWX, YuanJH, WangXE, ZhouB, WangSL, ZhangSZ, FengYG, YangBJ, LiuGX, LiuDJ, QiLL, ZhangP, FriebeB, GillBS . Development and characterization of wheat- Leymus racemosus translocation lines with resistance to Fusarium head blight , 2005,111(5):941-948. [本文引用: 2]
DuP, ZhuangLF, WangYZ, YuanL, WangQ, WangDR, Dawadondup, TanLJ, ShenJ, XuHB, ZhaoH, ChuCG, QiZJ,. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes , 2017,60(2):93-103. [本文引用: 2]
WangYZ . Development and characterization of small segment translocations of Thinopyrum bessarabicum and cytological mapping of interest genes[Dissertation] Nanjing Agricultural University, 2013. [本文引用: 1]
WangDR, DuP, PeiZY, ZhuangLF, QiZJ . Development and application of high resolution karyotypes of wheat “Chinese Spring” aneuploids Acta Agron Sin, 2017,43(11):1575-1587.
HuangXY, ZhuMQ, ZhuangLF, ZhangSY, WangJJ, ChenXJ, WangDR, ChenJY, BaoYG, GuoJ, ZhangJL, FengYG, ChuCG, DuP, QiZJ, WangHG, ChenPD . Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high- resolution multiplex oligonucleotide FISH , 2018,131(9):1967-1986. [本文引用: 1]
GuoJT, LeiYH, ZhangHT, SongDH, LiuX, CaoZL, ChuCG, ZhuangLF, QiZJ . Frequent variations in tandem repeats pSc200 and pSc119.2 cause rapid chromosome evolution of open-pollinated rye , 2019,39:133. [本文引用: 1]
SunHJ, SongJJ, LeiJ, SongXY, DaiKL, XiaoJ, YuanCX, AnSM, WangHY, WangXE . Construction and application of oligo-based FISH karyotype of Haynaldia villosa , 2018,45(8):463-466. [本文引用: 1]
XiaoJ, DaiKL, FuL, VránaJ, KubalákováM, WanWT, SunHJ, ZhaoJ, YuCY, WuYF, AbroukM, WangHY, Dole?elJ, WangXE . Sequencing flow-sorted short arm of Haynaldia villosa chromosome 4V provides insights into its molecular structure and virtual gene order , 2017,18(1):791. [本文引用: 1]
LeiJ, ZhouJW, SunHJ, WanWT, XiaoJ, YuanCX, KarafiátováM, Dole?elJ, WangHY, WangXE . Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat , 2020,8(4):676-681. [本文引用: 1]
SongXY, SongRR, ZhouJW, YanWK, ZhangT, SunHJ, XiaoJ, WuYF, XiML, LouQF, WangHY, WangXE . Development and application of oligonucleotide- based chromosome painting for chromosome 4D of Triticum aestivum L 2020,28(2):171-182. [本文引用: 2]
ChenPD, YouCF, HuY, ChenSW, ZhouB, CaoAZ, WangXE . Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat , 2013,31:477-484. [本文引用: 1]
YangXM, CaoAZ, SunYL, ChenPD . Tracing the location of powdery mildew resistance-related gene Stpk-V by FISH with a TAC clone in Triticum aestivum- Haynaldia villosa alien chromosome lines , 2013,58:4084-4091. [本文引用: 1]
CaoAZ, XingLP, WangXY, YangXM, WangW, SunYL, QianC, NiJL, ChenYP, LiuDJ, WangXE, ChenPD . Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat , 2011,108(19):7727-7732. [本文引用: 1]
XingLP, HuP, LiuJQ, WitekK, ZhouS, XuJF, ZhouWH, GaoL, HuangZP, ZhangRQ, WangXE, ChenPD, WangHY, JonesJDG, KarafiátováM, VránaJ, Barto?J, Dole?elJ, TianYC, WuYF, CaoAZ . Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat , 2018,11(6):874-878. [本文引用: 1]
BaoWK . Breeding of octoploid triticale Acta Genet Sin, 1974,1(1):36-49. [本文引用: 1]
ChenPD, ZhouB, QiLL, LiuDJ . Identification of wheat- Haynaldia villosa amphiploid, addition, substitution and translocation lines by in situ hybridization using biotin-labelled genomic DNA as a Probe Acta Genet Sin, 1995,22(5):380-386. [本文引用: 1]
ChenYP, WangHZ, CaoAZ, WangCM, ChenPD . Cloning of a resistance gene analog from wheat and development of a codominant PCR marker for Pm21 , 2006,48(6):715-721. [本文引用: 1]
CaoAZ, WangXE, ChenYP, ZouXW, ChenPD . A sequence-specific PCR marker linked with Pm21 distinguishes chromosomes 6AS, 6BS, 6DS of Triticum aestivum and 6VS of Haynaldia villosa , 2006,125(3):201-205. [本文引用: 1]
WangCM, BieTD, ChenQZ, CaoAZ, ChenPD . Development and application of molecular markers specific to chromosome 6VS of Haynaldia villosa Acta Agron Sin, 2007,33(10):1595-1600. [本文引用: 1]
ZhaoRH, WangHY, JiaQ, XiaoJ, YuanCX, ZhangYJ, HuQS, WangXE . Development of EST-PCR markers for the chromosome 4V of Haynaldia villosa and their application in identification of 4V chromosome structural aberrants , 2014,13(2):282-289. [本文引用: 1]
WangHY, DaiKL, XiaoJ, YuanCX, ZhaoRH, Dole?elJ, WuYF, CaoAZ, ChenPD, ZhangSZ, WangXE . Development of intron targeting (It) markers specific for chromosome arm 4VS of Haynaldia Villosa by chromosome sorting and next-generation sequencing , 2017,18(1):167. [本文引用: 1]
ZhangXD, WeiX, XiaoJ, YuanCX, WuYF, CaoAZ, XingLP, ChenPD, ZhangSZ, WangXE, WangHY . Whole genome development of intron targeting (IT) markers specific for Dasypyrum villosum chromosomes based on next-generation sequencing technology , 2017,37:115. [本文引用: 1]
SunHJ, SongJJ, XiaoJ, XuT, WeiX, YuanCX, CaoAZ, XingLP, WangHY, WangXE . Development of EST-PCR markers specific to the long arm of chromosome 6V of Dasypyrum villosum , 2018,17(8):1720-1726. [本文引用: 1]
QiLL, ChenPD, LiuDJ, ZhouB, ZhangSZ . New resource of wheat-Haynaldia villosa translocation resistant to wheat powdery mildew Crop Var Resour, 1994,2:52-53. [本文引用: 1]
BieTD, CaoYP, ChenPD . Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durum-Haynaldia villosa amphiploid , 2007,49(11):1619-1626. [本文引用: 2]
ChenSW, ChenPD, WangXE . Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line , 2008,51(4):346-352. [本文引用: 2]
QiLL, PumphreyMO, FriebeB, ZhangP, QianC, BowdenRL, RouseMN, JinY, GillBS . A novel robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat , 2011,123(1):159-167. [本文引用: 1]
ZhangRQ, FengYG, LiHF, YuanHX, DaiJL, CaoAZ, XingLP, LiHL . Cereal cyst nematode resistance gene CreV effective against Heterodera filipjevi transferred from chromosome 6VL of Dasypyrum villosum to bread wheat , 2016,36:122. [本文引用: 1]
ZhangRQ, SunBX, ChenJ, CaoAZ, XingLP, FengYG, LanCX, ChenPD . Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat , 2016,129(10):1975-1984. [本文引用: 1]
ZhaoRH, WangHY, XiaoJ, BieTD, ChengSH, JiaQ, YuanCX, ZhangRQ, CaoAZ, ChenPD, WangXE . Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa , 2013,126(12):2921-2930. [本文引用: 1]
DaiKL, ZhaoRH, ShiMM, XiaoJ, YuZY, JiaQ, WangZK, YuanCX, SunHJ, CaoAZ, ZhangRQ, ChenPD, LiYB, WangHY, WangXE . Dissection and cytological mapping of chromosome arm 4VS by the development of wheat- Haynaldia villosa structural aberration library , 2020,133(1):217-226. [本文引用: 1]
MatsumotoTE . International Rice Genome Sequencing Project. The map-based sequence of the rice genome , 2005,436:793-800. [本文引用: 1]
ChengZK, GuMH . Karyotype analysis for pachytene chromosome of indica, Japonica Rice and their hybrid Acta Genet Sin, 1994,21(5):385-392. [本文引用: 1]
ChengZ, YanH, YuH, TangS, JiangJ, GuM, ZhuL . Development and applications of a complete set of rice telotrisomics , 2001,157(1):361-368. [本文引用: 2]
TangXM, BaoWD, ZhangWL, ChengZK . Identification of chromosomes from multiple rice genomes using a universal molecular cytogenetic marker system , 2007,49(6):953-960. [本文引用: 1]
LiuXY, SunS, WuY, ZhouY, GuSW, YuHX, YiCD, GuMH, JiangJM, LiuB, ZhangT, GongZY . Dual- color oligo-FISH can reveal chromosomal variations and evolution in Oryza species , 2020,101(1):112-121. [本文引用: 2]
ChengZ, BuellCR, WingRA, GuM, JiangJ . Toward a cytological characterization of the rice genome , 2001,11(12):2133-2141. [本文引用: 1]
NakayamaS . Molecular cytological diversity in cultivated rice Oryza sativa subspecies japonica and indica , 2005,55:425-430. [本文引用: 1]
OhtsuboH, UmedaM , Ohtsubo E. Organization of DNA sequences highly repeated in tandem in rice genomes , 1991,66(3):241-254. [本文引用: 1]
FanCZ, ZhangY, YuY, RounsleyS, LongMY, WingRA . The subtelomere of Oryza sativa chromosome 3 short arm as a hot bed of new gene origination in rice , 2008,1(5):839-850. [本文引用: 1]
JiangJM, BirchlerJA, ParrottWA, DaweRK . A molecular view of plant centromeres , 2003,8(12):570-575. [本文引用: 1]
DongF, MillerJT, JacksonSA, WangGL, RonaldPC, JiangJ . Rice (Oryza sativa) centromeric regions consist of complex DNA , 1998,95(14):8135-8140. [本文引用: 1]
ChengZK, DongFG, LangdonT, OuyangS, BuellCR, GuMH, BlattnerFR, JiangJM . Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon , 2002,14(8):1691-1704. [本文引用: 2]
WuZG, FangDM, YangR, GaoF, AnXY, ZhuoXX, LiYF, YiCD, ZhangT, LiangCZ, CuiP, ChengZK, LuoQ . De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution , 2018,1:84. [本文引用: 2]
GongZY, XueC, LiuXX, ZhangML, ZhouY, YuHX, GuMH . Centromere inactivation in a dicentric rice chromosome during sexual reproduction , 2013,58(36):4602-4607. [本文引用: 1]
GongZY, YuHX, HuangJ, YiCD, GuMH . Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation , 2009,17(7):863-872. [本文引用: 2]
ZhangH, DaweRK . Total centromere size and genome size are strongly correlated in ten grass species , 2012,20(4):403-412. [本文引用: 1]
YanHH, KikuchiS, NeumannP, ZhangWL, WuYF, ChenF, JiangJM . Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice , 2010,63(3):353-365. [本文引用: 1]
WuYF, KikuchiS, YanHH, ZhangWL, RosenbaumH, IniguezAL, JiangJM . Euchromatic subdomains in rice centromeres are associated with genes and transcription , 2011,23(11):4054-4064. [本文引用: 1]
HeRF, WangYY, ShiZY, RenX, ZhuLL, WengQM, HeGC . Construction of a genomic library of wild rice and agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus , 2003,321:113-121. [本文引用: 1]
TanGX, RenX, WengQM, ShiZY, ZhuLL, HeGC . Mapping of a new resistance gene to bacterial blight in rice line introgressed from Oryza officinalis , 2004,31(7):724-729. [本文引用: 1]
HuangZ, HeG, ShuL, LiX, ZhangQ . Identification and mapping of two brown planthopper resistance genes in rice , 2001,102:929-934. [本文引用: 1]
YanHH, XiongZM, MinSK, HuHY, ZhangZT, TianSL, FuQ . The production and cytogenetical studies of Oryza sativa-Oryza eichingeri amphiploid Acta Genet Sin, 1997,24(1):30-35. [本文引用: 1]
SebastianP, SchaeferH, TelfordIRH, RennerSS . Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia , 2010,107(32):14269-14273. [本文引用: 1]
ChenJF, StaubJE, JiangJM . A reevaluation of karyotype in cucumber (Cucumis sativus L.) , 1998,45(4):301-305. [本文引用: 1]
QianCT, ChenJF, LuoXD, CaoQH, LeiC . C-banding of prometaphase chromosomes in Cucumber and the procedure for slide preparation Acta Hortic Sin, 2004,31(6):814-816. [本文引用: 1]
ZhangYX, ChengCY, LiJ, YangSQ, WangYZ, LiZA, ChenJF, LouQF . Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping , 2015,16(1):730. [本文引用: 1]
WangYZ, ZhangZT, JiaL, LiZA, LiJ, LouQF, ChenJF . Molecular and cytogenetic analyses provide evidence of the introgression of chromosomal segments from the wild Cucumis hystrix into the cultivated cucumber through the bridge of a synthetic allotetraploid , 2017,37(7):89. [本文引用: 1]
ChenJF, StauJE, AdelbergJW, JiangJM . Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization , 1999,77:389-393. [本文引用: 1]
ZhangZT, YangSQ, LiZA, ZhangYX, WangYZ, ChengCY, LiJ, ChenJF, LouQF . Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis , 2016,59(7):449-457. [本文引用: 2]
LouQF, ZhangYX, HeYH, LiJ, JiaL, ChengCY, GuanW, YangSQ, ChenJF . Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis , 2014,78(1):169-179. [本文引用: 1]
LiZA, BiYF, WangX, WangYZ, YangSQ, ZhangZT, ChenJF, LouQF . Chromosome identification in Cucumis anguria revealed by cross-species single-copy gene FISH , 2018,61(6):397-404. [本文引用: 1]
BiYF, ZhaoQZ, YanWK, LiMX, LiuYX, ChengCY, LuZ, YuXQ, LiJ, QianCT, WuYF, ChenJF, LouQF . Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in Cucumis , 2020,102(1):178-186. [本文引用: 2]
ZhaoQZ, WangYZ, BiYF, ZhaiYF, YuXQ, ChengCY, WangPQ, LiJ, LouQF, ChenJF . Oligo-painting and GISH reveal meiotic chromosome biases and increased meiotic stability in synthetic allotetraploid Cucumis ×hytivus with dysploid parental karyotypes , 2019,19(1):471. [本文引用: 2]
YangSQ, ChengCY, QinXD, YuXQ, LouQF, LiJ, QianCT, ChenJF . Comparative cyto-molecular analysis of repetitive DNA provides insights into the differential genome structure and evolution of five Cucumis species , 2019,5(5):192-204. [本文引用: 1]
HanYH, ZhangZH, LiuCX, LiuJH, HuangSW, JiangJM, JinWW . Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation , 2009,106(35):14937-14941. [本文引用: 1]
YangLM, KooDH, LiYH, ZhangXJ, LuanFS, HaveyMJ, JiangJM, WengYQ . Chromosome rearrangements during domestication of cucumber as revealed by high- density genetic mapping and draft genome assembly , 2012,71(6):895-906. [本文引用: 1]
CaoQH, ChenJF, QianCT . Identification and characterization of a Cucumber alien translocation lineCT201 possessing resistance to downy mildew Acta Hortic Sin, 2005,32(6):1098-1101. [本文引用: 1]
ChenJF, LinMS, QianCT, ZhuangFY, StephenL . Identification of Meloidogyne incognita (kofoid & white) chitwood resistance in C ucumis hystrix Chakr. and the progenies of its interspecific hybrid with cucumber( C. sativus L.) J Nanjing Agric Univ, 2001,1:21-24. [本文引用: 2]
LiMX, ZhaoQZ, LiuYX, QinXD, HuW, DavoudiM, ChenJF, LouQF . Development of alien addition lines from Cucumis hystrix in Cucumis sativus: cytological and molecular marker analyses , 2020,63(12):629-641. [本文引用: 2]
GuanB, WangK, ZhouBL, GuoWZ, ZhangTZ . Establishment of a multi-color genomic in situ hybridization technique to simultaneously discriminate the three interspecific hybrid genomes in Gossypium , 2008,50(3):345-351. [本文引用: 3]
WangK, GuoWZ, ZhangTZ . Development of one set of chromosome-specific microsatellite-containing BACs and their physical mapping in Gossypium hirsutum L , 2007,115(5):675-682. [本文引用: 1]
WangK, GuanB, GuoWZ, ZhouBL, HuY, ZhuYC, ZhangTZ . Completely distinguishing individual A-genome chromosomes and their karyotyping analysis by multiple bacterial artificial chromosome-fluorescence in situ hybridization , 2008,178(2):1117-1122. [本文引用: 1]
WangK, SongXL, HanZG, GuoWZ, YuJZ, SunJ, PanJJ, KohelRJ, ZhangTZ . Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping , 2006,113(1):73-80. [本文引用: 2]
ChenY, WangYY, ZhaoT, YangJW, FengSL, NazeerW, ZhangTZ, ZhouBL . A new synthetic amphiploid (AADDAA) between Gossypium hirsutum and G. arboreum lays the foundation for transferring resistances to verticillium and drought , 2015,10(6):e0128981. [本文引用: 1]
ChenYu, WangYY, WangK, ZhuXF, GuoWZ, ZhangTZ, ZhouBL . Construction of a complete set of alien chromosome addition lines from Gossypium australe in Gossypium hirsutum: morphological, cytological, and genotypic characterization , 2014,127(5):1105-1121. [本文引用: 1]
WangYY, FengSL, LiS, TangD, ChenY, ChenY, ZhouBL . Inducement and identification of chromosome introgression and translocation of Gossypium australe on Gossypium hirsutum , 2018,19(1):15. [本文引用: 2]
WangXX, WangYY, WangC, ChenY, ChenY, FengSL, ZhaoT, ZhouBL . Characterization of eleven monosomic alien addition lines added from Gossypium anomalum to Gossypium hirsutum using improved GISH and SSR markers , 2016,16(1):218. [本文引用: 1]
WangC . Development of alien addition lines of Gossypium hirsutum-Gossypium anomalum and evaluation of its excellent characters[Dissertation] Nanjing Agricultural University, 2018. [本文引用: 1]
TangD, FengSL, LiS, ChenY, ZhouBL . Ten alien chromosome additions of Gossypium hirsutum-Gossypium bickii developed by integrative uses of GISH and species-specific SSR markers , 2018,293(4):945-955. [本文引用: 1]
TanakaR . On the speciation and karyotypes in diploid and tetraploid species of Chrysanthemum , 1960,25(1):43-58. [本文引用: 1]
LiMX, ZhangXF, ChenJY . Cytological studies on some Chinese wild dendranthema species and chrysanthemum cultivars Acta Hortic Sin, 1983, ( 3):199-206. [本文引用: 1]
WangJW, YangJ, LiMX . The morphological variation and the karyotypical characters of Dendranthema indicum and D. lavandulifolium Acta Phytotaxon Sin, 1993,31(2):140-146. [本文引用: 1]
EndoN . The chromosome survey on the cultivated chrysanthemums, Chrysanthemum morifolium Ram , 1969,38(3):267-274. [本文引用: 1]
EndoM . On the occurrence of B chromosome in the garden chrysanthemum, Chrysanthemum morifolium Ramat , 1990,59(3):613-620. [本文引用: 1]
ChenFD, ZhaoHB, LiC, ChenSM, FangWM . Advances in cytology and molecular cytogenetics of the genus Dendranthema J Nanjing Agric Univ, 2008,31(1):118-126. [本文引用: 1]
KimJS, PakJH, SeoBB, TobeH . Karyotypes of metaphase chromosomes in diploid populations of Dendranthema zawadskii and related species ( Asteraceae) from Korea: diversity and evolutionary implications , 2003,116(1):47-54. [本文引用: 1]
LiC, ChenFD, ZhaoHB, ChenSM . Karyotype diversity of 17 chrysanthemum cultivars with small inflorescences Acta Hortic Sin, 2008,35(1):71-80. [本文引用: 1]
TangFP, ChenFD, ChenSM, TengNJ, FangWM . Intergeneric hybridization and relationship of genera within the tribe Anthemideae Cass. (I. Dendranthema crassum(Kitam.) Kitam , 2009,169:133-140. [本文引用: 1]
DengYM, ChenSM, LuAM, ChenFD, TangFP, GuanZY, TengNJ . Production and characterisation of the intergeneric hybrids between Dendranthema morifolium and Artemisia vulgaris exhibiting enhanced resistance to chrysanthemum aphid (Macrosiphoniella sanbourni) , 2010,231(3):693-703. [本文引用: 1]
QiXY, ZhangF, GuanZY, WangHB, JiangJF, ChenSM, ChenFD . Localization of 45S and 5S rDNA sites and karyotype of Chrysanthemum and its related genera by fluorescent in situ hybridization , 2015,62:164-172. [本文引用: 1]
ChenJY . Studies on the origin of Chinese florist’s chrysanthemum , 1985,167:349-361. [本文引用: 1]
DaiSL, WangWK, HuangJP . Advances of researches on phylogeny of Dendranthema and origin of chrysanthemum J Beijing Fore Univ, 2002,24(5/6):230-234. [本文引用: 1]
ChenFD, ChenPD, LiHJ . Genome analysis and their phylogenetic relationships of several wild species of Dendranthema in China Acta Hortic Sin, 1996,23(1):67-72. [本文引用: 1]
CuiNX . Studies on meiosis behaviors and genetic relationships of several Dendranthemum species and their hybrids[Dissertation] Nanjing Agricultural University, 2004. [本文引用: 1]
SongC, LiuYF, SongAP, Dong,GQ, ZhaoHB, SunW, RamakrishnanS, WangY, WangSB, LiTZ, NiuY, JiangJF, DongB, XiaY, ChenSM, HuZG, ChenFD, ChenSL . The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits , 2018,11(12):1482-1491. [本文引用: 1]
HirakawaH, SumitomoK, HisamatsuT, NaganoS, ShirasawaK, HiguchiY, KusabaM, KoshiokaM, NakanoY, YagiM, YamaguchiH, TaniguchiK, NakanoM, IsobeSN . De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis , 2019,26(3):195-203. [本文引用: 1]
LanW, ChenSM, YinDM, ChenFD . Studies on in vitro conservation of Chrysanthemum yoshinaganthum Acta Hortic Sin, 2010,37(12):2007-2016. [本文引用: 1]
XuY, ChenFD . The LT50 and cold tolerance adaptability of Chrysanthemum during a natural drop in temperature Acta Hortic Sin, 2008,35(4):559-564. [本文引用: 1]
LiN, FangWM, ChenFD, ChenSM, ChenY . Physiological indexes in florets of two winter cut chrysanthemum cultivars under low temperature and their cold tolerance Acta Bot Boreali-Occident Sin, 2010,30(4):741-746. [本文引用: 1]
SunY . Studies on aphid resistance and mechanisms in chrysanthemum and it’s related species at seedling stage [Dissertation] Nanjing Agricultural University, 2011. [本文引用: 1]
BradshawHD, CeulemansR, DavisJ, StettlerR . Emerging model systems in plant biology: poplar (Populus) as a model forest tree , 2000,19(3):306-313. [本文引用: 1]
ZhangY, ZhangSG, QiLW, ChenXQ, ChenRY, SongWQ . Poplar as a model for forest tree in genome research Chin Bull Bot, 2006,23(3):286-293. [本文引用: 1]
MaT, WangJY, ZhouGK, YueZ, HuQJ, ChenY, LiuBB, QiuQ, WangZ, ZhangJ, WangK, JiangDC, GouCY, YuLL, ZhanDL, ZhouR, LuoWC, MaH, YangYZ, PanSK, FangDM, LuoYD, WangX, WangGN , Wang, J, Wang Q, Lu X, Chen Z, Liu JC, Lu Y, Yin Y, Yang HM, Abbott RJ, Wu YX, Wan DS, Li J, Yin TM, Lascoux M, Difazio SP, Tuskan GA, Wang J, Liu JQ. Genomic insights into salt adaptation in a desert poplar , 2013,4:2797. [本文引用: 1]
MaJC, WanDS, DuanBB, BaiXT, BaiQX, ChenNN, MaT . Genome sequence and genetic transformation of a widely distributed and cultivated poplar , 2019,17(2):451-460. [本文引用: 1]
RibeiroT, Bar?oA, ViegasW, Morais-CecíliL . Molecular cytogenetics of forest trees , 2008,120(3-4):220-227. [本文引用: 1]
Islam-FaridiMN, NelsonCD, DifazioSP, GunterLE, TuskanGA . Cytogenetic analysis of Populus trichocarpa--ribosomal DNA, telomere repeat sequence, and marker-selected BACs , 2009,125(1):74-80. [本文引用: 1]
BlackburnKB, HarrisonJWH . A preliminary account of the chromosomes and chromosome behaviour in the Salicaceae , 1924,38(2):361-378. [本文引用: 1]
EinspahrDW, Van BuijtenenJP, PeckhamJR . Natural variation and heritability in triploid aspe , 1963,12(2):51-58. [本文引用: 1]
KangXY, ZhuZT, ZhangZY . Cytogenetic studies on the origin of chinese white poplar J Beijing Fore Univ, 1999,21(6):6-10. [本文引用: 1]
XinHY, WangS, LiuGX, ZhenY, ShiJS, KuangHL, XiML . Relationship between the meiosis processes of microsporocytes and morphology of male flower buds and anthers in Populus deltoides Marsh J Nanjing Forest Univ (Nat Sci Ed), 2016, ( 2):48-52. [本文引用: 1]
DongFP, HanSY, ZhangSG, QiLW, LiuB, LiXL, ChenCB . Physical mapping of 25S rDNA on metaphase chromosomes of Populus(Salicaceae) in five sections by fluorescence in situ Hybridization Acta Bot Yunnanica, 2007,29(4):423-428. [本文引用: 1]
XinHY, ZhangT, WuYF, ZhangWL, ZhangPD, XiML, JiangJM . An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting , 2020,101(2):253-264. [本文引用: 2]
XinHY, ZhangT, HanYH, WuYF, ShiJS, XiML, JiangJM . Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides , 2018,127(3):313-321. [本文引用: 2]
NakajimaG . Chromosome numbers in some crops and wild angiosperms , 1931,12:211-217. [本文引用: 1]
LiangGL, XiangSQ, WangWX, YanY, LiXL, PeiY, ZhangDP . Karyotype analysis of the wild Ipomoea trifida(2x, 6x) complex closely related to the sweet potato Adv Chromosome Sci, 2001,1:404-406. [本文引用: 1]
CaoQH, MaDF, ZhangA . Chromosome karyotype and pollen ultrastructure of a related species of sweet potato Acta Bot Boreali-Occident Sin, 2008,28(8):1610-1613. [本文引用: 1]
SunJY, YuLX, CaiZX, ZhangA, JinWW, HanYH, LiZY . Comparative karyotype analysis among six Ipomoea species based on two newly identified repetitive sequences , 2019,62(4):243-252. [本文引用: 1]
ShenJQ. A simple technique for the determination of cross incompatibility groups in sweet potato varieties Bull Agric Sci Technol, 1984, 8: 12-13+2. [本文引用: 1]
BattichN, StoegerT, PelkmansL . Image-based transcriptomics in thousands of single human cells at single-molecule resolution , 2013,10(11):1127-1133. [本文引用: 3]
LubeckE, CaiL . Single-cell systems biology by super-resolution imaging and combinatorial labeling , 2012,9(7):743-748. [本文引用: 3]
FengC, YuanJ, BaiH, LiuYL, SuHD, LiuY, ShiLD, GaoZ, BirchlerJA, HanFP . The deposition of CENH3 in maize is stringently regulated , 2020,102(1):6-17. [本文引用: 1]