删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

1992-2015年中亚五国LUCC特征及耕地驱动力研究

本站小编 Free考研考试/2022-01-01

韩海青1,,
王旭红1,,,
牛林芝1,
梁秀娟1,
蒋晓辉1,
谭竹婷2
1.西北大学城市与环境学院/陕西省地表系统与环境承载力重点实验室 西安 710127
2.湘潭大学土木工程与力学学院 湘潭 411100
基金项目: 中国科学院战略性先导科技专项XDA2004030201
国家自然科学基金项目41971387
国家自然科学基金项目41071271
陕西省自然科学基础研究计划2020JM-430

详细信息
作者简介:韩海青, 研究方向为土地利用/覆盖变化。E-mail: hanhaiqing@stumail.nwu.edu.cn
通讯作者:王旭红, 研究方向为环境遥感。E-mail: jqy_wxh@nwu.edu.cn
中图分类号:F301.2

计量

文章访问数:290
HTML全文浏览量:13
PDF下载量:90
被引次数:0
出版历程

收稿日期:2020-06-01
录用日期:2020-09-14
刊出日期:2021-02-01

The land-use and land-cover change characteristics and driving forces of cultivated land in Central Asian countries from 1992 to 2015

HAN Haiqing1,,
WANG Xuhong1,,,
NIU Linzhi1,
LIANG Xiujuan1,
JIANG Xiaohui1,
TAN Zhuting2
1. College of Urban and Environmental Sciences, Northwest University/Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an 710127, China
2. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411100, China
Funds: the Strategic Priority Research Program of Chinese Academy of SciencesXDA2004030201
the National Natural Science Foundation of China41971387
the National Natural Science Foundation of China41071271
the Basic Research Program of Natural Science of Shaanxi Province2020JM-430

More Information
Corresponding author:WANG Xuhong, E-mail: jqy_wxh@nwu.edu.cn


摘要
HTML全文
(8)(10)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:中亚五国地处亚欧大陆的中心地带,是“一带一路”全球发展战略中重要的沿线节点之一。借助GIS空间统计分析方法,以欧洲太空局气候变化项目全球土地覆盖数据为基础,利用土地利用程度、动态度和转移矩阵对中亚五国1992-2015年土地利用/覆盖变化(LUCC)特征进行分析,并运用地理探测器对耕地驱动力进行深入研究。结果表明:1)1992-2015年,中亚五国的土地利用格局总体上表现为耕地和城镇用地持续增加,林地、草地和水域呈减少的趋势。耕地的增加主要来自林地(7.88万km2)和草地(5.27万km2)的转入,城镇用地的增加主要来自耕地(0.50万km2)的转入,耕地是仅次于城镇用地增速较快、变化最为显著的土地利用类型;城镇用地在各国均呈现增加的趋势,耕地除乌兹别克斯坦之外,在其他4国均呈现增加的趋势。2)1992-2015年中亚五国土地利用程度总体呈缓慢上升趋势(土地利用程度综合指数从1992年的193.34增加到2015年的197.41),即土地利用处于发展阶段;土地利用程度为耕地> 林地> 草地> 未利用地> 水域> 城镇用地。3)地理探测器对耕地变化驱动因素的分析结果表明,自然因素中年平均降水量对耕地变化的作用较为显著,但在短时间内社会和农业因素发挥决定性的作用;因子探测表明人口总数(0.882)和农村人口(0.881)对耕地扩张的影响力最大,其次为粮食单产(0.746);交互探测表明各因子交互作用均为互相增强,其中,农村人口与粮食单产的叠加作用对耕地扩张的解释力度最大(0.972),影响耕地扩张的主要因素可归纳为人口增长和粮食单产提高。本研究可为中亚五国土地利用格局演变、区域土地利用规划和土地资源可持续利用提供决策支持。
关键词:土地利用/覆盖变化(LUCC)/
耕地/
驱动力/
地理探测器/
中亚五国
Abstract:Five countries located in the center of Eurasian continent (i.e., Central Asian countries) are important nodes along the Belt and Road Initiative, a global development strategy launched by China. The Central Asian countries' land-use and land-cover change (LUCC) characteristics from 1992 to 2015 were analyzed. The European Space Agency Climate Change Initiative global land cover data were used to determine the land-use degree, dynamic attitude, and transfer matrix by geographic information system (GIS) spatial analysis, and the driving force of cultivated land was explored using geographical detectors. The results showed that in the Central Asian countries, the area of cultivated and urban lands continuously increased, and that of forests, grasslands, and water areas decreased. Forests (7.88×104 km2) and grasslands (5.27×104 km2) were converted into cultivated land, and cultivated land (0.50×104 km2) was converted into urban areas. The transfer between land-use types was country-specific (e.g., cultivated land was created from forests and grasslands in Kazakhstan, Kyrgyzstan, and Tajikistan and from unused land in Turkmenistan; cultivated land became urban areas in Uzbekistan) and closely associated with human activities. Urban land had the highest growth rate in all countries, followed by cultivated land (except in Uzbekistan), and cultivated land was the most variable land-use type. The land-use degree slowly increased (comprehensive index of land use degree was 193.34 in 1992, 197.41 in 2015), indicating that land-use was in the development stage. Land-use types ranked as follows (by land-use degree): cultivated lands > forests > grasslands > unused lands > water areas > urban lands. The driving forces for cultivated land changes were analyzed using geographical detectors and showed that the annual average precipitation had a significant effect. Social and agricultural factors also played a decisive role in the short term. The total population and rural population had the greatest influence on cultivated land expansion, followed by the per unit area grain yield. Interactive detection showed that interactions between factors were mutually reinforcing. In particular, super-positioning rural population and crop production index explained cultivated land expansion. The primary factors affecting cultivated land expansion were population growth and agricultural production improvement. These results are useful for planning sustainable land use in Central Asian countries.
Key words:Land-use and land-cover change (LUCC)/
Cultivated land/
Driving force/
Geodetector/
Five Central Asian countries

HTML全文


图1研究区位置及范围
Figure1.Location and scope of the study area


下载: 全尺寸图片幻灯片


图21992-2015年中亚五国降水(a)和气温(b)分级
Figure2.Classification of precipitation (a) and temperature (b) in the five Central Asian countries from 1992 to 2015


下载: 全尺寸图片幻灯片


图31992-2015年中亚各国土地利用类型面积变化
Figure3.Changes in areas of land use types in Central Asian countries from 1992 to 2015


下载: 全尺寸图片幻灯片


图41992-2015年中亚五国6个时期土地利用现状图
Figure4.Maps of land use in the five Central Asian countries in different periods from 1992 to 2015


下载: 全尺寸图片幻灯片


图5中亚五国1992-015年不同时期的土地利用动态度
Figure5.Dynamic degrees of land use in the five Central Asian countries from 1992 to 2015


下载: 全尺寸图片幻灯片


图61992-2015年中亚五国土地利用程度变化
Figure6.Changes in land use degrees in the five Central Asian countries from 1992 to 2015


下载: 全尺寸图片幻灯片


图71992-2015年中亚五国年平均降水量和年平均气温变化以及拟合趋势线
“**”表示达P < 0.01显著水平。
Figure7.Changes of annual mean precipitation and annual mean temperature and linear regressions in the five Central Asian countries during 1992-2015
"**" represents significance at P < 0.01 level.


下载: 全尺寸图片幻灯片


图81992-2015年中亚五国各降水分区的耕地面积变化
Figure8.Changes of cultivated land areas in precipitation zones of the five Central Asian countries from 1992 to 2015


下载: 全尺寸图片幻灯片

表1中亚五国土地利用与土地覆盖类型重分类
Table1.Reclassification of land use and land cover in the five Central Asian countries
欧洲太空局气候变化项目土地利用与土地覆盖分类系统
Land use and land cover classification system of Climate Change Initiative
代码
Code
重分类
Reclassification
雨养农地 Rainfed farmland 10, 11, 12 耕地
Cultivated land
水淹或灌溉农地 Flooded or irrigated farmland 20
耕作(50%~70%)/其他自然植被(20%~50%)镶嵌
Cultivation (50%-70%)/other natural vegetation (20%-50%) mosaic
30
耕作(20%~50%)/其他自然植物(50%~70%)镶嵌
Cultivation (20%-50%)/other natural vegetation (50%-70%) mosaic
40
郁闭或敞开(>15%)常绿阔叶林 Closed or open (>15%) evergreen broadleaved forest 50 林地
Forest land
郁闭或敞开(>15%)落叶阔叶林 Closed or open (>15%) deciduous broadleaved forest 60, 61
郁闭或敞开(>15%)常绿针叶林 Closed or open (>15%) evergreen coniferous forest 70, 71, 72
郁闭或敞开(>15%)落叶针叶林 Closed or open (>15%) deciduous coniferous forest 80, 81
针阔混交林 Coniferous and broadleaved mixed forest 90
林地和灌丛(≥50%)/草地(< 50%)镶嵌体
Woodland and shrub (≥50%)/grassland (< 50%) mosaic
100
淡水或咸水水淹林地 Flooded woodland with fresh or salt water 160
咸水水淹林地 Salt water flooded woodland 170
灌木 Shrub 120, 122
稀疏植被(林地、灌木) Sparse vegetation (woodland, shrub) 150
草地(≥50%)/林地和灌丛(< 50%)镶嵌体
Grassland (≥50%)/woodland and shrub (< 50%) mosaic
110 草地
Grassland
草地 Grassland 130
稀疏草地(< 15%) Sparse grassland (< 15%) 153
裸地 Bare land 200, 201, 202 未利用地 Unused land
郁闭或敞开(>15%)各种有规律水淹或长期水浸草地
Closed or open (>15%) various regularly flooded or chronically flooded grasslands
180 水域
Water area
水体 Water body 210
永久冰雪 Permanent ice and snow 220
人工地表或附属区域 Artificial surface or ancillary area 190 城镇用地 Urban land


下载: 导出CSV
表2土地利用类型及分级表
Table2.land use type and its classification
土地分级
Land classification
未利用土地级
Grade of unused land
林、草、水用地级
Grade of forestland, grassland and water area
农业用地级
Grade of agricultural land
城镇聚落用地级
Grade of urban settlement land
土地利用类型
Land use type
未利用地
Unused land
林地、草地、水域
Forest land, grassland and water area
耕地
Cultivated land
城镇用地
Urban land
分级指数 Grading index 1 2 3 4


下载: 导出CSV
表3中亚五国土地利用/覆盖变化驱动力分析的指标体系
Table3.Indicators system of driving forces of land use/cover change in the five Central Asian countries
维度
Dimension
指标
Index
自然因素
Natural factor
年平均降水量 Annual mean precipitation (X1)
年平均气温 Annual mean temperature (X2)
海拔高度 Altitude (X3)
社会因素
Social factor
人口总数 Total population (X4)
农村人口 Rural population (X5)
经济因素
Economical factor
国内生产总值 Gross domestic product (GDP) (X6)
工业增加值 Industrial added value (X7)
农业增加值 Added value of agriculture (X8)
农业因素 Agricultural factor 粮食单产Grain yield per unit area land (X9)


下载: 导出CSV
表4交互探测器交互作用类型
Table4.Interaction types of interaction detector
判断依据 Criterion 交互作用 Interaction
q(X1X2) < min[q(X1), q(X2)] 非线性减弱 Nonlinear attenuation
min[q(X1), q(X2)] < q(X1X2) < max[q(X1X2)] 单因子非线性减弱 Single factor nonlinear attenuation
q(X1X2)>max[q(X1), (X2)] 双因子增强 Two-factor enhancement
q(X1X2)=q(X1)+q(X2) 独立 Independent
q(X1X2)>q(X1)+q(X2) 非线性增强 Nonlinear enhancement


下载: 导出CSV
表5中亚五国1992-015年各时期土地利用转移矩阵
Table5.Transfer matrix of land use in the five Central Asian countries from 1992 to 2015?×104 km2
1992 2015
耕地
Cultivated land
林地
Forest land
草地
Grassland
未利用地
Unused land
水域
Water area
城镇用地
Urban land
转出
Roll out
中亚五国
Five Central Asian countries
耕地 Cultivated land 71.37 0.66 0.75 0.11 0.03 0.50 2.05
林地 Forest land 7.88 99.44 1.98 0.22 0.07 0.04 10.19
草地 Grassland 5.27 1.38 97.01 0.25 0.03 0.11 7.04
未利用地 Unused land 0.48 4.58 1.93 93.81 0.13 0.02 7.14
水域 Water area 0.1 0.18 0.15 3.07 13.62 0 3.50
城镇用地 Urban land 0 0 0 0 0 0.25 0
转入 Roll in 13.73 6.80 4.81 3.65 0.26 0.67 29.92
哈萨克斯坦
Kazakhstan
耕地 Cultivated land 50.55 0.39 0.53 0.03 0.03 0.11 1.09
林地 Forest land 7.66 80.78 1.73 0.18 0.06 0.03 9.66
草地 Grassland 4.74 1.00 79.54 0.08 0.01 0.06 5.89
未利用地 Unused land 0.17 4.08 1.59 33.07 0.06 0.01 5.91
水域 Water area 0.09 0.16 0.14 1.55 7.62 0 1.94
城镇用地 Urban land 0 0 0 0 0 0.17 0
转入 Roll in 12.66 5.63 3.99 1.84 0.16 0.21 24.49
吉尔吉斯斯坦
Kyrgyzstan
耕地 Cultivated land 4.65 0.08 0.11 0 0 0.05 0.24
林地 Forest land 0.08 3.34 0.15 0.01 0 0 0.24
草地 Grassland 0.29 0.28 7.71 0.07 0 0.01 0.65
未利用地 Unused land 0.01 0.03 0.07 1.72 0 0 0.11
水域 Water area 0 0 0 0 1.33 0 0
城镇用地 Urban land 0 0 0 0 0 0.01 0
转入 Roll in 0.38 0.39 0.33 0.08 0 0.06 1.24
塔吉克斯坦
Tajikistan
耕地 Cultivated land 3.01 0.01 0.01 0.01 0 0.04 0.07
林地 Forest land 0.01 1.01 0.02 0.01 0 0 0.04
草地 Grassland 0.08 0.04 6.24 0.06 0 0 0.18
未利用地 Unused land 0 0.06 0.08 2.26 0 0 0.14
水域 Water area 0 0 0 0 1.23 0 0
城镇用地 Urban land 0 0 0 0 0 0.01 0
转入 Roll in 0.09 0.11 0.11 0.08 0 0.04 0.43
土库曼斯坦
Turkmenistan
耕地 Cultivated land 4.33 0.03 0.01 0.03 0 0.03 0.10
林地 Forest land 0.05 7.89 0.01 0.01 0 0 0.07
草地 Grassland 0.08 0.02 1.04 0.02 0 0.01 0.13
未利用地 Unused land 0.24 0.15 0.08 33.22 0.02 0.01 0.50
水域 Water area 0 0 0 0.02 2.52 0 0.02
城镇用地 Urban land 0 0 0 0 0 0.01 0
转入 Roll in 0.37 0.20 0.10 0.08 0.02 0.05 0.82
乌兹别克斯坦
Uzbekistan
耕地 Cultivated land 8.81 0.15 0.09 0.03 0 0.28 0.55
林地 Forest land 0.09 6.40 0.06 0.02 0.01 0 0.18
草地 Grassland 0.09 0.04 2.46 0.02 0.01 0.03 0.19
未利用地 Unused land 0.06 0.26 0.11 23.52 0.04 0 0.47
水域 Water area 0.01 0.01 0.01 1.49 0.90 0 1.52
城镇用地 Urban land 0 0 0 0 0 0.06 0
转入 Roll in 0.25 0.46 0.27 1.56 0.06 0.31 2.91


下载: 导出CSV
表61992-2015年中亚五国不同时期各自然因子对耕地变化的作用强度
Table6.Relative effects of natural factors on cultivated land change in different periods in the five Central Asian countries during 1992-2015
年份
Year
年平均降水量
Annual mean precipitation (X1)
年平均气温
Annual mean temperature (X2)
海拔高度
Altitude (X3)
1992 0.114 0.095 0.006
2005 0.135 0.118 0.003
2015 0.104 0.091 0.010


下载: 导出CSV
表72015年中亚五国各自然因子交互探测结果
Table7.Interactive detection results of natural factors in the five Central Asian countries in 2015
年降水量
Annual precipitation (X1)
年平均气温
Annual mean temperature (X2)
海拔高度
Altitude (X3)
年降水量 Annual precipitation (X1) 0.104
年平均气温
Annual mean temperature (X2)
0.181 0.091 0.161
海拔高度 Altitude (X3) 0.163 0.161 0.010
年降水量和年平均气温交互探测结果满足min[q(X1), q(X2)] < q(X1X2) < max[q(X1X2)]; 平均降水量和海拔高度、年平均气温和海拔高度交互探测结果满足均满足q(X1X2)>q(X1)+q(X2), 所以各因子交互作用均为互相增强。The interactive detection results of annual precipitation and annual mean temperature meet the requirement of min [q(X1), q(X2)] < q(X1X2) < max[q(X1X2)]; the interactive detection results of annual mean precipitation and altitude, annual mean temperature and altitude meet the requirement of q(X1X2)>q(X1)+q(X2); so the interaction of each factor is mutually enhanced.


下载: 导出CSV
表81992-2015年中亚五国各社会经济因素对耕地变化的作用强度
Table8.Relative effects of socio-economic factors on cultivated land change in different periods in the five Central Asian countries during 1992-2015
人口总数
Total population (X4)
农村人口
Rural population (X5)
国内生产总值
Gross domestic product (GDP) (X6)
工业增加值
Industrial added value (X7)
农业增加值
Added value of agriculture (X8)
粮食单产
Grain yield per unit area land (X9)
q statistic 0.882 0.881 0.591 0.591 0.499 0.746


下载: 导出CSV
表91992-2015年中亚五国各社会经济因素对耕地变化影响的交互探测结果
Table9.Interactive detection results of effects of socio-economic factors on cultivated land change in the five Central Asian countries during 1992-2015
人口总数
Total population (X4)
农村人口
Rural population (X5)
国内生产总值
Gross domestic product (GDP) (X6)
工业增加值
Industrial added value (X7)
农业增加值
Added value of agriculture (X8)
粮食单产
Grain yield per unit area land (X9)
人口总数
Total population (X4)
0.882
农村人口
Rural population (X5)
0.887 0.881
国内生产总值
Gross domestic product (GDP) (X6)
0.888 0.888 0.591
工业增加值
Industrial added value (X7)
0.888 0.888 0.608 0.591
农业增加值
Added value of agriculture (X8)
0.887 0.888 0.640 0.640 0.499
粮食单产
Grain yield per unit area land (X9)
0.971 0.972 0.844 0.844 0.856 0.746


下载: 导出CSV
表102015年中亚五国各降水分区自然因素对耕地变化的作用强度(地理探测器q值)的变化趋势
Table10.Changes of relative effects of natural factors on cultivated land change in precipitation zones of five Central Asian countries in 2015
降水分区
Precipitation zone
年平均降水量
Annual mean precipitation
年平均气温
Annual mean temperature
海拔
Altitude
0.299 0.339 0.071
0.256 0.267 0.074
0.042 0.033 0.047
0.150 0.111 0.056
0.114 0.044 0.044
Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ分区参见图 8。Ⅰ, Ⅱ, Ⅲ, Ⅳ and Ⅴ zones are shown in the Fig. 8.


下载: 导出CSV

参考文献(38)
[1]胡汝骥, 姜逢清, 王亚俊, 等. 中亚(五国)干旱生态地理环境特征[J]. 干旱区研究, 2014, 31(1): 1-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201401001.htm
HU R J, JIANG F Q, WANG Y J, et al. Arid ecological and geographical conditions in five countries of Central Asia[J]. Arid Zone Research, 2014, 31(1): 1-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201401001.htm
[2]陈曦, 罗格平, 吴世新, 等. 中亚干旱区土地利用与土地覆被变化[M]. 北京: 科学出版社, 2015: 21-25
CHEN X, LUO G P, WU S X, et al. Land Use/Cover Change in Arid Land of Central Asia[M]. Beijing: Science Press, 2015: 21-25
[3]杨胜天, 于心怡, 丁建丽, 等. 中亚地区水问题研究综述[J]. 地理学报, 2017, 72(1): 79-93 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701008.htm
YANG S T, YU X Y, DING J L, et al. A review of water issues research in Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 79-93 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701008.htm
[4]范彬彬, 罗格平, 胡增运, 等. 中亚土地资源开发与利用分析[J]. 干旱区地理, 2012, 35(6): 928-937 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201206013.htm
FAN B B, LUO G P, HU Z Y, et al. Land resource development and utilization in Central Asia[J]. Arid Land Geography, 2012, 35(6): 928-937 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201206013.htm
[5]LIU J Y, KUANG W H, ZHANG Z X, et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s[J]. Journal of Geographical Sciences, 2014, 24(2): 195-210 doi: 10.1007/s11442-014-1082-6
[6]REN Y J, LYU Y H, FU B J, et al. Driving factors of land change in China's Loess Plateau: Quantification using geographically weighted regression and management implications[J]. Remote Sensing, 2020, 12(3): 453 doi: 10.3390/rs12030453
[7]SHEN G, YANG X C, JIN Y X, et al. Land use changes in the Zoige Plateau based on the object-oriented method and their effects on landscape patterns[J]. Remote Sensing, 2020, 12(1): 14 http://www.researchgate.net/publication/338118706_Land_Use_Changes_in_the_Zoige_Plateau_Based_on_the_Object-Oriented_Method_and_Their_Effects_on_Landscape_Patterns
[8]NING J, LIU J Y, KUANG W H, et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010-2015[J]. Journal of Geographical Sciences, 2018, 28(5): 547-562 doi: 10.1007/s11442-018-1490-0
[9]GAO X Y, CHENG W M, WANG N, et al. Spatio-temporal distribution and transformation of cropland in geomorphologic regions of China during 1990-2015[J]. Journal of Geographical Sciences, 2019, 29(2): 180-196 doi: 10.1007/s11442-019-1591-4
[10]张丽, 杨国范, 刘吉平. 1986~2012年抚顺市土地利用动态变化及热点分析[J]. 地理科学, 2014, 34(2): 185-191 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201402008.htm
ZHANG L, YANG G F, LIU J P. The dynamic changes and hot spots of land use in Fushun City from 1986 to 2012[J]. Scientia Geographica Sinica, 2014, 34(2): 185-191 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201402008.htm
[11]GAO C J, ZHOU P, JIA P, et al. Spatial driving forces of dominant land use/land cover transformations in the Dongjiang River watershed, Southern China[J]. Environmental Monitoring and Assessment, 2016, 188(2): 188 doi: 10.1007/s10661-015-5088-z
[12]CUI H, ZHOU X D, GUO M J, et al. Land use change and its effects on water quality in typical inland lake of arid area in China[J]. Journal of Environmental Biology, 2016, 37(4): 603-609 http://europepmc.org/abstract/MED/27498508
[13]BATUNACUN, NENDEL C, HU Y F, et al. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015— A case study from Xilingol, China[J]. Land Degradation & Development, 2018, 29(6): 1595-1606 doi: 10.1002/ldr.2948
[14]韩其飞, 罗格平, 白洁, 等. 基于多期数据集的中亚五国土地利用/覆盖变化分析[J]. 干旱区地理, 2012, 35(6): 909-918 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201206009.htm
HAN Q F, LUO G P, BAI J, et al. Characteristics of land use and cover change in Central Asia in recent 30 years[J]. Arid Land Geography, 2012, 35(6): 909-918 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201206009.htm
[15]阿里木江·卡斯木, 唐兵, 安瓦尔·买买提明. 基于遥感数据的中亚五国城市时空扩展变化研究[J]. 人文地理, 2012, 27(4): 83-87 doi: 10.3969/j.issn.1003-2398.2012.04.015
ALIMUJIANG K, TANG B, ANWAER M. Study on spatio-temporal dynamics of urban expansion in five Central Asian cities based on remote sensing data[J]. Human Geography, 2012, 27(4): 83-87 doi: 10.3969/j.issn.1003-2398.2012.04.015
[16]阮宏威, 于静洁. 1992—2015年中亚五国土地覆盖与蒸散发变化[J]. 地理学报, 2019, 74(7): 1292-1304 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201907003.htm
RUAN H W, YU J J. Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015[J]. Acta Geographica Sinica, 2019, 74(7): 1292-1304 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201907003.htm
[17]吕晨, 蓝修婷, 孙威. 地理探测器方法下北京市人口空间格局变化与自然因素的关系研究[J]. 自然资源学报, 2017, 32(8): 1385-1397 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201708010.htm
LYU C, LAN X T, SUN W. A study on the relationship between natural factors and population distribution in Beijing using geographical detector[J]. Journal of Natural Resources, 2017, 32(8): 1385-1397 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201708010.htm
[18]王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701011.htm
WANG J F, XU C D. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701011.htm
[19]JU H R, ZHANG Z X, ZUO L J, et al. Driving forces and their interactions of built-up land expansion based on the geographical detector—A case study of Beijing, China[J]. International Journal of Geographical Information Science, 2016, 30(11): 2188-2207 doi: 10.1080/13658816.2016.1165228
[20]湛东升, 张文忠, 余建辉, 等. 基于地理探测器的北京市居民宜居满意度影响机理[J]. 地理科学进展, 2015, 34(8): 966-975 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201508004.htm
ZHAN D S, ZHANG W Z, YU J H, et al. Analysis of influencing mechanism of residents' livability satisfaction in Beijing using geographical detector[J]. Progress in Geography, 2015, 34(8): 966-975 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201508004.htm
[21]潘洪义, 黄佩, 徐婕. 基于地理探测器的岷江中下游地区植被NPP时空格局演变及其驱动力研究[J]. 生态学报, 2019, 39(20): 7621-7631 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201920027.htm
PAN H Y, HUANG P, XU J. The spatial and temporal pattern evolution of vegetation NPP and its driving forces in middle-lower areas of the Min River based on geographical detector analyses[J]. Acta Ecologica Sinica, 2019, 39(20): 7621-7631 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201920027.htm
[22]李佳洺, 陆大道, 徐成东, 等. 胡焕庸线两侧人口的空间分异性及其变化[J]. 地理学报, 2017, 72(1): 148-160 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701013.htm
LI J M, LU D D, XU C D, et al. Spatial heterogeneity and its changes of population on the two sides of Hu Line[J]. Acta Geographica Sinica, 2017, 72(1): 148-160 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701013.htm
[23]王正雄, 蒋勇军, 张远嘱, 等. 基于GIS与地理探测器的岩溶槽谷石漠化空间分布及驱动因素分析[J]. 地理学报, 2019, 74(5): 1025-1039 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201905015.htm
WANG Z X, JIANG Y J, ZHANG Y Z, et al. Spatial distribution and driving factors of karst rocky desertification based on GIS and geodetectors[J]. Acta Geographica Sinica, 2019, 74(5): 1025-1039 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201905015.htm
[24]CHEN X, BAI J, LI X Y, et al. Changes in land use/land cover and ecosystem services in Central Asia during 1990-2009[J]. Current Opinion in Environmental Sustainability, 2013, 5(1): 116-127 doi: 10.1016/j.cosust.2012.12.005
[25]ZHU X, WEI Z G, DONG W J, et al. Dynamical downscaling simulation and projection for mean and extreme temperature and precipitation over Central Asia[J]. Climate Dynamics, 2020, 54(7/8): 3279-3306 doi: 10.1007/s00382-020-05170-0
[26]徐婷, 邵华, 张弛. 近32a中亚地区气温时空格局分析[J]. 干旱区地理, 2015, 38(1): 25-35 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201501004.htm
XU T, SHAO H, ZHANG C. Temporal pattern analysis of air temperature change in Central Asia during 1980-2011[J]. Arid Land Geography, 2015, 38(1): 25-35 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201501004.htm
[27]GAO P, NIU X, WANG B, et al. Land use changes and its driving forces in hilly ecological restoration area based on GIS and RS of northern China[J]. Scientific Reports, 2015, 5: 11038 doi: 10.1038/srep11038
[28]秦富仓, 周佳宁, 刘佳, 等. 内蒙古多伦县土地利用动态变化及驱动力[J]. 干旱区资源与环境, 2016, 30(6): 31-37 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201606006.htm
QIN F C, ZHOU J N, LIU J, et al. Land use change dynamics and driving forces in Duolun County, Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2016, 30(6): 31-37 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201606006.htm
[29]王莉红, 张军民. 基于地理探测器的绿洲城镇空间扩张驱动力分析——以新疆石河子市为例[J]. 地域研究与开发, 2019, 38(4): 68-74 https://www.cnki.com.cn/Article/CJFDTOTAL-DYYY201904011.htm
WANG L H, ZHANG J M. Driving force analysis of spatial expansion of oasis towns based on geographical detectors: Take Shihezi City in Xinjiang as an example[J]. Areal Research and Development, 2019, 38(4): 68-74 https://www.cnki.com.cn/Article/CJFDTOTAL-DYYY201904011.htm
[30]徐超璇, 鲁春霞, 黄绍琳. 张家口地区生态脆弱性及其影响因素[J]. 自然资源学报, 2020, 35(6): 1288-1300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202006003.htm
XU C X, LU C X, HUANG S L. Study on ecological vulnerability and its influencing factors in Zhangjiakou area[J]. Journal of Natural Resources, 2020, 35(6): 1288-1300 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX202006003.htm
[31]CAO F, GE Y, WANG J F. Optimal discretization for geographical detectors-based risk assessment[J]. GIScience & Remote Sensing, 2013, 50(1): 78-92 doi: 10.1080/15481603.2013.778562
[32]李均力, 陈曦, 包安明. 2003—2009年中亚地区湖泊水位变化的时空特征[J]. 地理学报, 2011, 66(9): 1219-1229 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201109010.htm
LI J L, CHEN X, BAO A M. Spatial-temporal characteristics of lake level changes in Central Asia during 2003-2009[J]. Acta Geographica Sinica, 2011, 66(9): 1219-1229 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201109010.htm
[33]LIU Y Q, LONG H L. Land use transitions and their dynamic mechanism: The case of the Huang-Huai-Hai Plain[J]. Journal of Geographical Sciences, 2016, 26(5): 515-530 doi: 10.1007/s11442-016-1283-2
[34]赵锐锋, 王福红, 张丽华, 等. 黑河中游地区耕地景观演变及社会经济驱动力分析[J]. 地理科学, 2017, 37(6): 920-928 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201706014.htm
ZHAO R F, WANG F H, ZHANG L H, et al. Dynamic of farmland landscape and its socioeconomic driving forces in the middle reaches of the Heihe River[J]. Scientia Geographica Sinica, 2017, 37(6): 920-928 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201706014.htm
[35]KANG C, ZHANG Y L, PAUDEL B, et al. Exploring the factors driving changes in farmland within the Tumen/Tuman River Basin[J]. International Journal of Geo-Information, 2018, 7(9): 352 doi: 10.3390/ijgi7090352
[36]陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学: 地球科学, 2011, 41(11): 1647-1657 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201111010.htm
CHEN F H, HUANG W, JIN L Y, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China Earth Sciences, 2011, 41(11): 1647-1657 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201111010.htm
[37]TSENDBAZAR N E, DE BRUIN S, FRITZ S, et al. Spatial accuracy assessment and integration of global land cover datasets[J]. Remote Sensing, 2015, 7(12): 15804-15821 doi: 10.3390/rs71215804
[38]LI W, MACBEAN N, CIAIS P, et al. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992-2015)[J]. Earth System Science Data, 2018, 10(1): 219-234 doi: 10.5194/essd-10-219-2018

相关话题/地理 图片 农业 土地 自然