删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

拟南芥AtR8 lncRNA对盐胁迫响应及其对种子萌发的调节作用

本站小编 Free考研考试/2022-01-01

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缂佺姷濞€閺岀喖骞戦幇闈涙闁荤喐鐟辩粻鎾诲箖濡ゅ懏鏅查幖绮光偓鎰佹交闂備焦鎮堕崝宥囨崲閸儳宓侀柡宥庣仈鎼搭煈鏁嗛柍褜鍓氭穱濠囨嚃閳哄啯锛忛梺璇″瀻娴i晲鍒掗梻浣告惈鐞氼偊宕濋幋锕€绠栭柕鍫濐槸绾惧吋绻涢幋鐑囦緵濞寸》鎷�2婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ょ泿闁诡垳鍠栧娲礃閸欏鍎撳銈嗗灥濞层劎鍒掑▎鎺旂杸婵炴垶鐟㈤幏娲⒑闂堚晛鐦滈柛妯恒偢瀹曟繄鈧綆鍋佹禍婊堟煏婵炲灝鍔滄い銉e灮閳ь剝顫夊ú婊堝极婵犳艾鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗嗘导鎰節濞堝灝娅欑紒鐘冲灴濠€浣糕攽閻樿宸ラ柟鍐插缁傛帗娼忛埞鎯т壕閻熸瑥瀚粈鍐╀繆閻愭壆鐭欑€殿噮鍋婇獮妯肩磼濡桨姹楅柣搴ゎ潐濞叉牕煤閵堝宓佹慨妞诲亾婵﹦绮幏鍛村川婵犲啫鍓垫俊鐐€х€靛矂宕归崼鏇炵畺婵☆垵銆€閺€浠嬫倵閿濆簼绨奸弶鍫濈墦濮婃椽妫冨☉姘辩杽闂佺ǹ锕ラ悧鐘诲箖閿熺姵鍋勯柛蹇氬亹閸欏棝姊洪崫鍕妞ゃ劌鎳忕粋宥夊箚瑜滃〒濠氭煏閸繄绠版い鈺婂墴閺屸剝鎷呴崜鑼悑闂佺粯渚楅崳锝呯暦濮椻偓閸╋繝宕橀悙顒傘偒闂備浇顕ч崙鐣岀礊閸℃稑纾婚柟鐑樺殾濞戙垹绀冮柕濞垮灪閺傗偓闂備胶绮崝鏍п缚濞嗘挻鍊堕柨鏂垮⒔濡垶鏌℃径搴㈢《閺佸牆螖閻橀潧浠滄い锕€鐏氭穱濠囧醇閺囩偛鑰垮┑鐐叉閸╁牓宕惔銊︹拻濞达絿鍎ら崵鈧銈嗘处閸欏啫鐣烽幋锔藉€烽柡宥嚽归ˇ闈涱嚕娴犲鏁囬柣鏃囨腹閸栨牕鈹戦悙瀛樺鞍闁煎綊绠栭弫鍐晝閸屾氨鐣洪梺绋跨箻濡法鎹㈤崱娑欑厱婵炲棗娴氬Σ绋库攽椤斿吋鍠橀柡灞界Ф閹风娀寮婚妷銉ュ強婵°倗濮烽崑娑樏洪鐐垫殾婵犲﹤瀚刊鎾煣韫囨洘鍤€妤犵偐鍋撴繝鐢靛Х閺佸憡鎱ㄩ悜濮愨偓鍌炴寠婢光晪缍佸畷銊╁级閹存繄鈧參姊婚崒姘卞缂佸鐗撳绋款吋婢跺鍙嗗┑鐘绘涧濡瑦鍒婇崗鑲╃閻忓繑鐗楀▍濠囨煛鐏炵偓绀冪紒缁樼洴閹瑩顢楁担鍝勭稻闂傚倷鑳剁划顖炲箰閸洖纾块柤纰卞墯瀹曞弶绻涢幋娆忕仼缂佺媴缍侀弻锝夊箛閳轰礁顬嬬紓浣稿綁閸楀啿顫忛搹鍦<婵☆垳鍎ょ拠鐐烘⒑鐞涒€充壕闂備緡鍓欑粔瀛橆攰闂備礁鎲″ú锕傚垂婵傜ǹ鏋侀柛鎰靛枟閻撳繘鐓崶褝鏀绘繛鍛嚇閺屾盯骞樼拋铏枤濠殿喖锕ュ浠嬬嵁閹邦厽鍎熼柨婵嗗€搁~宀勬⒒娴e憡鍟炴慨濠傜秺閹兘鍩¢崨顔间粧濡炪倖妫冮弫顕€宕戦幘缁樻櫜閹肩补鍓濋悵顕€姊烘潪鎵槮缂佸鏁搁幑銏犫攽閸モ晝鐦堥梺绋挎湰缁嬫垿顢撳☉妯锋斀闁炽儱鍟跨痪褔鏌熺粙鍨毐妞ゎ偄绻掔槐鎺懳熺拠宸偓鎾绘⒑閸涘﹦娲存繛浣冲喛鑰块梺顒€绉寸粻鏌ユ煏韫囧鈧洜绮诲☉娆嶄簻闁哄倸鐏濋埛鏃堟煟閹炬剚鍎旀慨濠呮缁辨帒螣閾忛€涚礃婵犵妲呴崑鍕偓姘緲閻g柉銇愰幒鎴狅紲闂佺粯鍔曢顓㈠储闁秵鍊甸柛蹇擃槸娴滈箖姊洪柅鐐茶嫰婢у鈧娲橀崹鍧楀箖濞嗘挸浼犻柛鏇ㄥ弿缁遍亶姊绘笟鈧ḿ褑澧濋梺鍝勬噺缁捇骞冮敓鐘参ㄩ柍鍝勫€婚崢浠嬫⒑閸濆嫭宸濋柛瀣洴閸┾偓妞ゆ巻鍋撴繝鈧柆宥呯劦妞ゆ帊鑳堕崯鏌ユ煙閸戙倖瀚�
婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繐霉閸忓吋缍戦柛銊ュ€婚幉鎼佹偋閸繄鐟查梺绋款儏椤︾敻寮婚弴锛勭杸閻庯綆浜栭崑鎾诲即閵忊€斥偓宄扳攽閻樻彃顏柛鐘冲姉閳ь剙绠嶉崕鍗炍涘▎鎾崇煑闊洦绋掗悡蹇涙煕椤愶絿绠ユ俊鎻掔秺閺屽秹鏌ㄧ€n亞浼岄梺鍝勬湰缁嬫垿鍩ユ径濠庢建闁割偅绻€缁憋絿绱撻崒娆戝妽妞ゃ劌妫涢弫顔嘉旀担琛℃敵婵犵數濮村ù鍌炲极閸愵喗鐓ユ繝闈涙婢跺嫰鏌涢幒鎾垛槈妞ゎ亜鍟存俊鍫曞礃閵娧傜棯婵犵妲呴崑鍕疮椤栫偛绠為柕濞炬櫅閻掑灚銇勯幒鎴濐仾闁绘挸绻橀弻娑㈩敃閿濆洨鐣洪梺鎸庣☉缁夊灚绌辨繝鍥舵晝闁靛繒濯导鍐⒑閸濆嫮鐒跨紒鏌ョ畺楠炲棝寮崼顐f櫖濠电姴锕ら幉娑㈡晲婢跺鎷洪梺鍛婄缚閸庤鲸鐗庨梻浣虹帛椤ㄥ牊鎱ㄩ幘顔藉仼闁绘垼妫勯~鍛存煏閸繃鍣芥い鏃€甯掗—鍐Χ閸℃ǚ鎷婚梺鍝勬媼閸嬪﹤鐣烽姀銈呯濞达絽鍘滈幏娲⒑閸涘﹦鈽夐柨鏇樺劤缁牏鈧綆鍋嗙粻鎯归敐鍛毐婵炶绠撳畷鎰板醇閺囩喓鍙嗗┑鐘绘涧濡瑩藟閹捐秮鐟扳堪閸曨厾鐓夐梺鍝勭灱閸犳捇鍩€椤掍胶鈯曞畝锝堟硶缁寮借閻斿棝鎮归崫鍕儓妞ゅ浚鍋嗙槐鎺撴綇閵娿儳顑傞梺閫炲苯澧剧紓宥呮缁傚秶鎹勬担鏇犲枛閸┾偓妞ゆ帒瀚埛鎴犵磼椤栨稒绀冮柡澶婄秺閺屾稓鈧綆鍋呯亸顓熴亜椤忓嫬鏆e┑鈥崇埣瀹曞崬螖閳ь剙岣块幋锔解拺缂佸顑欓崕鎰版煙閻熺増鍠樼€殿喛顕ч濂稿炊閵娿儳褰撮梻浣告惈鐞氼偊宕曢崡鐑嗗殨闁哄绨遍弨浠嬫煥閻斿搫啸闁伙絽鎼湁婵犲﹤鍟伴崺锝団偓娈垮枦椤曆囶敇婵傜ǹ閱囨い鎰剁秵閳ь剙娲缁樻媴閸涘﹤鏆堥梺鍦归…鐑藉箖閻戣棄鐓涘ù锝囧劋濞堟儳顪冮妶鍡欏缂佸鍨块、姘舵焼瀹ュ棗鈧灚绻涢幋鐑嗕痪妞ゅ繐鎳愰々鍙夈亜閺嶃劌鐒归柡鈧禒瀣厽闁归偊鍓欑痪褔鏌嶇紒妯荤闂囧绻濇繝鍌氼伀缂佺姷鍋熼埀顒侇問閸犳鎮¢敓鐘偓浣肝旈崨顓狀槹濡炪倖宸婚崑鎾绘煃瑜滈崜娆撴偉婵傜ǹ钃熼柨婵嗩槸缁犳稒銇勯弮鍥撴慨锝呭濮婅櫣娑甸崨顕呮闂佺ǹ锕ゅḿ鈥愁嚕鐠囨祴妲堥柕蹇曞瑜旈弻娑㈠Ψ椤斿彞铏庨梺闈涚箞閸婃牠藟閸℃鐔嗛悹杞拌閸庢垹绱掗埦鈧崑鎾斥攽閻樺灚鏆╁┑顔芥尦瀹曟劙骞栨担鍛婅緢闂佹寧绻傚Λ搴㈢濠婂牆绠规繛锝庡墮閻掔儤绻涢崼鐔哥闁哄本娲熷畷鎯邦槻妞ゅ浚鍙冮弻娑㈠煛閸愩劋妲愬銈冨灪閿曘垽骞冨▎蹇e晠妞ゆ棁宕靛Λ顖涚節閻㈤潧校妞ゆ梹鐗犲畷褰掓焼瀹ュ懐顔囬梺瑙勫劶濡嫰鎷戦悢鍏肩叆闁绘柨鎼瓭闂佺粯鍔曢敃顏堝蓟瀹ュ棙濮滈柟娈垮枛婵′粙姊虹拠鑼缂佽埖鑹鹃~蹇撁洪鍕獩婵犵數濮寸€氼參宕板☉銏♀拺缂佸顑欓崕鎰版煙閻熺増鎼愭い顐㈢箳缁辨帒螣鐠囧樊鈧捇姊洪崨濠勭細闁稿氦娅曢〃娆忊攽閻樺灚鏆╅柛瀣耿瀹曠娀鎮╃拠鎻掕€块梺褰掑亰娴滄繈鎯堣箛娑欌拻濞达綀娅g敮娑㈡煕閺冣偓椤ㄥ﹤顕i锕€浼犻柕澹倻鐟濋梻浣告惈閸燁偊鎮ф繝鍥ㄥ亗婵炲棙鎸婚悡娆愩亜閺嵮勵棞闁兼椿鍨伴埢鎾诲醇閺囩啿鎷洪悗瑙勬礀濞层劎鏁☉娆愬弿濠电姴鍊荤粔鐑橆殽閻愯尙澧﹀┑鈩冩倐婵¢攱鎯旈敐鍛亖闂佸綊顥撴繛鈧鐐存崌楠炴帒鈹戦崶銊с偘闂傚倸鍊搁崐鐑芥倿閿曞倸绠栭柛顐f礀绾惧湱鎲歌箛鏇炲灊濠电姵鑹剧粻濠氭偣閸ヮ亜钄奸柟鑺ユ礋濮婅櫣绱掑Ο娲绘⒖濠电偛鎷戠紞渚€骞嗙仦瑙f瀻闁规儳顕崢鐢电磽娴e壊鍎忛柣蹇旂箞椤㈡濮€閵堝棛鍘靛銈嗘⒒閺咁偊骞婇崶銊﹀弿濠电姴瀚崝瀣倵閻㈤潧甯堕柍璇查叄楠炲鎮╁Ο鑽ょ煂缂佽鲸鎸婚幏鍛村传閸曟埊缍侀弻锝呂旀担鍦槹濡炪們鍨哄畝鎼佸极閹邦厼绶炴俊顖滅帛濞呭洭姊绘担绋挎毐闁诲繐鐗撳鎻掆堪閸喎鈧潧鈹戦悩宕囶暡闁抽攱鍨归幉鎼佹偋閸繄鐟ㄦ繛瀛樼矆閸楁娊寮诲☉妯滅喖宕崟銊﹀瘱缂傚倷绶¢崰妤呮偡閳轰胶鏆﹂柣鏃傗拡閺佸秵绻涢幋鐐茬瑲閻庢艾銈稿缁樻媴閸涘﹨纭€闁哄浜濈换娑氣偓鐢登归崢鎾煕閳瑰灝鍔滅€垫澘瀚伴獮鍥敇閻樻彃绠伴梻鍌欑婢瑰﹪宕戦幒妤€纾婚柛鏇ㄥ墯濞呯娀鎮楅悽鐢点€婇柛瀣尵閹叉挳宕熼鍌ゆК缂傚倸鍊哥粔鎾晝閵夛妇鈹嶅┑鐘插亞濞兼壆鈧厜鍋撳┑鐘插敪椤忓嫧鏀介柣妯诲墯閸熷繘鏌涢妸銈呭祮濠碘€崇埣楠炴牗鎷呭灞炬啺婵犵數鍋為崹鎯板綔濠碘剝褰冮悧濠囧箞閵娿儙鏃堝焵椤掑嫭鍋嬪┑鐘叉搐閺嬩線鏌涢幘妤€鎳愰敍婵囩箾鏉堝墽鍒伴柟纰卞亝閻楀酣姊哄Ч鍥х労闁搞劍濞婂畷鎴﹀Χ婢跺﹥妲梺閫炲苯澧柕鍥у楠炴帡宕卞鎯ь棜闂傚倷娴囬褏鎹㈤幋锔藉殞濡わ絽鍟犻埀顒婄畵瀹曞綊顢氶崨顔肩紦闂備線鈧偛鑻晶瀛橆殽閻愭彃鏆㈡い锕€婀遍埀顒冾潐濞叉牕鐣烽鍕畳闂備礁鎼ˇ鎵偓绗涘洤绐楁俊顖氱毞閸嬫挾鎲撮崟顒傤槶闁哄浜幗鍫曞冀椤€崇秺閺佹劖寰勭€n偆褰搁梻浣圭湽閸庣儤绂嶉鍕垫綎缂備焦蓱婵潙銆掑鐓庣仭闁轰緡鍨跺铏规喆閸曨兙浠ф繛瀛樼矤娴滄粓锝炶箛鏃傤浄閻庯綆浜為ˇ鏉款渻閵堝棛澧紒瀣笒閳诲秹寮介鐔叉嫼闂佸憡绻傜€氼噣鍩㈡径鎰厱婵☆垰婀遍惌娆撴煙椤旀瑣鍊楅悿鈧┑鐐村灦閻熝囧储闁秵鈷戦柡鍌樺劜濞呭懘鏌涢悤浣哥仯缂侇喖鐗撻崺鈧い鎺嗗亾妞ゎ亜鍟存俊鎯扮疀閺囩偟鐓楅梻浣告惈濡瑧绮╃化鏉戔攽閻樺灚鏆╁┑顔惧厴瀵偊宕ㄦ繝鍐ㄥ伎婵炴潙鍚嬪ḿ娆撳垂閸岀偞鐓曢柨鏃囶嚙楠炴ḿ绱掗埀顒佺節閸屾鏂€闂佺粯锚瀵爼骞栭幇鐗堢厽闁圭儤鍨规禒娑㈡煏閸パ冾伃妤犵偞甯掗濂稿醇濠靛棗鑵愰梻鍌欑劍閸撴岸宕归崡鐏绘椽鎮㈤悡搴ゆ憰闂佸搫娲㈤崹褰掔嵁閵忊€茬箚闁靛牆鍊告禍楣冩⒑閸濆嫭锛旂紓宥勭窔瀵鏁嶉崟顏呭媰闂佸憡鎸嗛崟顐㈢仭濠德板€楁慨鐑藉磻閻愬灚鏆滈柨鐔哄Х瀹撲線鎮楅敐搴℃灍闁稿﹤顭烽弻娑㈠焺閸愬じ绶靛┑鈽嗗€ら崘锝嗘杸闂佹寧绋戠€氼剚绂嶆總鍛婄厱濠电姴鍟版晶閬嶆煛娓氬洤娅嶉柟顔界懇瀹曨偊宕熼鐘茬倞闂傚倷绀佺紞濠囧磻婵犲洤绐楁慨妯垮煐閸庢绻涢崱妤冪畾闁衡偓娴犲鐓熸俊顖氭惈缁狙冾熆鐠哄搫顏柡灞剧〒閳ь剨缍嗛崑鍕叏瀹ュ鐓涚€光偓鐎n剛袦婵犳鍠掗崑鎾绘⒑闂堟稓绠氶柛鎾寸箓琚欓柛鏇ㄥ灡閻撴稑霉閿濆懏鎲稿褝闄勯幈銊︾節閸曨厼绗¢梺鐟板槻閹虫劗鍒掑▎鎾崇閹肩补妾ч崑鎾活敍濮橈絾鏂€闂佺粯锕╅崰鏍倶椤忓牊鐓ラ柡鍥悘鈺呮煟閿濆洤鍘存い銏$☉閳藉顫滈崱妤侇啌闂備浇顕х€涒晝绮欓幒妤佹櫔濠电偛鐡ㄧ划鐘诲垂鐠轰警娼栨繛宸簻瀹告繂鈹戦悩鎻掝伀闁伙絽鐏氱换婵嗏枔閸喚浠存俊鐐茬摠閹倿鐛崱娑樼睄闁割偅绻嶅ḿ濠囨⒑閹稿海鈽夐悗姘煎枦閸婂瓨绻濈喊澶岀?闁稿鍨垮畷鎰板冀椤撶偟顦┑掳鍊曢幊搴g玻濡ゅ懎绠规繛锝庡墮閻忣喗銇勯埡鍌氱祷閾绘牠鏌ㄥ┑鍡樺櫣闁哄棛鍋ら弻锝夊箻鐎靛憡鍒涢梺鍝勬湰閻╊垱淇婇悜鑺ユ櫜闁告侗鍙庨悗鎾⒒娴e湱婀介柛鏂跨Ч瀹曞綊宕稿Δ鈧拑鐔兼煥濠靛棭妲归柛瀣閺屾稑鈻庤箛锝喰ч梺缁樼箖濡啫顫忛搹鍏夊亾閸︻厼校妞ゃ儱顦伴妵鍕晜閻愵剚姣堥梺缁樹緱閸犳牞鐏掗梺鍏肩ゴ閺呮繈藝閳哄懏鈷戠紓浣光棨椤忓嫮鏆︽い鎺戝閺佸棝鏌曡箛濞惧亾閼碱剛鐣鹃梻浣虹帛閸旓附绂嶅⿰鍫濈劦妞ゆ帊鑳舵晶顏堟偂閵堝棛绡€闂傚牊绋掗ˉ鎴︽煛鐎n亞效闁哄矉绻濆畷鍫曞煛娴i攱鍠氱紓鍌氬€搁崐鐟扮暆閹间焦鍋傛い鎰剁畱閻愬﹪鏌曟繛褉鍋撴俊鎻掔墦閹鎮烽悧鍫濇殘缂備浇顕ч崯瀛樹繆閻㈢ǹ绀嬫い鏍ㄦ皑椤旀帒鈹戞幊閸婃劙宕戦幘缁樼厱闁绘洑绀侀悘锔姐亜閵忥紕鎳囬柡浣规崌閺佹捇鏁撻敓锟�20濠电姷鏁告慨鎾儉婢舵劕绾ч幖瀛樻尭娴滅偓淇婇妶鍕妽闁告瑥绻橀弻锝夊箣閿濆棭妫勭紒鐐劤椤兘寮婚敐鍛傜喎鈻庨幆褎顔勭紓鍌欒兌婵挳鎮樺璺何﹂柛鏇ㄥ枤閻も偓闂佸湱鍋撻幆灞轿涢垾鎰佹富闁靛牆楠告禍婵囩箾閸欏缂氶柟骞垮灩閳规垹鈧綆鍋掑Λ鍐ㄢ攽閻愭潙鐏ョ€规洦鍓熷畷婊堝箥椤斿墽锛濇繛杈剧到閹碱偅鐗庨梻浣规偠閸斿苯岣块垾鎰佸殨濠电姵鑹惧洿闂佺硶鍓濋敋鐎殿喖娼″楦裤亹閹烘垳鍠婇梺绋跨箲閿曘垹鐣烽幋锕€绠绘繝銏犲濡啴宕洪埀顒併亜閹烘垵顏╅柣鎾寸箞閺岋繝宕橀妸褍顣哄銈庡亜閹虫﹢寮婚敐鍛傜喖鎮滃鍡橈骏闂備胶顢婂▍鏇㈠箲閸ヮ剙围妞ゅ繐鎳庨閬嶆煛婢跺鐏╂い锔哄姂濮婃椽宕橀崣澶嬪創闂佹寧娲忛崕鐢稿极瀹ュ宸濇い鏍ㄧ矌閿涙繈姊虹粙鎸庢拱闁荤啙鍥佸洭鏁傛慨鎰盎闂佹寧妫侀褔鎮橀敂濮愪簻闁靛繆鈧啿鎽靛銈冨灪閿曘垺鎱ㄩ埀顒勬煟濮椻偓濞佳勬叏閿旀垝绻嗛柣鎰典簻閳ь剚鐗曢蹇旂節濮橆剛锛涢梺瑙勫劤椤曨厾寮ч埀顒勬⒑闁偛鑻晶鎾煛鐏炶姤顥滄い鎾炽偢瀹曘劑顢涢妶鍥ц€块梻鍌氬€烽懗鍓佸垝椤栨凹娼栧┑鐘宠壘閸屻劎鎲搁弬娆惧殨闁告稑锕﹂悷褰掓煃瑜滈崜鐔奉嚕婵犳艾鍗抽柕蹇曞█閸炶泛鈹戦悩鑼粵闁告梹鐗楅弲銉╂⒒閸屾瑨鍏岄弸顏勎旈悩鍙夋喐缂侇喗妫侀妵鎰板箳閹达絾鎲版繝鐢靛仦閸垶宕硅ぐ鎺戠闁规儼濮ら悡蹇撯攽閻愯尙浠㈤柛鏃€纰嶉妵鍕敃閻斿憡鐝氬┑顔硷功閸庛倗鈧數鍘ч埢搴ㄥ箣閻樿櫕顔忕紓鍌氬€搁崐鍝ョ矓閹绢喗鏅濇い蹇撶墢瀹撲線鏌涢幇鈺佸闁哄啫鐗嗙粈鍐煃鏉炴壆鍔嶉柣搴弮濮婄粯鎷呴崨濠傛殘濠电偠顕滅粻鎾崇暦閿濆棙鍎熼柕濞垮劜鏉堝牓姊虹捄銊ユ灁濠殿喚鏁婚崺娑㈠箣閿旂晫鍘卞┑鐘绘涧濡顢旈鍛簻闁靛绠戦悘鎾煛鐏炲墽銆掗柍褜鍓ㄧ紞鍡涘磻閸涱厾鏆﹂悘鐐靛亾閸欏繐鈹戦悩鎻掓殲闁靛洦绻勯埀顒冾潐濞诧箓宕戞繝鍌滄殾闁绘梻鍘ч崹鍌涖亜閹邦剝鐧侀柛銉e妷閹锋椽姊洪崨濠勨槈闁挎洏鍎甸崺娑㈠箛閻楀牏鍘藉┑掳鍊曢崯顐﹀煝閸噥娈介柣鎰絻閺嗭綁鏌℃担瑙勫磳闁诡喒鏅犻幖褰掝敃閿濆洤寤洪梻鍌氬€风粈渚€骞夐垾瓒佹椽鏁冮崒姘鳖槶濠电偛妫欓幐濠氬磻閻旇褰掓偂鎼达絾鎲奸梺鎶芥敱閸ㄥ灝顫忔繝姘唶闁绘梹浜介埀顒佸笧缁辨帡鎮╅崘鎻掓懙闂佸搫鏈惄顖炵嵁濡皷鍋撻棃娑欐喐闁汇倕瀚板铏规嫚閳ヨ櫕鐏€闂侀€炲苯澧柡瀣偢瀵憡鎯旈妸锔惧幍闂備緡鍙忕粻鎴﹀几閵堝棎浜滈柡鍐e亾婵炲弶岣块幑銏犫攽鐎n亶娼婇梺鎸庣箓濡盯濡撮幇顒夋富闁靛牆妫楅悘銉︿繆椤愶絿銆掗柛鎺撳浮瀹曞ジ濡烽妷褍濮︽俊鐐€栫敮鎺斺偓姘煎弮瀹曟劙宕归銈囶啎闂佸壊鍋呯换鍕閵忥紕绠鹃柛娑卞幘鏁堥梺鍝勭焿缁绘繈宕洪埀顒併亜閹烘垵顏╃痪顓涘亾闂備胶绮崹闈浳涘Δ鈧埢鎾活敃閿旇В鎷洪梺鍛婄☉閿曘儲寰勯崟顖涚厱閻庯綆鍋勫ù顔锯偓瑙勬磸閸庢娊鍩€椤掑﹦绉甸柛鐘愁殜閹繝寮撮姀锛勫幐闂佹悶鍎崕杈ㄤ繆閸忕⒈娈介柣鎰懖閹寸偟鈹嶅┑鐘叉搐閻顭跨捄鐚村姛濞寸厧鑻埞鎴︻敊绾攱鏁惧┑锛勫仩濡嫰鎮鹃悜绛嬫晝闁挎洍鍋撶紒鈧€n偁浜滈柟閭﹀枛閺嬪骸霉濠婂嫬鍔ら棁澶愭煟濡儤鈻曢柛搴㈢矌缁辨挸顓奸崱娆忊吂濡炪値鍙€濞夋洟骞戦崟顖涘€绘俊顖滅帛鐎氭娊姊绘担鍛靛湱鎹㈤幋鐘插灊闁规崘顕ч拑鐔哥箾閹存瑥鐒洪柡浣稿暣閺屻劌鈹戦崱姗嗘¥濡炪倧璐熼崝鎴濐潖濞差亜浼犻柛鏇ㄥ墮椤庢盯姊洪崨濠冨暗闁哥姵鐗犻悰顕€宕橀…鎴炲缓闂侀€炲苯澧存鐐插暙閳诲酣骞橀幖顓燁棃婵犵數鍋為崹鍫曘€冮崨姝ゅ顫濇潏鈺冿紳闂佺ǹ鏈悷銊╁礂鐏炶В鏀芥い鏃傚亾閺嗏晠鏌℃笟鍥ф珝闁搞劑绠栭獮鍥ㄦ媴閸︻厾鈻夋繝鐢靛Х閺佸憡鎱ㄩ悽鍛婂殞濡わ絽鍟崐宄扳攽閻樺弶澶勯柣鎾卞劜缁绘繈妫冨☉娆樻!闂侀潻绲挎灙妞ゎ叀娉曢幉鎾礋椤掑偆妲规繝娈垮枛閿曘儱顪冩禒瀣疇闁跨喓濮村洿闂佸憡渚楅崰姘跺焵椤掍礁鍔ら柍瑙勫灴閹瑩骞撻幒鏃堢崜闂備焦鎮堕崝灞结缚閿熺姷宓佸┑鐘蹭迹閺冨牆绀冮柍杞拌兌閿涘繘姊洪懡銈呬沪缂佸鐗撳畷婊冣攽鐎n偄鈧泛銆掑锝呬壕濠殿喖锕ㄥ▍锝呪槈閻㈢ǹ宸濇い鏂垮悑闁款參姊婚崒姘偓鍝モ偓姘煎墰閳ь剚纰嶅姗€鎮鹃悜钘夊嵆闁靛繒濮烽娲⒑閹稿孩顥嗘俊顐㈠閸┾偓妞ゆ帒鍊归弳顒勬煛鐏炶濡奸柍瑙勫灴瀹曞崬鈽夐幍浣镐壕婵°倓绶″▓浠嬫煟閹邦喗顬嬬紓鍌涙皑缁辨帗娼忛妸銉﹁癁闂佽鍠掗弲娑㈡偩閻戣棄鐐婄憸澶愬箯娴煎瓨鈷掑ù锝呮啞閹牆顭跨捄鐑樺枠鐎规洘绮岄埞鎴﹀幢閳轰焦顔傞梻浣告啞濞诧箓宕戦埀顒佷繆閹绘帞澧涚紒缁樼洴瀹曞崬螖娴d警娲跺┑鐐差嚟閵嗗骞忛敓锟�
张楠1, 刘自广2, 孙世臣3, 刘圣怡4, 林建辉1, 彭疑芳5, 张晓旭1, 杨贺1, 岑曦1, 吴娟,1,*1东北林业大学生命科学学院, 东北盐碱植被恢复与重建教育部重点实验室, 哈尔滨 150040
2黑龙江省农业科学院畜牧研究所, 哈尔滨 150028
3黑龙江省农业科学院耕作栽培研究所, 哈尔滨 150028
4牡丹江医学院, 牡丹江 1570115东北农业大学, 哈尔滨 150030

Response of AtR8 lncRNA to Salt Stress and Its Regulation on Seed Germination in Arabidopsis

Nan Zhang1, Ziguang Liu2, Shichen Sun3, Shengyi Liu4, Jianhui Lin1, Yifang Peng5, Xiaoxu Zhang1, He Yang1, Xi Cen1, Juan Wu,1,*1Key Laboratory of Northeast Salinity and Vegetation Restoration and Reconstruction, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
2Institute of Animal Science, Heilongjiang Academy of Ag-ricultural Sciences, Harbin 150028, China
3Institute of Farming and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
4Mudanjiang Medical University, Mudanjiang 157011, China

通讯作者: *E-mail: wuj1970@163.com

责任编辑: 孙冬花
收稿日期:2019-12-18接受日期:2020-04-15网络出版日期:2020-07-01
基金资助:黑龙江省科学基金(LH2019C007)
中央高校基本科研业务费专项资金(2572019CT03)
东北油田盐碱植被恢复与重建教育部重点实验室开放基金(SAVER1702)


Corresponding authors: *E-mail: wuj1970@163.com
Received:2019-12-18Accepted:2020-04-15Online:2020-07-01


摘要
长链非编码RNA (lncRNA)是一类长度大于200个核苷酸且不编码蛋白质的非编码RNA, 主要由RNA聚合酶II转录生成, 大量存在于生物体内并具有多种生物学功能。AtR8 lncRNA是拟南芥(Arabidopsis thaliana)中RNA聚合酶III转录的长链非编码RNA。前期研究发现, 水杨酸(SA)处理诱导萌发种子中AtR8 lncRNA的表达, AtR8 lncRNA缺失抑制SA胁迫下的种子萌发。进一步研究发现, AtR8 lncRNA转录区域内存在保守的盐胁迫响应元件(TCTTCTTCTTTA); NaCl处理抑制萌发种子中AtR8 lncRNA的表达; 与野生型相比, 高浓度NaCl处理明显抑制了atr8 (AtR8 lncRNA部分缺失型拟南芥)种子萌发。研究结果表明, AtR8 lncRNA在拟南芥种子萌发期的盐胁迫中起重要作用。
关键词: 长链非编码RNA;拟南芥;种子萌发;盐胁迫

Abstract
Long non-coding RNA (lncRNA) is a type of non-coding RNA that is longer than 200 nucleotides and does not encode proteins. lncRNAs are mainly produced by the transcription of RNA polymerase II and are abundant in the organism and have various biological functions. AtR8 lncRNA is transcribed by RNA polymerase III in Arabidopsis thaliana. Previous studies revealed that Salicylic acid (SA) induces AtR8 lncRNA expression in germinated seeds and that the deletion of AtR8 lncRNA decreases seed germination under SA stress. In this study, we found a conserved salt-stress-responsive element (TCTTCTTCTTTA) in the transcriptional region of AtR8 lncRNA. NaCl treatment inhibited AtR8 lncRNA expression in the germinated seeds. High concentration of NaCl significantly inhibited seed germination of atr8, which had partial deletion of AtR8 lncRNA, compared to that of the wild type, indicating that AtR8 lncRNA plays an important role in regulating seed germination in response to salt stress.
Keywords:long non-coding RNA;Arabidopsis thaliana;seed germination;salt stress


PDF (1148KB)摘要页面多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
张楠, 刘自广, 孙世臣, 刘圣怡, 林建辉, 彭疑芳, 张晓旭, 杨贺, 岑曦, 吴娟. 拟南芥AtR8 lncRNA对盐胁迫响应及其对种子萌发的调节作用. 植物学报, 2020, 55(4): 421-429 doi:10.11983/CBB19244
Zhang Nan, Liu Ziguang, Sun Shichen, Liu Shengyi, Lin Jianhui, Peng Yifang, Zhang Xiaoxu, Yang He, Cen Xi, Wu Juan. Response of AtR8 lncRNA to Salt Stress and Its Regulation on Seed Germination in Arabidopsis. Chinese Bulletin of Botany, 2020, 55(4): 421-429 doi:10.11983/CBB19244


种子是植物特有的繁殖器官。种子萌发是指有活力的种子吸胀后, 重新开始物质合成与代谢活动, 促使胚根露出种皮的过程。种子萌发极易受到光照、温度、水分和盐分等外部环境因素的影响, 同时受多基因调控。例如, 脱落酸(abscisic acid, ABA)胁迫下, WRKY41通过直接调节ABI3 (ABA-insensitive 3)的表达影响拟南芥(Arabidopsis thaliana)种子萌发(Ding et al., 2014); WRKY2通过影响ABA信号通路中ABI3ABI5 (ABA-insensitive 5)、EM1EM6 (early methionine-labeled 1 and 6)的表达, 抑制拟南芥种子萌发(Jiang and Yu, 2009); WRKY6通过影响RAV1 (related to ABA-insensitive3/vivparous1)及其下游ABI3ABI4ABI5的表达调节拟南芥的种子萌发(Huang et al., 2016)。此外, 还有研究表明, RSM1 (radialis-like sant/MYB 1)与HY5 (elongated hypocotyl 5)/HYH (HY5 homolog)结合后聚集在ABI5启动子上, 调节ABI5及其下游ABA应答基因的表达, 从而改变拟南芥萌发种子对ABA、NaCl以及甘露醇的敏感性(Yang et al., 2018)。CAMTA6 (calmodulin-bining transcription activator 6)通过调节Na+稳态和盐胁迫耐受性相关基因的表达, 影响拟南芥萌发种子对ABA的敏感性和盐胁迫的耐受性(Shkolnik et al., 2019)。尽管如此, 种子萌发的详细分子机制仍不十分清楚。

非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用。长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015)。现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析。AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015)。热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019)。Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用。Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成。Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性。Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间。Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长。Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应。

近年来, 萌发相关ncRNA逐渐被发现并被解析, 如miR156miR159miR167miR9678。拟南芥miR156基因下调SPL13 (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE13)的表达, 延迟萌发后幼苗的发育(Martin et al., 2010a, 2010b)。miR159通过影响MYB101MYB33的表达介导拟南芥的种子萌发(Reyes and Chua, 2007)。miR167通过调节ARF基因的表达影响生长素的信号转导, 在种子萌发以及胚发育过程中起重要作用(Rhoades et al., 2002)。miR9678通过调节GA/ABA信号转导影响小麦(Triticum aestivum)的种子萌发(Guo et al., 2018)。近几年, 参与种子萌发的长链非编码RNA也被发现。Xu等(2018)研究表明, 萌发的蓖麻(Ricinus communis)种子中多个DNA甲基化相关的lncRNA在胚乳和胚胎发育中起重要作用。Zhu等(2017)在玉米(Zea mays)种子中鉴定出753个lncRNA, 其中7个新lncRNA可能参与了玉米种子的发育和代谢过程。Yin等(2018)从发育的牡丹(Paeonia suffruticosa)种子中鉴定出22 430个lncRNA, 并预测39个lncRNA可能参与种子的脂肪酸合成和脂质代谢过程。BoNR8 lncRNA是甘蓝(B. oleracea)中RNA聚合酶III转录的长链非编码RNA, 拟南芥中BoNR8过表达影响ABA信号通路中重要基因的表达, 并抑制根生长和角果发育, 降低萌发种子对ABA的敏感性和盐胁迫的耐受性(Wu et al., 2019a)。

前期研究中, 我们根据RNA聚合酶III的转录活性及其转录的非编码RNA基因结构特征, 发现了拟南芥中RNA聚合酶III转录的AtR8 lncRNA (259 nt), 其在幼苗根端细胞质中大量表达, 并响应低氧胁迫(Wu et al., 2012); 且水杨酸(salicylic acid, SA)处理诱导萌发种子中AtR8 lncRNA的表达, AtR8 lncRNA缺失降低SA胁迫下的种子萌发(Li et al., 2016)。我们进一步研究发现, AtR8 lncRNA转录区域内包含保守的盐胁迫响应元件, 盐胁迫处理影响萌发种子中AtR8 lncRNA的表达, 且AtR8 lncRNA缺失降低了萌发种子对盐胁迫的耐受性, 表明AtR8 lncRNA在拟南芥种子萌发期盐胁迫中起重要作用。

1 材料与方法

1.1 植物材料

实验材料为野生型拟南芥(Arabidopsis thaliana L.)和AtR8 lncRNA部分缺失型拟南芥突变体(atr8, FLAG410H04), 后者购自凡尔赛拟南芥储备中心(versailles Arabidopsis stock center (http://publiclines.versailles.inra.fr/)) (Li et al., 2016)。

1.2 各种应激应答处理及萌发率、鲜重和干重统计

将相同批次拟南芥野生型和atr8各50粒种子经70% (v/v)乙醇溶液和5% (v/v)次氯酸钠溶液表面消毒后, 播种在1/2MS固体培养基和分别含有50、100、150和200 mmol·L-1 NaCl的培养基上。4°C吸胀处理72小时后, 于22°C (16小时光照/8小时黑暗)培养箱中培养; 统计1、2、3、4、5、6和7天的种子萌发率(以胚根突破种皮为萌发标准)。称量萌发7天种子的鲜重, 70°C烘箱处理2天后, 称量萌发种子的干重。每个实验重复3次, 然后进行统计学分析。

1.3 RNA提取方法

RNA提取参照Martin等(2005)刘春晓等(2019)文献所述方法。称取0.1 g拟南芥干种子或萌发种子于液氮中彻底研磨后, 加入1 mL RNA提取液(45.5% (v/v)苯酚, 9% (v/v)氯仿, 0.45% (w/v) SDS, 41 mmol·L-1 LiCl, 2 mmol·L-1 EDTA, 5.9 mmol·L-1 β-巯基乙醇, 82 mmol·L-1 Tris-HCl), 混匀后离心。吸取上清, 加入等体积的PCI溶液(苯酚:氯仿:异戊醇=25:24:1, v/v/v); 离心后取上层溶液, 加入等体积的氯仿, 室温孵育; 离心取上层溶液加入1/3体积的8 mol·L-1 LiCl, 于-20°C静置过夜。次日, 离心取上清并加入1/4体积的异丙醇, 于-20°C静置30分钟; 离心取上清并加入3/5体积的异丙醇, -20°C静置30分钟; 离心后得RNA沉淀, 使用75%乙醇漂洗后加入适量的焦碳酸二乙酯(diethyl pyrocarbonate, DEPC)水, 于-80°C冰箱保存。

1.4 Northern分析

将经6%聚丙烯酰胺凝胶电泳分离的RNA转移至尼龙膜上, UV交联固定后, 于42°C杂交箱预杂交1小时; 加入变性地高辛标记AtR8 lncRNA特异性RNA探针, 于42°C过夜杂交; 杂交后的膜于2× SSC (含0.1% SDS)及0.2× SSC (含0.1% SDS)洗液中清洗2次; 室温封闭1小时后, 与稀释2 000倍的Anti-Digoxigenin- AP抗体反应2小时; 马来酸洗液洗膜3次; CDP-Star暗处反应15分钟后, 使用LAS-4 000化学发光系统检测信号。

1.5 整体原位杂交(in situ)

将萌发2天的拟南芥种子经固定液(4% (w/v)多聚甲醛, 15% (v/v) DMSO, 0.1% (v/v) tween 20, 0.08 mol·L-1 EGTA (pH8.0)) 4°C固定3天后, 进行脱水、水饱和及蛋白酶K处理。与地高辛标记AtR8 lncRNA特异性探针于42°C过夜杂交; 杂交后的样品经水洗加入blocking封闭2小时, 于4°C与稀释1 500倍的Anti-Digoxigenin-AP抗体反应过夜, 经BM Purple检测信号。

2 结果与讨论

2.1 种子萌发过程中AtR8 lncRNA的表达特性分析

为确定拟南芥种子萌发过程中AtR8 lncRNA的表达特性, 提取其干种子和萌发48小时种子的RNA进行Northern分析, 发现AtR8 lncRNA在萌发种子中大量表达(图1A)。整体原位杂交实验进一步确认AtR8 lncRNA于萌发种子的根尖端大量表达(图1B), 表明拟南芥萌发种子中AtR8 lncRNA的表达具有高度的组织特异性。

图1

新窗口打开|下载原图ZIP|生成PPT
图1拟南芥种子萌发过程中AtR8 lncRNA的表达特性分析

(A) 拟南芥种子萌发过程中AtR8 lncRNA表达特性的Northern分析(以5.8S rRNA作为上样对照); (B) 拟南芥种子萌发过程中AtR8 lncRNA组织表达特性的整体原位杂交(箭头指示AtR8 lncRNA信号) (Bars=200 μm)。
Figure 1Analysis of AtR8 lncRNA expression during seed germination in Arabidopsis thaliana

(A) Northern blotting analysis of AtR8 lncRNA expression during seed germination (expression of 5.8S rRNA serves as loading controls); (B) In situ hybridization of AtR8 lncRNA expression during seed germination (arrow indicates AtR8 lncRNA signal) (Bars=200 μm).


2.2 种子萌发过程中AtR8 lncRNA表达响应盐胁迫

UCC盐胁迫响应元件(TCTTCTTCTTTA)是盐应答基因中高度保守的序列。Di等(2014)证明长链非编码RNA中存在该保守UCC元件。因此, 我们比较了AtR8 lncRNA序列与UCC元件, 发现AtR8 lncRNA转录区域内存在UCC盐胁迫响应元件, 序列相似性达75% (9 bp/12 bp) (图2A), 这表明AtR8 lncRNA可能响应盐胁迫。RNAlogo (http://rnalogo.mbc.nctu.edu.tw/index.php)预测到UCC元件存在于AtR8 lncRNA二级结构的茎环相连位置(图2B)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2拟南芥种子萌发过程中AtR8 lncRNA表达响应NaCl逆境胁迫

(A) AtR8 lncRNA与UCC盐胁迫响应元件的序列比较分析(USE、TATA启动子序列为大写、加粗并加框, AtR8 lncRNA转录区域为大写并加粗, 保守的盐胁迫响应元件用星号标注)。(B) AtR8 lncRNA二级结构中盐胁迫响应元件存在位置的RNAlogo预测(盐胁迫响应元件为大写、加粗并用箭头指出)。(C) 拟南芥种子萌发过程中不同浓度NaCl处理下AtR8 lncRNA表达特性的Northern分析, 以5.8S rRNA作为上样对照。下方为Northern半定量分析, 2个独立的实验给出了相似的结果, 并显示了1个代表性的例子。值为平均值±标准误(t-检验, *P<0.05, **P<0.01)。(D) 拟南芥种子萌发过程中150 mmol·L-1 NaCl处理不同时间AtR8 lncRNA表达特性的Northern分析, 以5.8S rRNA作为上样对照。下方为Northern半定量分析, 2个独立的实验给出了相似的结果, 并显示了1个代表性的例子。值为平均值±标准误(t-检验, **P<0.01)。
Figure 2AtR8 lncRNA expression during seed germination of Arabidopsis thaliana after NaCl treatment

(A) Sequence comparison between AtR8 lncRNA and UCC salt stress-responsive element (the USE and TATA promoter sequences are capitalized, bloded and framed; the AtR8 lncRNA transcriptional region is capitalized and bolded; and the conserved salt stress-responsive element is marked with asterisk). (B) The location of the salt stress-responsive element in the secondary structure of AtR8 lncRNA predicted by RNAlogo (the salt stress-responsive motif is capitalized, bloded and indicated with an arrow). (C) Northern blotting analysis of AtR8 lncRNA expression in germinating seeds under different NaCl treatments, 5.8S rRNA was used as a loading control. The lower panel shows semi-quantitative analysis of the Northern blotting signals. Two independent experiments gave similar results, and a representative example is shown. Values are means ± SE (t-test, *P<0.05, **P<0.01). (D) Northern blotting analysis of AtR8 lncRNA in germinating seeds under different periods of 150 mmol·L-1 NaCl treatment, 5.8S rRNA was used as a loading control. The lower panel shows semi-quantitative analysis of the Northern blotting signals. Two independent experiments gave similar results, and a representative example is shown. Values are means ± SE (t-test, **P<0.01).


此外, 实验结果表明, 50、100、150和200 mmol·L-1 NaCl处理均抑制AtR8 lncRNA的表达(图2C), 且150 mmol·L-1 NaCl的抑制作用最明显。150 mmol·L-1 NaCl分别处理0、8、16、24、32和40小时的Northern分析结果进一步表明, 处理时间越长, AtR8 lncRNA表达受抑制越明显(图2D)。

2.3 盐胁迫下AtR8 lncRNA缺失抑制种子萌发

乔慧萍等(2007)研究表明, 盐胁迫对种子萌发具有抑制作用。我们使用AtR8 lncRNA部分缺失型突变体(atr8), 调查了盐胁迫下AtR8 lncRNA缺失是否影响种子萌发(图3A) (Li et al., 2016)。结果表明, 正常培养条件下, atr8种子萌发率低于野生型。50 mmol·L-1 NaCl处理时, 野生型和atr8种子萌发率与正常培养条件类似。100、150和200 mmol·L-1 NaCl处理时, 野生型和atr8种子萌发均受到抑制, 但对atr8种子萌发的抑制作用更明显(图3B)。对萌发7天的野生型与atr8种子鲜重和干重的分析结果表明, 正常培养条件下野生型的鲜重和干重均大于atr8。随着NaCl浓度的增加, 二者的鲜重和干重均明显降低, 但atr8的鲜重和干重仍明显低于野生型(图3C), 表明NaCl胁迫下, AtR8 lncRNA缺失进一步抑制了拟南芥的种子萌发。

图3

新窗口打开|下载原图ZIP|生成PPT
图3盐胁迫下AtR8 lncRNA缺失抑制拟南芥种子萌发

(A) Northern分析鉴定AtR8 lncRNA缺失突变体atr8 (以5.8S rRNA作为上样对照); (B) 不同浓度NaCl处理下, 野生型和atr8种子生长状况及萌发率统计分析(数据为3次独立试验的平均值, 误差为标准误); (C) 不同浓度NaCl处理下, 野生型和atr8萌发7天种子的鲜重及干重(数值为3次独立试验的平均值, 误差为标准误, 星号表示atr8与野生型的显著性差异(t-检验, *P<0.05, **P<0.01))。WT: 野生型
Figure 3Loss of AtR8 lncRNA inhibits Arabidopsis thaliana seed germination under salt stress

(A) Northern blotting analysis of the AtR8 lncRNA loss-of-function mutant atr8 (5.8S rRNA was used as the loading control); (B) Statistical analysis of growth and germination rate of the wild-type and atr8 seeds under different concentrations of NaCl (data are average of three independent experiments, and bars indicate standard error); (C) Fresh and dry weight of the wild-type and atr8 seeds after 7 d of germination under NaCl treatment (the values are average of three independent experiments, and bars indicate standard error (the asterisk indicate significant differences between atr8 and wild type (t-test, * P < 0.05, ** P < 0.01)). WT: Wild type


2.4 讨论

高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015)。植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012)。苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发。低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013)。盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016)。NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010)。拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014)。NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018)。目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚。

前期研究表明, RNA聚合酶III转录的AtR8 Inc- RNA同源物BoNR8 lncRNA大量存在于甘蓝萌发种子的根部(Wu et al., 2019a)。本研究发现, AtR8 lncRNA在拟南芥萌发种子的根尖端特异表达, 表明AtR8 lncRNA与BoNR8 lncRNA均在种子萌发阶段特异性表达, 这表明种子萌发过程中RNA聚合酶III具有较高的转录活性, 可以转录与萌发相关的特殊非编码RNA。BoNR8 lncRNA和AtR8 lncRNA转录区域内都存在盐胁迫响应元件。盐胁迫下, BoNR8 lncRNA被诱导表达, AtR8 lncRNA的表达则被抑制, 表明AtR8 lncRNA与BoNR8 lncRNA均响应盐胁迫但表达趋势不同。拟南芥中BoNR8 lncRNA过表达影响ABA信号中RAV1ABI3ABI5EM1EM6等重要基因的表达, 抑制正常培养条件下的种子萌发、角果发育和幼苗根生长, 高盐胁迫进一步抑制种子萌发。AtR8 lncRNA缺失抑制正常培养条件下的种子萌发, 高盐胁迫也进一步抑制种子萌发, 但不影响根生长, 表明BoNR8 lncRNA与AtR8 lncRNA均参与拟南芥的生长发育和盐胁迫响应过程, 但它们的生物学功能存在差异。后续, 我们将从分子水平及遗传学角度详细分析种子萌发过程中AtR8 lncRNA参与盐胁迫的作用机制, 为培育优质丰产的耐盐作物新品种提供理论依据。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

陈洁, 林栖凤 (2003). 植物耐盐生理及耐盐机理研究进展
海南大学学报(自然科学版) 21(2), 177-182.

[本文引用: 1]

窦伟 (2010). 硫化氢对盐和铝胁迫下小麦种子萌发及氧化损伤的缓解效应
硕士论文. 合肥: 合肥工业大学. pp. 28.

[本文引用: 1]

韩志平, 张海霞, 周凤 (2015). 盐胁迫对植物的影响及植物对盐胁迫的适应性
山西大同大学学报(自然科学版) 31(3), 59-62.

[本文引用: 1]

郝雪峰, 高惠仙, 燕平梅, 李晓春, 李珊珊 (2013). 盐胁迫对大豆种子萌发及生理的影响
湖北农业科学 52, 1263-1266.

[本文引用: 1]

黄小庆, 李丹丹, 吴娟 (2015). 植物长链非编码RNA研究进展
遗传 37, 344-359.

[本文引用: 5]

刘春晓, 黄小庆, 刘自广, 彭疑芳, 李丹丹, 张晓旭, 李爽, 汤川泰, 吴娟 (2019). 十字花科植物种子低分子RNA提取方法比较
基因组学与应用生物学 38, 1236-1241.

[本文引用: 1]

陆玉建, 高春明, 郑香峰, 钮松召 (2012). 盐胁迫对拟南芥种子萌发的影响
湖北农业科学 51, 5099-5104.

[本文引用: 1]

乔慧萍, 李建设, 雍立华, 艾凤舞 (2007). 植物盐胁迫生理及其适应性调控机制的研究进展
宁夏农林科技 (3), 34-36, 24.

[本文引用: 1]

苏永全, 吕迎春 (2007). 盐分胁迫对植物的影响研究简述
甘肃农业科技 (3), 23-27.

[本文引用: 2]

孙兰菊, 岳国峰, 王金霞, 周百成 (2001). 植物耐盐机制的研究进展
海洋科学 25(4), 28-31.

[本文引用: 1]

王泳超 (2016). γ-氨基丁酸(GABA)调控盐胁迫下玉米种子萌发和幼苗生长的机制
博士论文. 哈尔滨: 东北农业大学. pp. 73.

[本文引用: 1]

张新宇, 赵兰杰, 李艳军, 孙杰, 刘永昌 (2014). 盐胁迫对拟南芥AtPUB18基因的诱导表达及其启动子分析
西北植物学报 34, 54-59.

[本文引用: 1]

Bergler J, Hoth S (2011). Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis
Plant Biol 13, 725-730.

DOI:10.1111/j.1438-8677.2010.00431.xURLPMID:21815976 [本文引用: 1]
Plant U-box armadillo repeat (PUB-ARM) proteins represent a type of E3 ubiquitin ligase. PUB-ARM proteins have various functions in plant development, plant defence and plant stress responses. The so far uncharacterised PUB-ARM proteins AtPUB18 and AtPUB19 are highly homologous to each other and regulated on the transcript level by ABA and NaCl. To investigate their physiological function, we isolated and characterised two Arabidopsis mutants and named them pub18-1 and pub19-1. However, these single mutants did not show any ABA- or salt-dependent phenotype. In contrast, pub18-1/pub19-1 double mutant seeds were less sensitive to ABA and NaCl inhibition of seed germination compared to wild-type seeds, indicating that both PUB-ARM proteins may coordinately function as regulatory components in ABA or salt inhibition of germination.

Di C, Yuan JP, Wu Y, Li JR, Lin HX, Hu L, Zhang T, Qi YJ, Gerstein MB, Guo Y, Lu ZJ (2014). Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features
Plant J 80, 848-861.

DOI:10.1111/tpj.12679URLPMID:25256571 [本文引用: 1]
Recently, in addition to poly(A)+ long non-coding RNAs (lncRNAs), many lncRNAs without poly(A) tails, have been characterized in mammals. However, the non-polyA lncRNAs and their conserved motifs, especially those associated with environmental stresses, have not been fully investigated in plant genomes. We performed poly(A)- RNA-seq for seedlings of Arabidopsis thaliana under four stress conditions, and predicted lncRNA transcripts. We classified the lncRNAs into three confidence levels according to their expression patterns, epigenetic signatures and RNA secondary structures. Then, we further classified the lncRNAs to poly(A)+ and poly(A)- transcripts. Compared with poly(A)+ lncRNAs and coding genes, we found that poly(A)- lncRNAs tend to have shorter transcripts and lower expression levels, and they show significant expression specificity in response to stresses. In addition, their differential expression is significantly enriched in drought condition and depleted in heat condition. Overall, we identified 245 poly(A)+ and 58 poly(A)- lncRNAs that are differentially expressed under various stress stimuli. The differential expression was validated by qRT-PCR, and the signaling pathways involved were supported by specific binding of transcription factors (TFs), phytochrome-interacting factor 4 (PIF4) and PIF5. Moreover, we found many conserved sequence and structural motifs of lncRNAs from different functional groups (e.g. a UUC motif responding to salt and a AU-rich stem-loop responding to cold), indicated that the conserved elements might be responsible for the stress-responsive functions of lncRNAs.

Ding JH, Lu Q, Ouyang YD, Mao HL, Zhang PB, Yao JL, Xu CG, Li XH, Xiao JH, Zhang QF (2012). A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice
Proc Natl Acad Sci USA 109, 2654-2659.

DOI:10.1073/pnas.1121374109URLPMID:22308482 [本文引用: 1]
Hybrid rice has greatly contributed to the global increase of rice productivity. A major component that facilitated the development of hybrids was a mutant showing photoperiod-sensitive male sterility (PSMS) with its fertility regulated by day length. Transcriptome studies have shown that large portions of the eukaryotic genomic sequences are transcribed to long noncoding RNAs (lncRNAs). However, the potential roles for only a few lncRNAs have been brought to light at present. Thus, great efforts have to be invested to understand the biological functions of lncRNAs. Here we show that a lncRNA of 1,236 bases in length, referred to as long-day-specific male-fertility-associated RNA (LDMAR), regulates PSMS in rice. We found that sufficient amount of the LDMAR transcript is required for normal pollen development of plants grown under long-day conditions. A spontaneous mutation causing a single nucleotide polymorphism (SNP) between the wild-type and mutant altered the secondary structure of LDMAR. This change brought about increased methylation in the putative promoter region of LDMAR, which reduced the transcription of LDMAR specifically under long-day conditions, resulting in premature programmed cell death (PCD) in developing anthers, thus causing PSMS. Thus, a lncRNA could directly exert a major effect on a trait like a structure gene, and a SNP could alter the function of a lncRNA similar to amino acid substitution in structural genes. Molecular elucidating of PSMS has important implications for understanding molecular mechanisms of photoperiod regulation of many biological processes and also for developing male sterile germplasms for hybrid crop breeding.

Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ (2014). WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA
Plant J 79, 810-823.

URLPMID:24946881 [本文引用: 1]

Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007). Target mimicry provides a new me- chanism for regulation of microRNA activity
Nat Genet 39, 1033-1037.

DOI:10.1038/ng2079URLPMID:17643101 [本文引用: 1]
MicroRNAs (miRNA) regulate key aspects of development and physiology in animals and plants. These regulatory RNAs act as guides of effector complexes to recognize specific mRNA sequences based on sequence complementarity, resulting in translational repression or site-specific cleavage. In plants, most miRNA targets are cleaved and show almost perfect complementarity with the miRNAs around the cleavage site. Here, we examined the non-protein coding gene IPS1 (INDUCED BY PHOSPHATE STARVATION 1) from Arabidopsis thaliana. IPS1 contains a motif with sequence complementarity to the phosphate (Pi) starvation-induced miRNA miR-399, but the pairing is interrupted by a mismatched loop at the expected miRNA cleavage site. We show that IPS1 RNA is not cleaved but instead sequesters miR-399. Thus, IPS1 overexpression results in increased accumulation of the miR-399 target PHO2 mRNA and, concomitantly, in reduced shoot Pi content. Engineering of IPS1 to be cleavable abolishes its inhibitory activity on miR-399. We coin the term 'target mimicry' to define this mechanism of inhibition of miRNA activity. Target mimicry can be generalized beyond the control of Pi homeostasis, as demonstrated using artificial target mimics.

Guo GH, Liu XY, Sun FL, Cao J, Huo N, Wuda B, Xin MM, Hu ZR, Du JK, Xia R, Rossi V, Peng HR, Ni ZF, Sun QX, Yao YY (2018). Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling
Plant Cell 30, 796-814.

DOI:10.1105/tpc.17.00842URLPMID:29567662 [本文引用: 1]
Seed germination is important for grain yield and quality and rapid, near-simultaneous germination helps in cultivation; however, cultivars that germinate too readily can undergo preharvest sprouting (PHS), which causes substantial losses in areas that tend to get rain around harvest time. Moreover, our knowledge of mechanisms regulating seed germination in wheat (Triticum aestivum) remains limited. In this study, we analyzed function of a wheat-specific microRNA 9678 (miR9678), which is specifically expressed in the scutellum of developing and germinating seeds. Overexpression of miR9678 delayed germination and improved resistance to PHS in wheat through reducing bioactive gibberellin (GA) levels; miR9678 silencing enhanced germination rates. We provide evidence that miR9678 targets a long noncoding RNA (WSGAR) and triggers the generation of phased small interfering RNAs that play a role in the delay of seed germination. Finally, we found that abscisic acid (ABA) signaling proteins bind the promoter of miR9678 precursor and activate its expression, indicating that miR9678 affects germination by modulating the GA/ABA signaling.

Heo JB, Sung S (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA
Science 331, 76-79.

URLPMID:21127216 [本文引用: 1]

Huang Y, Feng CZ, Ye Q, Wu WH, Chen YF (2016). Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development
PLoS Genet 12, e1005833.

DOI:10.1371/journal.pgen.1005833URLPMID:26829043 [本文引用: 1]
The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression.

Jiang WB, Yu DQ (2009). Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid
BMC Plant Biol 9, 96.

URLPMID:19622176 [本文引用: 1]

Kim DH, Sung S (2012). Environmentally coordinated epigenetic silencing of FLC by protein and long noncoding RNA components
Curr Opin Plant Biol 15, 51-56.

DOI:10.1016/j.pbi.2011.10.004URLPMID:22078062 [本文引用: 1]
In Arabidopsis, the role of the vernalization pathway is to repress expression of a potent floral repressor, FLOWERING LOCUS C (FLC), after a sufficient period of winter cold has been perceived. Following winter, the lack of FLC expression allows unimpeded operation of the photoperiod pathway and hence rapid flowering of vernalized plants in spring via the activation of floral integrator genes. Molecular studies revealed that regulation of the key floral repressor, FLC, is under the control of the interplay between Trithorax group (TrxG)-mediated activation and Polycomb group (PcG)-mediated repression. On-off switch of genes by TrxG and PcG is an evolutionarily conserved mechanism to coordinate cellular identity in eukaryotes. Regulation of FLC by external cues provides an excellent model system to study mechanisms in which cell identity is influenced by environment. In this review, we discuss coordinated contributions by protein and long noncoding RNA components to this environmentally induced epigenetic switch of a developmental program in plants.

Li DD, Huang XQ, Liu ZG, Li S, Okada T, Yukawa Y, Wu J (2016). Effect of AtR8 lncRNA partial deletion on Arabidopsis seed germination
Mol Soil Biol 7, 1-7.

[本文引用: 3]

Liu F, Xu YR, Chang KX, Li SN, Liu ZG, Qi SD, Jia JB, Zhang M, Crawford NM, Wang Y (2019). The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis
New Phytol 224, 117-131.

DOI:10.1111/nph.16038URLPMID:31264223 [本文引用: 1]
Long noncoding RNAs (lncRNAs) are crucial regulators in many plant biological processes. However, it remains unknown whether lncRNAs can respond to nitrate or function in nitrate regulation. We detected 695 lncRNAs, 480 known and 215 novel, in Arabidopsis seedling roots; six showed altered expression in response to nitrate treatment, among which T5120 showed the highest induction. Overexpression of T5120 in Arabidopsis promoted the response to nitrate, enhanced nitrate assimilation and improved biomass and root development. Biochemical and molecular analyses revealed that NLP7, a master nitrate regulatory transcription factor, directly bound to the nitrate-responsive cis-element (NRE)-like motif of the T5120 promoter and activated T5120 transcription. In addition, T5120 partially restored the nitrate signalling and assimilation phenotypes of nlp7 mutant, suggesting that T5120 is involved in NLP7-mediated nitrate regulation. Interestingly, the expression of T5120 was regulated by the nitrate sensor NRT1.1. Therefore, T5120 is modulated by NLP7 and NRT1.1 to regulate nitrate signalling. Our work reveals a new regulatory mechanism in which lncRNA T5120 functions in nitrate regulation, providing new insights into the nitrate signalling network. Importantly, lncRNA T5120 can promote nitrate assimilation and plant growth to improve nitrogen use efficiency.

Martin R, Liu PP, Nonogaki H (2005). Simple purification of small RNAs from seeds and efficient detection of multiple microRNAs expressed in Arabidopsis thaliana and tomato(Lycopersicon esculentum) seeds
Seed Sci Res 15, 319-328.

[本文引用: 1]

Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martínez-Andújar C, Arun Kumar MB, Pupel P, Nonogaki H (2010a). The regulation of post-germinative transition from the cotyledon- to vegetative-leaf stages by microRNA-targeted SQUAMOSA PROMOTER-BINDING PROTEIN LIKE13 in Arabidopsis
Seed Sci Res 20, 89-96.

[本文引用: 1]

Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martínez-Andújar C, Arun Kumar MB, Pupel P, Nonogaki H (2010b). The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis
Seed Sci Res 20, 79-87.

[本文引用: 1]

Qin T, Zhao HY, Cui P, Albesher N, Xiong LM (2017). A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance
Plant Physiol 175, 1321-1336.

DOI:10.1104/pp.17.00574URLPMID:28887353 [本文引用: 1]
Long noncoding RNAs (lncRNAs) affect gene expression through a wide range of mechanisms and are considered as important regulators in many essential biological processes. A large number of lncRNA transcripts have been predicted or identified in plants in recent years. However, the biological functions for most of them are still unknown. In this study, we identified an Arabidopsis (Arabidopsis thaliana) lncRNA, DROUGHT INDUCED lncRNA (DRIR), as a novel positive regulator of the plant response to drought and salt stress. DRIR was expressed at a low level under nonstress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drir(D) , which had higher expression of the DRIR gene than the wild-type plants. The drir(D) mutant exhibits increased tolerance to drought and salt stress. Overexpressing DRIR in Arabidopsis also increased tolerance to drought and salt stress of the transgenic plants. The drir(D) mutant and the overexpressing seedlings are more sensitive to ABA than the wild type in stomata closure and seedling growth. Genome-wide transcriptome analysis demonstrated that the expression of a large number of genes was altered in drir(D) and the overexpressing plants. These include genes involved in ABA signaling, water transport, and other stress-relief processes. Our study reveals a mechanism whereby DRIR regulates the plant response to abiotic stress by modulating the expression of a series of genes involved in the stress response.

Reyes JL, Chua NH (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination
Plant J 49, 592-606.

DOI:10.1111/j.1365-313X.2006.02980.xURLPMID:17217461 [本文引用: 1]
Upon seed imbibition, abscisic acid (ABA) levels decrease to allow embryos to germinate and develop into seedlings. However, under abiotic stress conditions, ABA levels remain high, and growth and development are arrested. Several transcription factors, including abscisic acid-insensitive (ABI)3 and ABI5, are known to control this developmental checkpoint. Here, we show that, in germinating Arabidopsis thaliana seeds, ABA induces the accumulation of microRNA 159 (miR159) in an ABI3-dependent fashion, and miRNA159 mediates cleavage of MYB101 and MYB33 transcripts in vitro and in vivo. The two MYB transcription factors function as positive regulators of ABA responses, as null mutants of myb33 and myb101 show hyposensitivity to the hormone. Consistent with this, miR159 over-expression suppresses MYB33 and MYB101 transcript levels and renders plants hyposensitive to ABA, whereas transgenic plants over-expressing cleavage-resistant forms of MYB33 and MYB101 are hypersensitive, as are plants over-expressing the Turnip mosaic virus (TuMV) P1/HC-Pro viral protein that is known to inhibit miRNA function. Our results suggest that ABA-induced accumulation of miR159 is a homeostatic mechanism to direct MYB33 and MYB101 transcript degradation to desensitize hormone signaling during seedling stress responses.

Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002). Prediction of plant microRNA targets
Cell 110, 513-520.

DOI:10.1016/s0092-8674(02)00863-2URLPMID:12202040 [本文引用: 1]
We predict regulatory targets for 14 Arabidopsis microRNAs (miRNAs) by identifying mRNAs with near complementarity. Complementary sites within predicted targets are conserved in rice. Of the 49 predicted targets, 34 are members of transcription factor gene families involved in developmental patterning or cell differentiation. The near-perfect complementarity between plant miRNAs and their targets suggests that many plant miRNAs act similarly to small interfering RNAs and direct mRNA cleavage. The targeting of developmental transcription factors suggests that many plant miRNAs function during cellular differentiation to clear key regulatory transcripts from daughter cell lineages.

Shkolnik D, Finkler A, Pasmanik-Chor M, Fromm H (2019). CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6: a key regulator of Na+ homeostasis during germination
Plant Physiol 180, 1101-1118.

DOI:10.1104/pp.19.00119URLPMID:30894419 [本文引用: 1]
Salinity impairs seed germination and seedling establishment. We investigated the role of Arabidopsis (Arabidopsis thaliana) CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6 (CAMTA6) in salinity stress responses during early germination. Compared with the wild type, the camta6-4 and camta6-5 mutants were more tolerant to NaCl and abscisic acid (ABA) and accumulated less Na(+) In contrast, 4- to 11-d-old camta6 seedlings were more sensitive to NaCl. In camta6, expression of HIGH-AFFINITY K(+) TRANSPORTER1 (AtHKT1;1), encoding an Na(+)/K(+) transporter, was restricted to the radicles and was not enhanced by NaCl or ABA. During germination, the camta6 hkt1 double mutant was as sensitive as the wild type and hkt1 to NaCl, suggesting that HKT1;1 is crucial for the salt tolerance of camta6 An ABA response element in the HKT1;1 promoter was found to be indispensable for the enhanced expression of the gene in response to NaCl and to ABA. Transcriptome analysis of the wild type and camta6-5 with and without salt treatment revealed 1,020 up-regulated and 1,467 down-regulated salt-responsive genes in the wild type. Among these, 638 up-regulated and 1,242 down-regulated genes were classified as CAMTA6-dependent. Expression of several known salt stress-associated genes, including SALT OVERLY SENSITIVE1 and Na(+)/H(+) ANTIPORTER, was impaired in camta6 mutants. Bioinformatics analysis of the 5' upstream sequences of the salt-responsive CAMTA6-dependent up-regulated genes revealed the CACGTGTC motif as the most prominent element, representing an ABA response element and a potential CAMTA-binding site. We suggest that CAMTA6 regulates, directly or indirectly, the expression of most of the salt-responsive genes in germinating seeds, including genes that are crucial for Na(+) homeostasis and salt stress tolerance.

Swiezewski S, Liu FQ, Magusin A, Dean C (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target
Nature 462, 799-802.

DOI:10.1038/nature08618URLPMID:20010688 [本文引用: 1]
Transcription in eukaryotic genomes generates an extensive array of non-protein-coding RNA, the functional significance of which is mostly unknown. We are investigating the link between non-coding RNA and chromatin regulation through analysis of FLC - a regulator of flowering time in Arabidopsis and a target of several chromatin pathways. Here we use an unbiased strategy to characterize non-coding transcripts of FLC and show that sense/antisense transcript levels correlate in a range of mutants and treatments, but change independently in cold-treated plants. Prolonged cold epigenetically silences FLC in a Polycomb-mediated process called vernalization. Our data indicate that upregulation of long non-coding antisense transcripts covering the entire FLC locus may be part of the cold-sensing mechanism. Induction of these antisense transcripts occurs earlier than, and is independent of, other vernalization markers and coincides with a reduction in sense transcription. We show that addition of the FLC antisense promoter sequences to a reporter gene is sufficient to confer cold-induced silencing of the reporter. Our data indicate that cold-induced FLC antisense transcripts have an early role in the epigenetic silencing of FLC, acting to silence FLC transcription transiently. Recruitment of the Polycomb machinery then confers the epigenetic memory. Antisense transcription events originating from 3' ends of genes might be a general mechanism to regulate the corresponding sense transcription in a condition/stage-dependent manner.

Wang AH, Hu JH, Gao CB, Chen GL, Wang BC, Lin CF, Song LP, Ding Y, Zhou GL (2019). Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp. chinensis)
Sci Rep 9, 5002.

DOI:10.1038/s41598-019-41428-2URLPMID:30899041 [本文引用: 1]
Long non-coding RNAs (lncRNAs) mediate important epigenetic regulation in various biological processes related to the stress response in plants. However, the systematic analysis of the lncRNAs expressed in Brassica rapa under heat stress has been elusive. In this study, we performed a genome-wide analysis of the lncRNA expression profiles in non-heading Chinese cabbage leaves using strand-specific RNA-sequencing. A total of 4594 putative lncRNAs were identified with a comprehensive landscape of dynamic lncRNA expression networks under heat stress. Co-expression networks of the interactions among the differentially expressed lncRNAs, mRNAs and microRNAs revealed that several phytohormones were associated with heat tolerance, including salicylic acid (SA) and brassinosteroid (BR) pathways. Of particular importance is the discovery of 25 lncRNAs that were highly co-expressed with 10 heat responsive genes. Thirty-nine lncRNAs were predicted as endogenous target mimics (eTMs) for 35 miRNAs, and five of them were validated to be involved in the heat tolerance of Chinese cabbage. Heat responsive lncRNA (TCONS_00048391) is an eTM for bra-miR164a, that could be a sponge for miRNA binding and may be a competing endogenous RNA (ceRNA) for the target gene NAC1 (Bra030820), affecting the expression of bra-miR164a in Chinese cabbage. Thus, these findings provide new insights into the functions of lncRNAs in heat tolerance and highlight a set of candidate lncRNAs for further studies in non-heading Chinese cabbage.

Wu J, Liu CX, Liu ZG, Li S, Li DD, Liu SY, Huang XQ, Liu SK, Yukawa Y (2019a). Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis
Plant Cell Physiol 60, 421-435.

DOI:10.1093/pcp/pcy220URLPMID:30462304 [本文引用: 2]
Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nt that are distributed widely in organisms and play many physiological roles. The BoNR8 lncRNA is a 272 nt long transcript yielded by RNA polymerase III in cabbage that was identified as the closest homolog of the AtR8 lncRNA in Arabidopsis. The BoNR8 lncRNA was expressed extensively in the epidermal tissue in the root elongation zone of germinated seeds, and its accumulation was induced by abiotic stresses, auxins and ABA. To investigate the correlation between the BoNR8 lncRNA and germination, BoNR8-overexpressing Arabidopsis plants (BoNR8-AtOX) were prepared. Three independent BoNR8-AtOX lines showed less primary root elongation, incomplete silique development and decreased germination rates. The germination efficiencies were affected strongly by ABA and slightly by salt stress, and ABA-related gene expression was changed in the BoNR8-AtOX lines.

Wu J, Okada T, Fukushima T, Tsudzuki T, Sugiura M, Yukawa Y (2012). A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis
RNA Biol 9, 302-313.

DOI:10.4161/rna.19101URL [本文引用: 1]
Recently, a large number of non-coding RNAs (ncRNAs) have been found in a wide variety of organisms, but their biological functions are poorly understood, except for several tiny RNAs. To identify novel ncRNAs with essential functions in flowering plants, we focused attention on RNA polymerase III (Pol III) and its transcriptional activity, because most Pol III-transcribed RNAs contribute to key processes relating to cell activities, and have highly conserved promoter elements: upstream sequence elements, a TATA-like sequence, and a poly(T) stretch as a transcription terminator. After in silico prediction from the Arabidopsis genome, 20 novel ncRNAs candidates were obtained. AtR8 RNA (approx. 260 nt) and AtR18 RNA (approx. 160 nt) were identified by efficient in vitro transcription by Pol III in tobacco nuclear extracts. AtR8 RNA was conserved among six additional taxa of Brassicaceae, and the secondary structure of the RNA was also conserved among the orthologs. Abundant accumulation of AtR8 RNA was observed in the plant roots and cytosol of cultured cells. The RNA was not processed into a smaller fragment and no short open reading frame was included. Remarkably, expression of the AtR8 RNA responded negatively to hypoxic stress, and this regulation evidently differed from that of U6 snRNA.

Wu XX, Shi T, Iqbal S, Zhang Y, Liu L, Gao ZH (2019b). Genome-wide discovery and characterization of flower development related long non-coding RNAs in Prunus mume
BMC Plant Biol 19, 64.

DOI:10.1186/s12870-019-1672-7URLPMID:30744565 [本文引用: 1]
BACKGROUND: Long non-coding RNAs (lncRNAs) are transcripts more than 200 bp in length do not encode proteins. Up to the present, it has been reported that lncRNAs play an essential role in developmental processes through their regulatory functions. However, their characteristics, expression inheritance patterns, and functions in Prunus mume are quite unidentified. RESULTS: In this present study, we exposed the specific characters of pistil development process between single pistil cv 'Qingjia No.2' (QJN2) and multiple pistils cv 'Da Yu' (DY). We found that early October is the key stage for pistil differentiation. The similarity epidermis was observed between two types of pistil. We also further investigated a complete pistil development lncRNA profiles through RNA-seq in Prunus mume. 2572 unique lncRNAs and 24,648 genes mapped to Prunus mume genome, furthermore, 591 novel lncRNAs were predicted. Both unique lncRNAs and novel lncRNAs are shorter in length than the mRNAs, and the overall expression level of lncRNAs was lower than mRNAs in Prunus mume. 186 known lncRNAs, 1638 genes and 89 novel lncRNAs were identified as significant differential expressed in QJN2 compared with DY. We predicted 421 target genes of differentially expressed known lncRNAs (DEKLs) and 254 target genes of differentially expressed novel lncRNAs (DENLs). 153 miRNAs were predicted interacted with 100 DEKLs while 112 miRNAs were predicted interacted with 55 DENLs. Further analysis of the DEKLs showed that the lncRNA of XR_514690.2 down-regulated its target ppe-miR172d, and up-regulated AP2, respectively. Meanwhile, the other lncRNA of TCONS_00032517 induced cytokinin negative regulator gene A-ARR expression via repressing its target miRNA ppe-miR160a/b in DY. At the same time we found that the AP2 expression was significantly up-regulated by zeatin (ZT) treatment in flower buds. Our experiments suggest that the two lncRNAs of XR_514690.2 and TCONS_00032517 might contribute the formation of multiple pistils in Prunus mume. CONCLUSION: This study shows the first characterization of lncRNAs involved in pistil development and provides new indications to elucidate how lncRNAs and their targets play role in pistil differentiation and flower development in Prunus mume.

Xu W, Yang TQ, Wang B, Han B, Zhou HK, Wang Y, Li DZ, Liu AZ (2018). Differential expression networks and inheritance patterns of long non-coding RNAs in castor bean seeds
Plant J 95, 324-340.

DOI:10.1111/tpj.13953URLPMID:29738104 [本文引用: 1]
Long non-coding RNAs (lncRNAs) serve as versatile regulators of plant growth and development. The potential functions and inheritance patterns of lncRNAs, as well as the epigenetic regulation of lncRNA itself, remain largely uncharacterized in plant seeds, especially in the persistent endosperm of the dicotyledons. In this study, we investigated diverse RNA-seq data and catalogued 5356 lncRNAs in castor bean seeds. A small fraction of lncRNAs were transcribed from the same direction as the promoters of protein-coding genes (PCgenes) and exhibited strongly coordinated expression with the nearby PCgene. Co-expression analysis with weighted gene co-expression network analysis (WGCNA) showed these lncRNAs to be involved in differential transcription networks between the embryo and endosperm in the early developing seed. Genomic DNA methylation analyses revealed that the expression level of lncRNAs was tightly linked to DNA methylation and that endosperm hypomethylation could promote the expression of linked lncRNAs. Intriguingly, upon hybridization, most lncRNAs with divergent genome sequences between two parents could be reconciled and were expressed according to their parental genome contribution; however, some deviation in the expression of allelic lncRNAs was observed and found to be partially dependent on parental effects. In triploid endosperm, the expression of most lncRNAs was not dosage sensitive, as only 20 lncRNAs had balanced dosage. Our findings not only demonstrate that lncRNAs play potential roles in regulating the development of castor bean endosperm and embryo, but also provide novel insights into the parental effects, allelic expression and epigenetic regulation of lncRNAs in dicotyledonous seeds.

Yang BC, Song ZH, Li CN, Jiang JH, Zhou YY, Wang RP, Wang Q, Ni C, Liang Q, Chen HD, Fan LM (2018). RSM1, an Arabidopsis MYB protein, interacts with HY5/ HYH to modulate seed germination and seedling development in response to abscisic acid and salinity
PLoS Genet 14, e1007839.

DOI:10.1371/journal.pgen.1007839URL [本文引用: 1]

Yao WJ, Zhao K, Cheng ZH, Li XY, Zhou BR, Jiang TB (2018). Transcriptome analysis of poplar under salt stress and over-expression of transcription factor NAC57 gene confers salt tolerance in transgenic Arabidopsis
Front Plant Sci 9, 1121.

DOI:10.3389/fpls.2018.01121URLPMID:30233602 [本文引用: 1]
NAC domain genes belong to a large plant-specific transcription factor family, which is well-known to be associated with multiple stress responses and plant developmental processes. In this study, we screened differentially expressed genes (DEGs) and detected mRNA abundance of NAC family by RNA-Seq in the poplar leaves under salt stress condition. A total of 276 up-regulated DEGs and 159 down-regulated DEGs were identified to be shared in Populus alba x Populus glandulosa and Populus simonii x Populus nigra. Among 170 NAC members, NAC57 gene was significantly up-regulated in response to salt stress in the two species. Tissue-specific and salt-responsive analyses indicated the expression pattern of NAC57 gene was spatial and temporal in poplar under salt stress. Particle bombardment results showed subcellular localization of NAC57 was not solely nucleus-targeted. Full-length cDNA sequence of the NAC57 gene was cloned from P. alba x P. glandulosa and transformed into Arabidopsis thaliana. Under salt stress, transgenic Arabidopsis overexpressing NAC57 showed higher seed germination rate, root length, and fresh weight than wild type plants. In addition, the transgenic plants displayed higher superoxide dismutase activity and peroxidase activity, and lower malondialdehyde content and relative electrical conductivity than the wild type under salt stress condition. Furthermore, histochemical staining indicated reactive oxygen species accumulation was lower in the transgenic plants than that in the wild type under salt stress. All the results indicated that the NAC57 gene plays an important role in salt stress responses.

Yin DD, Li SS, Shu QY, Gu ZY, Wu Q, Feng CY, Xu WZ, Wang LS (2018). Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds
Gene 666, 72-82.

DOI:10.1016/j.gene.2018.05.011URLPMID:29738839 [本文引用: 1]
MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) act as important molecular regulators in a wide range of biological processes during plant development and seed formation, including oil production. Tree peony seeds contain >90% unsaturated fatty acids (UFAs) and high proportions of alpha-linolenic acid (ALA, > 40%). To dissect the non-coding RNAs (ncRNAs) pathway involved in fatty acids synthesis in tree peony seeds, we construct six small RNA libraries and six transcriptome libraries from developing seeds of two cultivars (J and S) containing different content of fatty acid compositions. After deep sequencing the RNA libraries, the ncRNA expression profiles of tree peony seeds in two cultivars were systematically and comparatively analyzed. A total of 318 known and 153 new miRNAs and 22,430 lncRNAs were identified, among which 106 conserved and 9 novel miRNAs and 2785 lncRNAs were differentially expressed between the two cultivars. In addition, potential target genes of the microRNA and lncRNAs were also predicted and annotated. Among them, 9 miRNAs and 39 lncRNAs were predicted to target lipid related genes. Results showed that all of miR414, miR156b, miR2673b, miR7826, novel-m0027-5p, TR24651|c0_g1, TR24544|c0_g15, and TR27305|c0_g1 were up-regulated and expressed at a higher level in high-ALA cultivar J when compared to low-ALA cultivar S, suggesting that these ncRNAs and target genes are possibly involved in different fatty acid synthesis and lipid metabolism through post-transcriptional regulation. These results provide a better understanding of the roles of ncRNAs during fatty acid biosynthesis and metabolism in tree peony seeds.

Zhang GY, Chen DG, Zhang T, Duan AG, Zhang JG, He CY (2018). Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening
DNA Res 25, 465-476.

URLPMID:29873696 [本文引用: 1]

Zhang XP, Dong J, Deng FN, Wang W, Cheng YY, Song LR, Hu MJ, Shen J, Xu QJ, Shen FF (2019). The long non-coding RNA lncRNA 973 is involved in cotton response to salt stress
BMC Plant Biol 19, 459.

DOI:10.1186/s12870-019-2088-0URLPMID:31666019 [本文引用: 1]
BACKGROUND: Long non-coding (lnc) RNAs are a class of functional RNA molecules greater than 200 nucleotides in length, and lncRNAs play important roles in various biological regulatory processes and response to the biotic and abiotic stresses. LncRNAs associated with salt stress in cotton have been identified through RNA sequencing, but the function of lncRNAs has not been reported. We previously identified salt stress-related lncRNAs in cotton (Gossypium spp.), and discovered the salt-related lncRNA-lncRNA973. RESULTS: In this study, we identified the expression level, localization, function, and preliminary mechanism of action of lncRNA973. LncRNA973, which was localized in the nucleus, was expressed at a low level under nonstress conditions but can be significantly increased by salt treatments. Here lncRNA973 was transformed into Arabidopsis and overexpressed. Along with the increased expression compared with wild type under salt stress conditions in transgenic plants, the seed germination rate, fresh weights and root lengths of the transgenic plants increased. We also knocked down the expression of lncRNA973 using virus-induced gene silencing technology. The lncRNA973 knockdown plants wilted, and the leaves became yellowed and dropped under salt-stress conditions, indicating that the tolerance to salt stress had decreased compared with wild type. LncRNA973 may be involved in the regulation of reactive oxygen species-scavenging genes, transcription factors and genes involved in salt stress-related processes in response to cotton salt stress. CONCLUSIONS: LncRNA973 was localized in the nucleus and its expression was increased by salt treatment. The lncRNA973-overexpression lines had increased salt tolerance compared with the wild type, while the lncRNA973 knockdown plants had reduced salt tolerance. LncRNA973 regulated cotton responses to salt stress by modulating the expression of a series of salt stress-related genes. The data provides a basis for further studies on the mechanisms of lncRNA973-associated responses to salt stress in cotton.

Zhao XY, Li JR, Lian B, Gu HQ, Li Y, Qi YJ (2018). Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA
Nat Commun 9, 5056.

DOI:10.1038/s41467-018-07500-7URLPMID:30498193 [本文引用: 1]
Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression and plant development. Here, we identified 6,510 lncRNAs in Arabidopsis under normal or stress conditions. We found that the expression of natural antisense transcripts (NATs) that are transcribed in the opposite direction of protein-coding genes often positively correlates with and is required for the expression of their cognate sense genes. We further characterized MAS, a NAT-lncRNA produced from the MADS AFFECTING FLOWERING4 (MAF4) locus. MAS is induced by cold and indispensable for the activation of MAF4 transcription and suppression of precocious flowering. MAS activates MAF4 by interacting with WDR5a, one core component of the COMPASS-like complexes, and recruiting WDR5a to MAF4 to enhance histone 3 lysine 4 trimethylation (H3K4me3). Our study greatly extends the repertoire of lncRNAs in Arabidopsis and reveals a role for NAT-lncRNAs in regulating gene expression in vernalization response and likely in other biological processes.

Zhu M, Zhang M, Xing LJ, Li WZ, Jiang HY, Wang L, Xu MY (2017). Transcriptomic analysis of long non-coding RNAs and coding genes uncovers a complex regulatory network that is involved in maize seed development
Genes (Basel) 8, 274.

[本文引用: 1]

植物耐盐生理及耐盐机理研究进展
1
2003

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

硫化氢对盐和铝胁迫下小麦种子萌发及氧化损伤的缓解效应
1
2010

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

盐胁迫对植物的影响及植物对盐胁迫的适应性
1
2015

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

盐胁迫对大豆种子萌发及生理的影响
1
2013

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

植物长链非编码RNA研究进展
5
2015

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

... ; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

... ; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

... ; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

... ; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

十字花科植物种子低分子RNA提取方法比较
1
2019

... RNA提取参照Martin等(2005)刘春晓等(2019)文献所述方法.称取0.1 g拟南芥干种子或萌发种子于液氮中彻底研磨后, 加入1 mL RNA提取液(45.5% (v/v)苯酚, 9% (v/v)氯仿, 0.45% (w/v) SDS, 41 mmol·L-1 LiCl, 2 mmol·L-1 EDTA, 5.9 mmol·L-1 β-巯基乙醇, 82 mmol·L-1 Tris-HCl), 混匀后离心.吸取上清, 加入等体积的PCI溶液(苯酚:氯仿:异戊醇=25:24:1, v/v/v); 离心后取上层溶液, 加入等体积的氯仿, 室温孵育; 离心取上层溶液加入1/3体积的8 mol·L-1 LiCl, 于-20°C静置过夜.次日, 离心取上清并加入1/4体积的异丙醇, 于-20°C静置30分钟; 离心取上清并加入3/5体积的异丙醇, -20°C静置30分钟; 离心后得RNA沉淀, 使用75%乙醇漂洗后加入适量的焦碳酸二乙酯(diethyl pyrocarbonate, DEPC)水, 于-80°C冰箱保存. ...

盐胁迫对拟南芥种子萌发的影响
1
2012

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

植物盐胁迫生理及其适应性调控机制的研究进展
1
2007

... 乔慧萍等(2007)研究表明, 盐胁迫对种子萌发具有抑制作用.我们使用AtR8 lncRNA部分缺失型突变体(atr8), 调查了盐胁迫下AtR8 lncRNA缺失是否影响种子萌发(图3A) (Li et al., 2016).结果表明, 正常培养条件下, atr8种子萌发率低于野生型.50 mmol·L-1 NaCl处理时, 野生型和atr8种子萌发率与正常培养条件类似.100、150和200 mmol·L-1 NaCl处理时, 野生型和atr8种子萌发均受到抑制, 但对atr8种子萌发的抑制作用更明显(图3B).对萌发7天的野生型与atr8种子鲜重和干重的分析结果表明, 正常培养条件下野生型的鲜重和干重均大于atr8.随着NaCl浓度的增加, 二者的鲜重和干重均明显降低, 但atr8的鲜重和干重仍明显低于野生型(图3C), 表明NaCl胁迫下, AtR8 lncRNA缺失进一步抑制了拟南芥的种子萌发. ...

盐分胁迫对植物的影响研究简述
2
2007

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

... 研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

植物耐盐机制的研究进展
1
2001

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

γ-氨基丁酸(GABA)调控盐胁迫下玉米种子萌发和幼苗生长的机制
1
2016

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

盐胁迫对拟南芥AtPUB18基因的诱导表达及其启动子分析
1
2014

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis
1
2011

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features
1
2014

... UCC盐胁迫响应元件(TCTTCTTCTTTA)是盐应答基因中高度保守的序列.Di等(2014)证明长链非编码RNA中存在该保守UCC元件.因此, 我们比较了AtR8 lncRNA序列与UCC元件, 发现AtR8 lncRNA转录区域内存在UCC盐胁迫响应元件, 序列相似性达75% (9 bp/12 bp) (图2A), 这表明AtR8 lncRNA可能响应盐胁迫.RNAlogo (http://rnalogo.mbc.nctu.edu.tw/index.php)预测到UCC元件存在于AtR8 lncRNA二级结构的茎环相连位置(图2B). ...

A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice
1
2012

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA
1
2014

... 种子是植物特有的繁殖器官.种子萌发是指有活力的种子吸胀后, 重新开始物质合成与代谢活动, 促使胚根露出种皮的过程.种子萌发极易受到光照、温度、水分和盐分等外部环境因素的影响, 同时受多基因调控.例如, 脱落酸(abscisic acid, ABA)胁迫下, WRKY41通过直接调节ABI3 (ABA-insensitive 3)的表达影响拟南芥(Arabidopsis thaliana)种子萌发(Ding et al., 2014); WRKY2通过影响ABA信号通路中ABI3ABI5 (ABA-insensitive 5)、EM1EM6 (early methionine-labeled 1 and 6)的表达, 抑制拟南芥种子萌发(Jiang and Yu, 2009); WRKY6通过影响RAV1 (related to ABA-insensitive3/vivparous1)及其下游ABI3ABI4ABI5的表达调节拟南芥的种子萌发(Huang et al., 2016).此外, 还有研究表明, RSM1 (radialis-like sant/MYB 1)与HY5 (elongated hypocotyl 5)/HYH (HY5 homolog)结合后聚集在ABI5启动子上, 调节ABI5及其下游ABA应答基因的表达, 从而改变拟南芥萌发种子对ABA、NaCl以及甘露醇的敏感性(Yang et al., 2018).CAMTA6 (calmodulin-bining transcription activator 6)通过调节Na+稳态和盐胁迫耐受性相关基因的表达, 影响拟南芥萌发种子对ABA的敏感性和盐胁迫的耐受性(Shkolnik et al., 2019).尽管如此, 种子萌发的详细分子机制仍不十分清楚. ...

Target mimicry provides a new me- chanism for regulation of microRNA activity
1
2007

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling
1
2018

... 近年来, 萌发相关ncRNA逐渐被发现并被解析, 如miR156miR159miR167miR9678.拟南芥miR156基因下调SPL13 (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE13)的表达, 延迟萌发后幼苗的发育(Martin et al., 2010a, 2010b).miR159通过影响MYB101MYB33的表达介导拟南芥的种子萌发(Reyes and Chua, 2007).miR167通过调节ARF基因的表达影响生长素的信号转导, 在种子萌发以及胚发育过程中起重要作用(Rhoades et al., 2002).miR9678通过调节GA/ABA信号转导影响小麦(Triticum aestivum)的种子萌发(Guo et al., 2018).近几年, 参与种子萌发的长链非编码RNA也被发现.Xu等(2018)研究表明, 萌发的蓖麻(Ricinus communis)种子中多个DNA甲基化相关的lncRNA在胚乳和胚胎发育中起重要作用.Zhu等(2017)在玉米(Zea mays)种子中鉴定出753个lncRNA, 其中7个新lncRNA可能参与了玉米种子的发育和代谢过程.Yin等(2018)从发育的牡丹(Paeonia suffruticosa)种子中鉴定出22 430个lncRNA, 并预测39个lncRNA可能参与种子的脂肪酸合成和脂质代谢过程.BoNR8 lncRNA是甘蓝(B. oleracea)中RNA聚合酶III转录的长链非编码RNA, 拟南芥中BoNR8过表达影响ABA信号通路中重要基因的表达, 并抑制根生长和角果发育, 降低萌发种子对ABA的敏感性和盐胁迫的耐受性(Wu et al., 2019a). ...

Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA
1
2011

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development
1
2016

... 种子是植物特有的繁殖器官.种子萌发是指有活力的种子吸胀后, 重新开始物质合成与代谢活动, 促使胚根露出种皮的过程.种子萌发极易受到光照、温度、水分和盐分等外部环境因素的影响, 同时受多基因调控.例如, 脱落酸(abscisic acid, ABA)胁迫下, WRKY41通过直接调节ABI3 (ABA-insensitive 3)的表达影响拟南芥(Arabidopsis thaliana)种子萌发(Ding et al., 2014); WRKY2通过影响ABA信号通路中ABI3ABI5 (ABA-insensitive 5)、EM1EM6 (early methionine-labeled 1 and 6)的表达, 抑制拟南芥种子萌发(Jiang and Yu, 2009); WRKY6通过影响RAV1 (related to ABA-insensitive3/vivparous1)及其下游ABI3ABI4ABI5的表达调节拟南芥的种子萌发(Huang et al., 2016).此外, 还有研究表明, RSM1 (radialis-like sant/MYB 1)与HY5 (elongated hypocotyl 5)/HYH (HY5 homolog)结合后聚集在ABI5启动子上, 调节ABI5及其下游ABA应答基因的表达, 从而改变拟南芥萌发种子对ABA、NaCl以及甘露醇的敏感性(Yang et al., 2018).CAMTA6 (calmodulin-bining transcription activator 6)通过调节Na+稳态和盐胁迫耐受性相关基因的表达, 影响拟南芥萌发种子对ABA的敏感性和盐胁迫的耐受性(Shkolnik et al., 2019).尽管如此, 种子萌发的详细分子机制仍不十分清楚. ...

Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid
1
2009

... 种子是植物特有的繁殖器官.种子萌发是指有活力的种子吸胀后, 重新开始物质合成与代谢活动, 促使胚根露出种皮的过程.种子萌发极易受到光照、温度、水分和盐分等外部环境因素的影响, 同时受多基因调控.例如, 脱落酸(abscisic acid, ABA)胁迫下, WRKY41通过直接调节ABI3 (ABA-insensitive 3)的表达影响拟南芥(Arabidopsis thaliana)种子萌发(Ding et al., 2014); WRKY2通过影响ABA信号通路中ABI3ABI5 (ABA-insensitive 5)、EM1EM6 (early methionine-labeled 1 and 6)的表达, 抑制拟南芥种子萌发(Jiang and Yu, 2009); WRKY6通过影响RAV1 (related to ABA-insensitive3/vivparous1)及其下游ABI3ABI4ABI5的表达调节拟南芥的种子萌发(Huang et al., 2016).此外, 还有研究表明, RSM1 (radialis-like sant/MYB 1)与HY5 (elongated hypocotyl 5)/HYH (HY5 homolog)结合后聚集在ABI5启动子上, 调节ABI5及其下游ABA应答基因的表达, 从而改变拟南芥萌发种子对ABA、NaCl以及甘露醇的敏感性(Yang et al., 2018).CAMTA6 (calmodulin-bining transcription activator 6)通过调节Na+稳态和盐胁迫耐受性相关基因的表达, 影响拟南芥萌发种子对ABA的敏感性和盐胁迫的耐受性(Shkolnik et al., 2019).尽管如此, 种子萌发的详细分子机制仍不十分清楚. ...

Environmentally coordinated epigenetic silencing of FLC by protein and long noncoding RNA components
1
2012

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

Effect of AtR8 lncRNA partial deletion on Arabidopsis seed germination
3
2016

... 前期研究中, 我们根据RNA聚合酶III的转录活性及其转录的非编码RNA基因结构特征, 发现了拟南芥中RNA聚合酶III转录的AtR8 lncRNA (259 nt), 其在幼苗根端细胞质中大量表达, 并响应低氧胁迫(Wu et al., 2012); 且水杨酸(salicylic acid, SA)处理诱导萌发种子中AtR8 lncRNA的表达, AtR8 lncRNA缺失降低SA胁迫下的种子萌发(Li et al., 2016).我们进一步研究发现, AtR8 lncRNA转录区域内包含保守的盐胁迫响应元件, 盐胁迫处理影响萌发种子中AtR8 lncRNA的表达, 且AtR8 lncRNA缺失降低了萌发种子对盐胁迫的耐受性, 表明AtR8 lncRNA在拟南芥种子萌发期盐胁迫中起重要作用. ...

... 实验材料为野生型拟南芥(Arabidopsis thaliana L.)和AtR8 lncRNA部分缺失型拟南芥突变体(atr8, FLAG410H04), 后者购自凡尔赛拟南芥储备中心(versailles Arabidopsis stock center (http://publiclines.versailles.inra.fr/)) (Li et al., 2016). ...

... 乔慧萍等(2007)研究表明, 盐胁迫对种子萌发具有抑制作用.我们使用AtR8 lncRNA部分缺失型突变体(atr8), 调查了盐胁迫下AtR8 lncRNA缺失是否影响种子萌发(图3A) (Li et al., 2016).结果表明, 正常培养条件下, atr8种子萌发率低于野生型.50 mmol·L-1 NaCl处理时, 野生型和atr8种子萌发率与正常培养条件类似.100、150和200 mmol·L-1 NaCl处理时, 野生型和atr8种子萌发均受到抑制, 但对atr8种子萌发的抑制作用更明显(图3B).对萌发7天的野生型与atr8种子鲜重和干重的分析结果表明, 正常培养条件下野生型的鲜重和干重均大于atr8.随着NaCl浓度的增加, 二者的鲜重和干重均明显降低, 但atr8的鲜重和干重仍明显低于野生型(图3C), 表明NaCl胁迫下, AtR8 lncRNA缺失进一步抑制了拟南芥的种子萌发. ...

The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis
1
2019

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

Simple purification of small RNAs from seeds and efficient detection of multiple microRNAs expressed in Arabidopsis thaliana and tomato(Lycopersicon esculentum) seeds
1
2005

... RNA提取参照Martin等(2005)刘春晓等(2019)文献所述方法.称取0.1 g拟南芥干种子或萌发种子于液氮中彻底研磨后, 加入1 mL RNA提取液(45.5% (v/v)苯酚, 9% (v/v)氯仿, 0.45% (w/v) SDS, 41 mmol·L-1 LiCl, 2 mmol·L-1 EDTA, 5.9 mmol·L-1 β-巯基乙醇, 82 mmol·L-1 Tris-HCl), 混匀后离心.吸取上清, 加入等体积的PCI溶液(苯酚:氯仿:异戊醇=25:24:1, v/v/v); 离心后取上层溶液, 加入等体积的氯仿, 室温孵育; 离心取上层溶液加入1/3体积的8 mol·L-1 LiCl, 于-20°C静置过夜.次日, 离心取上清并加入1/4体积的异丙醇, 于-20°C静置30分钟; 离心取上清并加入3/5体积的异丙醇, -20°C静置30分钟; 离心后得RNA沉淀, 使用75%乙醇漂洗后加入适量的焦碳酸二乙酯(diethyl pyrocarbonate, DEPC)水, 于-80°C冰箱保存. ...

The regulation of post-germinative transition from the cotyledon- to vegetative-leaf stages by microRNA-targeted SQUAMOSA PROMOTER-BINDING PROTEIN LIKE13 in Arabidopsis
1
2010

... 近年来, 萌发相关ncRNA逐渐被发现并被解析, 如miR156miR159miR167miR9678.拟南芥miR156基因下调SPL13 (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE13)的表达, 延迟萌发后幼苗的发育(Martin et al., 2010a, 2010b).miR159通过影响MYB101MYB33的表达介导拟南芥的种子萌发(Reyes and Chua, 2007).miR167通过调节ARF基因的表达影响生长素的信号转导, 在种子萌发以及胚发育过程中起重要作用(Rhoades et al., 2002).miR9678通过调节GA/ABA信号转导影响小麦(Triticum aestivum)的种子萌发(Guo et al., 2018).近几年, 参与种子萌发的长链非编码RNA也被发现.Xu等(2018)研究表明, 萌发的蓖麻(Ricinus communis)种子中多个DNA甲基化相关的lncRNA在胚乳和胚胎发育中起重要作用.Zhu等(2017)在玉米(Zea mays)种子中鉴定出753个lncRNA, 其中7个新lncRNA可能参与了玉米种子的发育和代谢过程.Yin等(2018)从发育的牡丹(Paeonia suffruticosa)种子中鉴定出22 430个lncRNA, 并预测39个lncRNA可能参与种子的脂肪酸合成和脂质代谢过程.BoNR8 lncRNA是甘蓝(B. oleracea)中RNA聚合酶III转录的长链非编码RNA, 拟南芥中BoNR8过表达影响ABA信号通路中重要基因的表达, 并抑制根生长和角果发育, 降低萌发种子对ABA的敏感性和盐胁迫的耐受性(Wu et al., 2019a). ...

The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis
1
2010

... 近年来, 萌发相关ncRNA逐渐被发现并被解析, 如miR156miR159miR167miR9678.拟南芥miR156基因下调SPL13 (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE13)的表达, 延迟萌发后幼苗的发育(Martin et al., 2010a, 2010b).miR159通过影响MYB101MYB33的表达介导拟南芥的种子萌发(Reyes and Chua, 2007).miR167通过调节ARF基因的表达影响生长素的信号转导, 在种子萌发以及胚发育过程中起重要作用(Rhoades et al., 2002).miR9678通过调节GA/ABA信号转导影响小麦(Triticum aestivum)的种子萌发(Guo et al., 2018).近几年, 参与种子萌发的长链非编码RNA也被发现.Xu等(2018)研究表明, 萌发的蓖麻(Ricinus communis)种子中多个DNA甲基化相关的lncRNA在胚乳和胚胎发育中起重要作用.Zhu等(2017)在玉米(Zea mays)种子中鉴定出753个lncRNA, 其中7个新lncRNA可能参与了玉米种子的发育和代谢过程.Yin等(2018)从发育的牡丹(Paeonia suffruticosa)种子中鉴定出22 430个lncRNA, 并预测39个lncRNA可能参与种子的脂肪酸合成和脂质代谢过程.BoNR8 lncRNA是甘蓝(B. oleracea)中RNA聚合酶III转录的长链非编码RNA, 拟南芥中BoNR8过表达影响ABA信号通路中重要基因的表达, 并抑制根生长和角果发育, 降低萌发种子对ABA的敏感性和盐胁迫的耐受性(Wu et al., 2019a). ...

A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance
1
2017

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination
1
2007

... 近年来, 萌发相关ncRNA逐渐被发现并被解析, 如miR156miR159miR167miR9678.拟南芥miR156基因下调SPL13 (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE13)的表达, 延迟萌发后幼苗的发育(Martin et al., 2010a, 2010b).miR159通过影响MYB101MYB33的表达介导拟南芥的种子萌发(Reyes and Chua, 2007).miR167通过调节ARF基因的表达影响生长素的信号转导, 在种子萌发以及胚发育过程中起重要作用(Rhoades et al., 2002).miR9678通过调节GA/ABA信号转导影响小麦(Triticum aestivum)的种子萌发(Guo et al., 2018).近几年, 参与种子萌发的长链非编码RNA也被发现.Xu等(2018)研究表明, 萌发的蓖麻(Ricinus communis)种子中多个DNA甲基化相关的lncRNA在胚乳和胚胎发育中起重要作用.Zhu等(2017)在玉米(Zea mays)种子中鉴定出753个lncRNA, 其中7个新lncRNA可能参与了玉米种子的发育和代谢过程.Yin等(2018)从发育的牡丹(Paeonia suffruticosa)种子中鉴定出22 430个lncRNA, 并预测39个lncRNA可能参与种子的脂肪酸合成和脂质代谢过程.BoNR8 lncRNA是甘蓝(B. oleracea)中RNA聚合酶III转录的长链非编码RNA, 拟南芥中BoNR8过表达影响ABA信号通路中重要基因的表达, 并抑制根生长和角果发育, 降低萌发种子对ABA的敏感性和盐胁迫的耐受性(Wu et al., 2019a). ...

Prediction of plant microRNA targets
1
2002

... 近年来, 萌发相关ncRNA逐渐被发现并被解析, 如miR156miR159miR167miR9678.拟南芥miR156基因下调SPL13 (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE13)的表达, 延迟萌发后幼苗的发育(Martin et al., 2010a, 2010b).miR159通过影响MYB101MYB33的表达介导拟南芥的种子萌发(Reyes and Chua, 2007).miR167通过调节ARF基因的表达影响生长素的信号转导, 在种子萌发以及胚发育过程中起重要作用(Rhoades et al., 2002).miR9678通过调节GA/ABA信号转导影响小麦(Triticum aestivum)的种子萌发(Guo et al., 2018).近几年, 参与种子萌发的长链非编码RNA也被发现.Xu等(2018)研究表明, 萌发的蓖麻(Ricinus communis)种子中多个DNA甲基化相关的lncRNA在胚乳和胚胎发育中起重要作用.Zhu等(2017)在玉米(Zea mays)种子中鉴定出753个lncRNA, 其中7个新lncRNA可能参与了玉米种子的发育和代谢过程.Yin等(2018)从发育的牡丹(Paeonia suffruticosa)种子中鉴定出22 430个lncRNA, 并预测39个lncRNA可能参与种子的脂肪酸合成和脂质代谢过程.BoNR8 lncRNA是甘蓝(B. oleracea)中RNA聚合酶III转录的长链非编码RNA, 拟南芥中BoNR8过表达影响ABA信号通路中重要基因的表达, 并抑制根生长和角果发育, 降低萌发种子对ABA的敏感性和盐胁迫的耐受性(Wu et al., 2019a). ...

CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6: a key regulator of Na+ homeostasis during germination
1
2019

... 种子是植物特有的繁殖器官.种子萌发是指有活力的种子吸胀后, 重新开始物质合成与代谢活动, 促使胚根露出种皮的过程.种子萌发极易受到光照、温度、水分和盐分等外部环境因素的影响, 同时受多基因调控.例如, 脱落酸(abscisic acid, ABA)胁迫下, WRKY41通过直接调节ABI3 (ABA-insensitive 3)的表达影响拟南芥(Arabidopsis thaliana)种子萌发(Ding et al., 2014); WRKY2通过影响ABA信号通路中ABI3ABI5 (ABA-insensitive 5)、EM1EM6 (early methionine-labeled 1 and 6)的表达, 抑制拟南芥种子萌发(Jiang and Yu, 2009); WRKY6通过影响RAV1 (related to ABA-insensitive3/vivparous1)及其下游ABI3ABI4ABI5的表达调节拟南芥的种子萌发(Huang et al., 2016).此外, 还有研究表明, RSM1 (radialis-like sant/MYB 1)与HY5 (elongated hypocotyl 5)/HYH (HY5 homolog)结合后聚集在ABI5启动子上, 调节ABI5及其下游ABA应答基因的表达, 从而改变拟南芥萌发种子对ABA、NaCl以及甘露醇的敏感性(Yang et al., 2018).CAMTA6 (calmodulin-bining transcription activator 6)通过调节Na+稳态和盐胁迫耐受性相关基因的表达, 影响拟南芥萌发种子对ABA的敏感性和盐胁迫的耐受性(Shkolnik et al., 2019).尽管如此, 种子萌发的详细分子机制仍不十分清楚. ...

Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target
1
2009

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp. chinensis)
1
2019

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis
2
2019

... 近年来, 萌发相关ncRNA逐渐被发现并被解析, 如miR156miR159miR167miR9678.拟南芥miR156基因下调SPL13 (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE13)的表达, 延迟萌发后幼苗的发育(Martin et al., 2010a, 2010b).miR159通过影响MYB101MYB33的表达介导拟南芥的种子萌发(Reyes and Chua, 2007).miR167通过调节ARF基因的表达影响生长素的信号转导, 在种子萌发以及胚发育过程中起重要作用(Rhoades et al., 2002).miR9678通过调节GA/ABA信号转导影响小麦(Triticum aestivum)的种子萌发(Guo et al., 2018).近几年, 参与种子萌发的长链非编码RNA也被发现.Xu等(2018)研究表明, 萌发的蓖麻(Ricinus communis)种子中多个DNA甲基化相关的lncRNA在胚乳和胚胎发育中起重要作用.Zhu等(2017)在玉米(Zea mays)种子中鉴定出753个lncRNA, 其中7个新lncRNA可能参与了玉米种子的发育和代谢过程.Yin等(2018)从发育的牡丹(Paeonia suffruticosa)种子中鉴定出22 430个lncRNA, 并预测39个lncRNA可能参与种子的脂肪酸合成和脂质代谢过程.BoNR8 lncRNA是甘蓝(B. oleracea)中RNA聚合酶III转录的长链非编码RNA, 拟南芥中BoNR8过表达影响ABA信号通路中重要基因的表达, 并抑制根生长和角果发育, 降低萌发种子对ABA的敏感性和盐胁迫的耐受性(Wu et al., 2019a). ...

... 前期研究表明, RNA聚合酶III转录的AtR8 Inc- RNA同源物BoNR8 lncRNA大量存在于甘蓝萌发种子的根部(Wu et al., 2019a).本研究发现, AtR8 lncRNA在拟南芥萌发种子的根尖端特异表达, 表明AtR8 lncRNA与BoNR8 lncRNA均在种子萌发阶段特异性表达, 这表明种子萌发过程中RNA聚合酶III具有较高的转录活性, 可以转录与萌发相关的特殊非编码RNA.BoNR8 lncRNA和AtR8 lncRNA转录区域内都存在盐胁迫响应元件.盐胁迫下, BoNR8 lncRNA被诱导表达, AtR8 lncRNA的表达则被抑制, 表明AtR8 lncRNA与BoNR8 lncRNA均响应盐胁迫但表达趋势不同.拟南芥中BoNR8 lncRNA过表达影响ABA信号中RAV1ABI3ABI5EM1EM6等重要基因的表达, 抑制正常培养条件下的种子萌发、角果发育和幼苗根生长, 高盐胁迫进一步抑制种子萌发.AtR8 lncRNA缺失抑制正常培养条件下的种子萌发, 高盐胁迫也进一步抑制种子萌发, 但不影响根生长, 表明BoNR8 lncRNA与AtR8 lncRNA均参与拟南芥的生长发育和盐胁迫响应过程, 但它们的生物学功能存在差异.后续, 我们将从分子水平及遗传学角度详细分析种子萌发过程中AtR8 lncRNA参与盐胁迫的作用机制, 为培育优质丰产的耐盐作物新品种提供理论依据. ...

A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis
1
2012

... 前期研究中, 我们根据RNA聚合酶III的转录活性及其转录的非编码RNA基因结构特征, 发现了拟南芥中RNA聚合酶III转录的AtR8 lncRNA (259 nt), 其在幼苗根端细胞质中大量表达, 并响应低氧胁迫(Wu et al., 2012); 且水杨酸(salicylic acid, SA)处理诱导萌发种子中AtR8 lncRNA的表达, AtR8 lncRNA缺失降低SA胁迫下的种子萌发(Li et al., 2016).我们进一步研究发现, AtR8 lncRNA转录区域内包含保守的盐胁迫响应元件, 盐胁迫处理影响萌发种子中AtR8 lncRNA的表达, 且AtR8 lncRNA缺失降低了萌发种子对盐胁迫的耐受性, 表明AtR8 lncRNA在拟南芥种子萌发期盐胁迫中起重要作用. ...

Genome-wide discovery and characterization of flower development related long non-coding RNAs in Prunus mume
1
2019

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

Differential expression networks and inheritance patterns of long non-coding RNAs in castor bean seeds
1
2018

... 近年来, 萌发相关ncRNA逐渐被发现并被解析, 如miR156miR159miR167miR9678.拟南芥miR156基因下调SPL13 (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE13)的表达, 延迟萌发后幼苗的发育(Martin et al., 2010a, 2010b).miR159通过影响MYB101MYB33的表达介导拟南芥的种子萌发(Reyes and Chua, 2007).miR167通过调节ARF基因的表达影响生长素的信号转导, 在种子萌发以及胚发育过程中起重要作用(Rhoades et al., 2002).miR9678通过调节GA/ABA信号转导影响小麦(Triticum aestivum)的种子萌发(Guo et al., 2018).近几年, 参与种子萌发的长链非编码RNA也被发现.Xu等(2018)研究表明, 萌发的蓖麻(Ricinus communis)种子中多个DNA甲基化相关的lncRNA在胚乳和胚胎发育中起重要作用.Zhu等(2017)在玉米(Zea mays)种子中鉴定出753个lncRNA, 其中7个新lncRNA可能参与了玉米种子的发育和代谢过程.Yin等(2018)从发育的牡丹(Paeonia suffruticosa)种子中鉴定出22 430个lncRNA, 并预测39个lncRNA可能参与种子的脂肪酸合成和脂质代谢过程.BoNR8 lncRNA是甘蓝(B. oleracea)中RNA聚合酶III转录的长链非编码RNA, 拟南芥中BoNR8过表达影响ABA信号通路中重要基因的表达, 并抑制根生长和角果发育, 降低萌发种子对ABA的敏感性和盐胁迫的耐受性(Wu et al., 2019a). ...

RSM1, an Arabidopsis MYB protein, interacts with HY5/ HYH to modulate seed germination and seedling development in response to abscisic acid and salinity
1
2018

... 种子是植物特有的繁殖器官.种子萌发是指有活力的种子吸胀后, 重新开始物质合成与代谢活动, 促使胚根露出种皮的过程.种子萌发极易受到光照、温度、水分和盐分等外部环境因素的影响, 同时受多基因调控.例如, 脱落酸(abscisic acid, ABA)胁迫下, WRKY41通过直接调节ABI3 (ABA-insensitive 3)的表达影响拟南芥(Arabidopsis thaliana)种子萌发(Ding et al., 2014); WRKY2通过影响ABA信号通路中ABI3ABI5 (ABA-insensitive 5)、EM1EM6 (early methionine-labeled 1 and 6)的表达, 抑制拟南芥种子萌发(Jiang and Yu, 2009); WRKY6通过影响RAV1 (related to ABA-insensitive3/vivparous1)及其下游ABI3ABI4ABI5的表达调节拟南芥的种子萌发(Huang et al., 2016).此外, 还有研究表明, RSM1 (radialis-like sant/MYB 1)与HY5 (elongated hypocotyl 5)/HYH (HY5 homolog)结合后聚集在ABI5启动子上, 调节ABI5及其下游ABA应答基因的表达, 从而改变拟南芥萌发种子对ABA、NaCl以及甘露醇的敏感性(Yang et al., 2018).CAMTA6 (calmodulin-bining transcription activator 6)通过调节Na+稳态和盐胁迫耐受性相关基因的表达, 影响拟南芥萌发种子对ABA的敏感性和盐胁迫的耐受性(Shkolnik et al., 2019).尽管如此, 种子萌发的详细分子机制仍不十分清楚. ...

Transcriptome analysis of poplar under salt stress and over-expression of transcription factor NAC57 gene confers salt tolerance in transgenic Arabidopsis
1
2018

... 高盐环境会对植物造成离子毒害、渗透胁迫和矿质营养缺失, 使其生理代谢紊乱, 导致种子萌发和植株生长受到阻碍, 严重降低植物的产量和品质(韩志平等, 2015).植物耐盐性是多基因控制的数量性状, 是多种耐盐生理性状的综合体现(孙兰菊等, 2001; 陈洁和林栖凤, 2003; 陆玉建等, 2012).苏永全和吕迎春(2007)研究表明, 盐胁迫通过增效、负效和完全阻抑效应影响种子的萌发.低盐可增强种子的呼吸作用, 提高蛋白酶和脂肪酶活性, 促进贮藏物质的转化, 进而促进种子萌发和生长; 高盐条件下, 由于盐形成的渗透势阻碍种子吸水(盐浓度越高, 阻碍作用越强), 严重影响了种子内蛋白质等大分子物质的分解和合成进程, 降低种子的发芽率、发芽指数和活力指数(苏永全和吕迎春, 2007; 郝雪峰等, 2013).盐胁迫下, γ-氨基丁酸(GABA)能够增强淀粉酶的活性, 使种子获得更多营养和能量, 改善种子的萌发质量(王泳超, 2016).NaHS显著缓解了盐处理对种子萌发过程中水解酶活性的抑制作用(窦伟, 2010).拟南芥U-Box泛素连接酶AtPUB18AtPUB19双突变后降低了种子对高盐的敏感性(Bergler and Hoth, 2011; 张新宇等, 2014).NAC57过表达拟南芥的种子发芽率、超氧化物歧化酶和过氧化物酶活性较高, 种子的耐盐性增强(Yao et al., 2018).目前, 盐胁迫调节种子萌发的详细分子机制尚不十分清楚. ...

Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds
1
2018

... 近年来, 萌发相关ncRNA逐渐被发现并被解析, 如miR156miR159miR167miR9678.拟南芥miR156基因下调SPL13 (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE13)的表达, 延迟萌发后幼苗的发育(Martin et al., 2010a, 2010b).miR159通过影响MYB101MYB33的表达介导拟南芥的种子萌发(Reyes and Chua, 2007).miR167通过调节ARF基因的表达影响生长素的信号转导, 在种子萌发以及胚发育过程中起重要作用(Rhoades et al., 2002).miR9678通过调节GA/ABA信号转导影响小麦(Triticum aestivum)的种子萌发(Guo et al., 2018).近几年, 参与种子萌发的长链非编码RNA也被发现.Xu等(2018)研究表明, 萌发的蓖麻(Ricinus communis)种子中多个DNA甲基化相关的lncRNA在胚乳和胚胎发育中起重要作用.Zhu等(2017)在玉米(Zea mays)种子中鉴定出753个lncRNA, 其中7个新lncRNA可能参与了玉米种子的发育和代谢过程.Yin等(2018)从发育的牡丹(Paeonia suffruticosa)种子中鉴定出22 430个lncRNA, 并预测39个lncRNA可能参与种子的脂肪酸合成和脂质代谢过程.BoNR8 lncRNA是甘蓝(B. oleracea)中RNA聚合酶III转录的长链非编码RNA, 拟南芥中BoNR8过表达影响ABA信号通路中重要基因的表达, 并抑制根生长和角果发育, 降低萌发种子对ABA的敏感性和盐胁迫的耐受性(Wu et al., 2019a). ...

Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening
1
2018

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

The long non-coding RNA lncRNA 973 is involved in cotton response to salt stress
1
2019

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA
1
2018

... 非编码RNA (non-coding RNA, ncRNAs)不编码蛋白质, 但却大量存在于生物体中发挥重要作用.长度大于200个核苷酸的非编码RNA为长链非编码RNA (long non-coding RNA, lncRNA), 它们通过充当诱饵、支架和增强子的方式调节许多基因的表达, 在剂量补偿(dosage compensation)、基因组印记(genomic imprinting)、X染色体失活(X chromosome inactivation)、发育和环境胁迫等生物过程中发挥重要作用(黄小庆等, 2015).现已发现植物中Pol II转录的一些功能性lncRNAs, 并对其作用机制进行了解析.AtIPS1 (induced by phosphate starvation 1)通过模仿miR399的靶基因PHO2抑制miR399活性, 影响磷酸盐饥饿条件下拟南芥根的生长(Franco-Zorrilla et al., 2007; 黄小庆等, 2015); COOLAIR (cold induced antisense intragenic RNA)通过启动子转录干扰方式抑制开花调控基因FLC的表达, 进而调节植物开花时间(Swiezewski et al., 2009; Heo and Sung, 2011; 黄小庆等, 2015); COLDAIR (cold assisted intronic noncoding RNA)能引起FLC基因位点的组蛋白修饰, 导致FLC表观遗传沉默, 从而诱导植物快速开花(Kim and Sung, 2012; 黄小庆等, 2015); 水稻(Oryza sativa) LDMAR (long-day-specific male- fertility-associated RNA)序列中C碱基突变成G导致其启动子区域甲基化, 抑制其表达, 引起NK58S雄性不育(Ding et al., 2012; 黄小庆等, 2015).热胁迫下, RNA测序分析发现了白菜(Brassica pekinensis)中4 594个lncRNA, 其中lncRNA (TCONS_00048391)通过模拟miR164a的靶基因NAC1, 影响白菜的耐热性(Wang et al., 2019).Wu等(2019b)通过RNA-seq分析了梅花(Armeniaca mume)雌蕊发育中lncRNA的表达谱, 发现一些lncRNAs及其靶基因在雌蕊分化和花发育中发挥作用, 其中XR_514690.2TCONS_ 00032517两个lncRNA可能在梅花多个雌蕊形成过程中发挥作用.Zhang等(2018)通过高通量测序, 发现LNC1LNC2两个lncRNA可以作为miR156amiR828a的靶基因, 分别抑制SPL9和诱导MYB114的表达, 调节沙棘(Hippophae rhamnoides)果实中花青素的合成.Qin等(2017)通过转录组分析发现, DRIR (drought induced lncRNA)能够增强拟南芥对干旱和盐胁迫的耐受性及对ABA的敏感性.Zhao等(2018)研究表明, MAS (MAF4 (mads affecting flowe-
ring 4
)的反义转录lncRNA)通过与WDR5a相互作用激活MAF4的转录, 从而调节拟南芥的开花时间.Liu等(2019)研究发现, T5120 lncRNA过表达促进拟南芥硝酸盐同化并提高氮的利用率, 进而促进根生长.Zhang等(2019)研究表明, lncRNA973通过调节一系列盐胁迫相关基因的表达进而调控棉花(Gossypium spp.)对盐胁迫的响应. ...

Transcriptomic analysis of long non-coding RNAs and coding genes uncovers a complex regulatory network that is involved in maize seed development
1
2017

... 近年来, 萌发相关ncRNA逐渐被发现并被解析, 如miR156miR159miR167miR9678.拟南芥miR156基因下调SPL13 (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE13)的表达, 延迟萌发后幼苗的发育(Martin et al., 2010a, 2010b).miR159通过影响MYB101MYB33的表达介导拟南芥的种子萌发(Reyes and Chua, 2007).miR167通过调节ARF基因的表达影响生长素的信号转导, 在种子萌发以及胚发育过程中起重要作用(Rhoades et al., 2002).miR9678通过调节GA/ABA信号转导影响小麦(Triticum aestivum)的种子萌发(Guo et al., 2018).近几年, 参与种子萌发的长链非编码RNA也被发现.Xu等(2018)研究表明, 萌发的蓖麻(Ricinus communis)种子中多个DNA甲基化相关的lncRNA在胚乳和胚胎发育中起重要作用.Zhu等(2017)在玉米(Zea mays)种子中鉴定出753个lncRNA, 其中7个新lncRNA可能参与了玉米种子的发育和代谢过程.Yin等(2018)从发育的牡丹(Paeonia suffruticosa)种子中鉴定出22 430个lncRNA, 并预测39个lncRNA可能参与种子的脂肪酸合成和脂质代谢过程.BoNR8 lncRNA是甘蓝(B. oleracea)中RNA聚合酶III转录的长链非编码RNA, 拟南芥中BoNR8过表达影响ABA信号通路中重要基因的表达, 并抑制根生长和角果发育, 降低萌发种子对ABA的敏感性和盐胁迫的耐受性(Wu et al., 2019a). ...




备案号: 京ICP备16067583号-21
版权所有 © 2021 《植物学报》编辑部
地址:北京香山南辛村20号 邮编:100093
电话:010-62836135 010-62836131 E-mail:cbb@ibcas.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发

相关话题/种子 基因 植物 信号 过程

闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煟閵忊懚鍦玻濡ゅ懏鐓欓梺顓ㄧ畱閸旀帗绻涘顔荤盎缂佺媴缍侀弻銊╁籍閸ヮ煈妫勯梺閫炲苯澧繛纭风節瀵濡搁埡浣虹潉闂佺ǹ鏈粙鎺楁偟椤忓牊鈷戠紓浣贯缚缁犳岸鏌涢埡鍌滃⒌妤犵偛鐗撴俊鎼佸Ψ椤旇棄鐦滈梺鑽ゅТ濞测晛顕i幘瀵哥彾闁哄洢鍨洪埛鎺懨归敐鍕劅闁衡偓閻楀牏绠鹃柛娑卞枟缁€瀣殽閻愭潙鐏寸€规洘鍎奸ˇ鎾煛閸☆參妾柟渚垮妼椤啰鎷犻煫顓烆棜濠碉紕鍋戦崐鎴﹀垂閸濆嫀娑㈠礃閵娧勬闂佸憡顨堥崐锝夊籍閸繄顦ㄩ梺闈浨归崕鎶筋敊閸ヮ剚鈷掗柛灞捐壘閳ь剚鎮傚畷鎰槹鎼达絿鐒兼繛鎾村焹閸嬫挾鈧娲忛崕鎶藉焵椤掑﹦绉靛ù婊冪埣閹垽宕卞Ο璇插伎濠碉紕鍋犻褎绂嶆ィ鍐╁€甸悷娆忓婢跺嫰鏌涢妸銉у煟闁靛棔绶氬鎾閻欌偓濞煎﹪姊洪棃娑氱畾闁告挻绻堥、娆撳即閵忊檧鎷绘繛鎾村焹閸嬫挻绻涙担鍐叉瘽閵娾晛鐒垫い鎺嗗亾闁宠鍨块崹楣冩惞椤愩垺鐏庨梻浣虹《閺傚倿宕归挊澶樺殨妞ゆ洍鍋撶€规洖銈搁幃銏ゅ传閸曨偆顓奸梻鍌氬€烽懗鍫曘€佹繝鍥风稏濠㈣埖鍔曠粈澶愭煛閸ャ儱鐏柛搴$У缁绘稑顔忛鑽ゅ嚬闂佺粯鎸鹃崰鏍蓟閿濆绫嶉柛顐亝椤ユ牜绱撴担鍓叉Ч婵$偘绮欏濠氭偄绾拌鲸鏅╅梺鍏肩ゴ閺呮繃顨欓梺璇叉唉椤煤濮椻偓瀹曟洘绺介弶鍡楁喘瀵濡烽敂鎯у笚闂傚倷绀侀悘婵嬵敄閸℃稑鐓曢柟閭﹀枤绾捐偐绱撴担璐細缂佺姷鍋ら弻娑㈠煘閹傚濠碉紕鍋戦崐鏍暜閹烘柡鍋撳鐓庡⒋闁诡喚鍋涚叅妞ゅ繐鎳愰崢閬嶆⒑瑜版帒浜伴柛銊ㄤ含濞戠敻宕奸弴鐔哄幗濡炪倖鎸鹃崳銉モ枔閺冨牊鐓冮悷娆忓閻忔挳鏌涢埞鍨姦鐎规洖宕灃闁告剬鍐嚙缂傚倸鍊烽懗鍫曟惞鎼淬劌鍌ㄥ┑鍌氭啞閸嬪鏌i幘铏崳闁哄棴绠撻弻鐔告綇閸撗呮殸缂備胶濮撮…鐑藉箖濡ゅ懏顥堟繛鎴炵懄閸犳劙姊虹涵鍛彧缂佽鐗嗛~蹇撁洪鍛姷闂佺粯鍔樼亸顏嗏偓姘緲椤儻顦抽柟鍛婂▕瀵寮撮姀鐘茶€垮┑掳鍊愰崑鎾绘煃瑜滈崜娆忈缚閿熺姷宓佸┑鐘叉处閸婄兘鏌涘┑鍡楃弸闁靛ň鏅滈悡銉╂煛閸ヮ煈娈斿ù婊堢畺濮婃椽宕ㄦ繝鍐弳闂佺娅曢敋妞ゎ偄绻愮叅妞ゅ繐瀚畵宥咁渻閵堝棙灏甸柛瀣戠粩鐔煎即閻旇櫣鐦堥梺鍐茬殱閸嬫捇鏌涢幇闈涙灈鐎殿喕鍗抽幃妤冩喆閸曨剛顦ㄩ梺鎼炲妼濞硷繝鎮伴鍢夌喓浜搁弽褌澹曞┑鐐村灦椤忣亪顢旈崼顐f櫅闂佽鍎虫晶搴e閽樺褰掓晲閸涱喛纭€闂佸疇妫勯ˇ浼村Φ閸曨垰绠f繝闈涙祩濡倗绱撴担鎴掑惈闁稿鍋熼幑銏犫攽鐎n亞顦ㄩ悷婊冪箳缁顫濋澶嬪瘜闂侀潧鐗嗗Λ妤佹叏閸岀偞鐓曞┑鐘插暞缁€瀣煏閸℃鈧湱缂撴禒瀣窛濠电姴瀚獮鍫ユ⒒娴e摜鏋冩俊妞煎妿濞嗐垽濡舵径濠勵槷闂佺粯妫冮弲鑼崲閸℃稒鐓曟繛鍡楁禋濡茬ǹ鈹戦鑲┬ら柍褜鍓濋~澶娒洪弽顐ょ濠电姴娲㈤埀顑跨窔瀵挳濮€閳╁啯鐝抽梻浣告啞濞诧箓宕滃▎鎾崇哗妞ゆ挾鍋愰弨浠嬫煟濡櫣浠涢柡鍡忔櫊閺屾稓鈧綆鍋嗛埥澶愭懚閻愬绠鹃柛鈩兩戠亸顓犵磼閻樺啿顥嬬紒杈ㄥ笧閳ь剨缍嗘禍鐐差潩閵娾晜鐓涢悗锝庝簽鏁堥梺鍝勮閸旀垿骞冮姀銈呬紶闁告洘鍩婄紞渚€寮诲☉姘e亾閿濆懎顣抽柟顔笺偢閺岀喖鎳犻銏犵秺椤㈡ɑ绺界粙璺ㄥ€為梺鎸庣箓閹冲秵绔熼弴鐐╂斀妞ゆ梻绮ㄧ紓姘舵煕濡姴娲ㄥ畵浣规叏濡炶浜鹃梺鍝勮閸婃洜鍙呭銈呯箰閸燁垶宕板顒夋富闁靛牆鍟悘顏堟煟閻斿弶娅婃鐐插暙閳诲酣骞欓崘鈺傛珜濠电偠鎻徊鎸庣仚婵犳鍠栭柊锝咁潖婵犳艾纾兼繛鍡樺焾濡差噣姊虹憴鍕偞闁告挻绻勭划顓㈡偄閼茬儤妫冨畷銊╊敇閻愯弓鎲鹃梻鍌欒兌缁垶骞愰崫銉㈠亾閸偄娴€规洜鏁诲鎾閿涘嫬骞堥柣鐔哥矊闁帮綁濡撮崘顔煎耿婵炴垶鐟ユ禍妤呮⒑闂堟侗妾у┑鈥虫川缁粯銈i崘鈺冨幍闁诲海鏁告灙闁告捁椴哥换娑㈠醇閻旀帗鍨挎俊鐢稿礋椤栨稒娅嗘繝闈涘€搁幉锟狀敁瀹ュ洨纾藉ù锝堟鐢稓绱掔拠鑼ⅵ鐎规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼悜妯虹仴妞ゅ繑鎸抽弻鈩冩媴缁嬪簱鍋撻崸妤€钃熸繛鎴欏灩閻掓椽鏌涢幇鍏哥凹闁革綆鍙冨娲箰鎼达絺妲堢紓浣虹帛閿氭い顐㈢箰鐓ゆい蹇撳椤︻參姊洪懖鈹炬嫛闁告挻鐟ч弫顕€濡烽埡鍌楁嫼闂佸憡绺块崕杈ㄧ墡闂備胶绮〃鍡欏垝閹炬剚鍤曟い鎰跺瘜閺佸鏌嶈閸撶喖鎮伴鑺ュ劅闁靛⿵绠戝▓鐔兼⒑闂堟侗妲堕柛搴濆嵆瀹曠娀寮介鐔叉嫽婵炶揪绲介幗婊呯矓濞差亝鐓曢悗锝庝悍闊剛鈧娲樼划宀勫煡婢跺⿴娼╅弶鍫氭櫇閸樼娀姊绘担铏瑰笡闁搞劌澧庡﹢浣虹磽娴g瓔鍤欐俊顐g箞瀵鎮㈤搹鍦紲濠碘槅鍨靛▍锝夋偡閵娿儺娓婚柕鍫濇噺缁傚鏌涚€n亷韬€殿喖顭烽幃銏ゅ礈閸欏-褔鏌熼懖鈺勊夐悗娈垮墴閺佹劖寰勭€n亖鍋撻悽鍛婄厽闁靛繈鍊栧☉褔鎮介姘卞煟闁哄苯绉堕幏鐘诲蓟閵夈儱鍙婃俊銈囧Х閸嬫盯顢栨径鎰畺妞ゅ繐鐗嗗婵囥亜閺嶃劍鐨戦柛婵撴嫹
2婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ょ泿闁诡垳鍠栧娲礃閸欏鍎撳銈嗗灥濞层劎鍒掑▎鎺旂杸婵炴垶鐟㈤幏娲⒑闂堚晛鐦滈柛妯恒偢瀹曟繄鈧綆鍋佹禍婊堟煏婵炲灝鍔滄い銉e灮閳ь剝顫夊ú婊堝极婵犳艾鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱閸ㄥ潡寮诲☉妯锋婵鐗嗘导鎰節濞堝灝娅欑紒鐘冲灴濠€浣糕攽閻樿宸ラ柟鍐插缁傛帗娼忛埞鎯т壕閻熸瑥瀚粈鍐╀繆閻愭壆鐭欑€殿噮鍋婇獮妯肩磼濡桨姹楅柣搴ゎ潐濞叉牕煤閵堝宓佹慨妞诲亾婵﹦绮幏鍛村川婵犲啫鍓垫俊鐐€х€靛矂宕归崼鏇炵畺婵☆垵銆€閺€浠嬫倵閿濆簼绨奸弶鍫濈墕閳规垿鎮欓崣澶樻!闂佹悶鍔庨崰鏍х暦閹达箑绠婚柤鎼佹涧閺嬪倿姊洪崨濠冨闁告挻鐩弫宥咁潨閳ь剙顫忛搹鍦煓闁圭ǹ瀛╁畷鎶芥⒑鏉炴壆顦︽い顓犲厴閹即顢氶埀顒€鐣峰鈧崺锟犲礃閻愵剛銈梻浣筋嚙閸戠晫绱為崱娑樼;闁圭儤鍤﹀☉銏犵闁靛ǹ鍨洪弬鈧梻浣虹帛閸旀牕岣垮▎鎾村€堕柨鏂垮⒔濡垶鏌℃径搴㈢《閺佸牆螖閻橀潧浠滄い锕€鐏氭穱濠囧醇閺囩偛鑰垮┑鐐叉閸╁牓宕惔銊︹拻濞达絿鍎ら崵鈧銈嗘处閸欏啫鐣烽幋锔藉€烽柡宥嚽归ˇ闈涱嚕娴犲鏁囬柣鏃囨腹閸栨牕鈹戦悙瀛樺鞍闁煎綊绠栭弫鍐晝閸屾氨鐣洪梺绋跨箻濡法鎹㈤崱娑欑厱婵炲棗娴氬Σ绋库攽椤斿吋鍠橀柡灞界Ф閹风娀寮婚妷銉ュ強婵°倗濮烽崑娑樏洪鐐垫殾婵犲﹤瀚刊鎾煣韫囨洘鍤€妤犵偐鍋撴繝鐢靛Х閺佸憡鎱ㄩ悜濮愨偓鍌炴寠婢光晪缍佸畷銊╁级閹存繄鈧參姊婚崒姘卞缂佸鐗撳绋款吋婢跺鍙嗗┑鐘绘涧濡瑦鍒婇崗鑲╃閻忓繑鐗楀▍濠囨煛鐏炵偓绀冪紒缁樼洴閹瑩顢楁担鍝勭稻闂傚倷鑳剁划顖炲箰閸濄儲宕叉慨妞诲亾鐎殿喛顕ч埥澶愬閻橀潧濮堕梻浣告啞閸斿繘寮插┑瀣庡洭濡歌绾捐棄霉閿濆洦鐒块柛蹇撹嫰椤儻顦虫い銊ワ攻娣囧﹪鎮界粙璺槹濡炪倖鐗徊楣冨疾濠靛鈷戦梻鍫熺〒缁犳岸鏌¢崨顔炬创鐎规洘绮撻弻鍡楊吋閸″繑瀚奸梻浣告贡鏋繛瀵稿厴閸╁﹪寮撮姀锛勫幈闂佸搫鍟犻崑鎾绘煟閻斿弶娅婇柟顔诲嵆椤㈡瑩鏌ㄩ姘闂佹寧绻傜花鑲╄姳閹绢喗鐓涢悗锝庝邯閸欏嫰鏌熼鏂よ€块柟顔界懇瀵爼骞嬮悩鍗炴瀳婵犵數濮伴崹濂革綖婢跺⊕鍝勎熼崗鐓庡簥濠电偞鍨堕悷锔剧礊閸ヮ剚鐓曢柟鐐殔鐎氼剚绂掕ぐ鎺撯拺闁告繂瀚烽崕娑樏瑰⿰鍛槐闁糕斁鍋撳銈嗗笂缁讹繝宕箛娑欑厱闁绘ê纾晶鐢告煙椤旂煫顏堝煘閹寸姭鍋撻敐搴濈敖闁告ɑ鎸冲铏规兜閸涱喖娑х紓浣哄У閸ㄨ绔熼弴銏犵闁兼祴鏅濋鏇㈡⒑绾懏褰х紓宥勭窔瀹曨偄煤椤忓懐鍘介梺鎸庣箓濞诧箑鈻嶉弴鐘电<閺夊牄鍔嶇亸浼存煙瀹勭増鍣烘い锔惧閹棃濡堕崶鈺佺倞闂傚倸鍊烽懗鑸电仚濡炪倖鍨甸幊姗€寮崘顔嘉у鑸瞪戦弲顏堟⒑閹稿海绠撴い锔跨矙瀵偊宕卞☉娆戝帗閻熸粍绮撳畷婊堟偄閻撳孩妲梺闈涚箚閸撴繈宕曢悢鍏肩厓闂佹鍨版禍楣冩⒑閸濆嫷鍎忛梺甯秮瀵鎮㈢悰鈥充壕闁汇垻娅ヨぐ鎺濇晛閻忕偛褰炵换鍡涙煕濞嗗浚妲归悘蹇ラ檮閹便劍绻濋崟顓炵闂佺懓鍢查幊妯虹暦閵婏妇绡€闁稿本绋掗悾濂告⒒閸屾瑦绁扮€规洜鏁诲畷浼村幢濞戞ḿ锛熼梺姹囧灮鏋柡瀣╃窔閺屾盯骞囬棃娑欑亪闁搞儲鎸冲娲川婵犲嫮鐒肩紓浣插亾濞撴埃鍋撶€殿喗鐓¢幃鈺佺暦閸モ晝妲囬梻浣圭湽閸ㄨ棄岣胯閻楀孩绻濆▓鍨灍閼垦囨煕閺傝法鐒搁柟顕€绠栧畷褰掝敃閵堝洦鍤岄梻渚€鈧偛鑻晶瀛橆殽閻愭彃鏆欓摶鏍煕濞戝崬娅樻俊顐㈠暙閳规垿鎮欓弶鎴犱桓闂佽崵鍠嗛崕闈涱嚕閹惰棄閱囬柕澶涜吂閹疯櫣绱撴笟鍥х仭婵炲弶锚閳诲秹宕ㄧ€涙ḿ鍘辨繝鐢靛Т閸熶即骞楅崘顔界厽闊洦鎼╅崕鏃€鎱ㄦ繝鍛仩缂佽鲸甯掗~婊堝幢濡吋娈介梻鍌欒兌缁垶銆冮崼銉ョ;闁靛牆鎳愰弳锔戒繆閵堝懏濯奸柡浣告閺屾稓浠﹂崜褏鐓傞梺鎸庣⊕缁捇寮婚埄鍐ㄧ窞濠电姴瀚。鍫曟⒑閸涘﹥鐓ユ繛鎾棑閸掓帗绻濆顒傤啋缂傚倷鐒﹀玻鍧楀储閹剧粯鈷戦柤鎭掑剭椤忓煻鍥寠婢光晝鍠栭崺鈧い鎺戝閳锋垿鎮归崶锝傚亾閾忣偆浜炵紓鍌欑贰閸犳鎮烽妷鈺傚仼闁汇値鍨禍褰掓煙閻戞ḿ绠栭柡鍛箞濮婃椽妫冨☉姘暫缂備胶绮敮锟犲箚瀹€鍕櫢闁跨噦鎷�547闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗霉閿濆浜ら柤鏉挎健濮婃椽顢楅埀顒傜矓閺屻儱鐒垫い鎺嗗亾闁稿﹤婀辩划瀣箳閺傚搫浜鹃柨婵嗙凹缁ㄤ粙鏌ㄥ☉娆戞创婵﹥妞介幃鐑藉级鎼存挻瀵栫紓鍌欑贰閸n噣宕归崼鏇炴槬婵炴垯鍨圭粻铏繆閵堝嫯鍏岄柛姗€浜跺娲传閸曨剙顦╁銈冨妼濡鍩㈠澶婂窛閻庢稒岣块崢浠嬫椤愩垺绁紒鎻掋偢閺屽洭顢涢悙瀵稿幐閻庡厜鍋撻悗锝庡墮閸╁矂鏌х紒妯煎⒌闁诡喗顨婇弫鎰償閳ヨ尙鐩庢俊鐐€曟蹇涘箯閿燂拷4婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄У婢瑰棛妲愰幒鏂哄亾閿濆骸浜剧紒鎵佹櫆缁绘稑顔忛鑽ゅ嚬闂佸搫鎳忛悡锟犲蓟濞戙垹唯闁靛繆鍓濋悵鏍ь渻閵堝繐鐦滈柛銊ㄦ硾椤繐煤椤忓懎浠梻渚囧弿缁犳垵鈻撻崼鏇熲拺缂佸顑欓崕鎴︽煕閻樺磭澧电€规洘妞芥慨鈧柕鍫濇噽閻嫰姊洪柅鐐茶嫰婢ф潙鈹戦敍鍕毈鐎规洜鍠栭、娆撳礈瑜庡鎴︽⒒娴g瓔娼愰柛搴㈠▕椤㈡岸顢橀埗鍝勬喘閺屽棗顓奸崱蹇斿缂傚倷绀侀鍡涱敄濞嗘挸纾块柟鎵閻撴瑩鏌i悢鍝勵暭闁瑰吋鍔欓弻锝夋晲閸涱厽些濡炪値鍋呯划鎾诲春閳ь剚銇勯幒鎴濐仴闁逞屽厸缁舵艾顕i鈧畷鐓庘攽閸℃埃鍋撻崹顔规斀閹烘娊宕愰弴銏犵柈妞ゆ劧濡囧畵渚€鏌熼幍顔碱暭闁抽攱甯¢弻娑氫沪閸撗勫櫘濡炪倧璁g粻鎾诲蓟濞戞﹩娼╂い鎺戭槸閸撴澘顪冮妶搴″箹闁诲繑绻堥敐鐐测堪閸繄鍔﹀銈嗗坊閸嬫捇鏌i敐鍥у幋妞ゃ垺鐩幃婊堝幢濡粯鐝栭梻鍌欑窔濞佳呮崲閸儱鍨傞柛婵嗗閺嬫柨螖閿濆懎鏆為柍閿嬪灴濮婂宕奸悢鍓佺箒濠碉紕瀚忛崘锝嗘杸闂佺偨鍎村▍鏇㈠窗濮椻偓閺屾盯鍩為崹顔句紙閻庢鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犮儵姊婚崒娆掑厡妞ゃ垹锕敐鐐村緞閹邦剛顦梺鍝勬储閸ㄦ椽宕曞鍡欑鐎瑰壊鍠曠花濂告煟閹捐泛鏋涢柡宀嬬秮瀵噣宕奸悢鍛婃闂佽崵濮甸崝褏妲愰弴鐘愁潟闁圭儤鎸荤紞鍥煏婵炲灝鍔ら柣鐔哥叀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤鎳庢禒锔剧磼閸屾稑娴柟顔瑰墲閹柨螣缂佹ɑ婢戦梻鍌欒兌缁垶宕濆Ο琛℃灃婵炴垶纰嶉~鏇㈡煥閺囩偛鈧綊鎮¢弴鐔剁箚闁靛牆鎳庨顏堟煟濠垫劒绨婚懣鎰版煕閵夋垵绉存慨娑㈡⒑闁偛鑻晶顖滅磼鐎n偄绗╅柟绛嬪亝缁绘繂鈻撻崹顔句画闂佺懓鎲℃繛濠囩嵁閸愩劎鏆嬮柟浣冩珪閻庤鈹戦悙鍙夘棡闁搞劎鏁诲畷铏逛沪閸撗咁啎闁诲孩绋掑玻鍧楁儗閹烘梻纾奸柣妯虹-婢х數鈧鍠涢褔鍩ユ径鎰潊闁绘ḿ鏁搁弶鎼佹⒒娴e懙鍦崲閹版澘绠烘繝濠傜墕閺嬩線鏌″搴″箺闁抽攱鍨圭槐鎺楊敍濞戞瑧顦ㄥ┑鐐叉噺濮婅崵妲愰幒鏃傜<婵☆垵鍋愰悿鍕倵濞堝灝鏋︽い鏇嗗洤鐓″璺号堥崼顏堟煕濞戝崬鐏℃繝銏″灴濮婄粯鎷呴悷閭﹀殝缂備浇顕ч崐鍧楃嵁婵犲啯鍎熸い顓熷笧缁嬪繘姊洪崘鍙夋儓闁瑰啿绻橀崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢鍏肩厵闁惧浚鍋呯粈鍫㈢磼鏉堛劌绗氭繛鐓庣箻婵℃悂鏁傜紒銏⌒у┑掳鍊楁慨鐑藉磻濞戞碍宕叉慨妞诲亾妤犵偛鍟撮崺锟犲礃閳轰胶褰撮梻浣藉亹閳峰牓宕滈敃鍌氱柈閻庯綆鍠楅埛鎺懨归敐鍛暈闁哥喓鍋涢妴鎺戭潩椤撗勭杹閻庤娲栫紞濠囩嵁鎼淬劌绀堥柛顭戝枟閸犳﹢鏌涢埡瀣瘈鐎规洏鍔戦、娆戞喆閸曨偒浼栭梻鍌欐祰瀹曠敻宕戦悙鐢电煓闁割偁鍎遍悞鍨亜閹哄棗浜鹃梺鍛娚戦悧妤冪博閻旂厧鍗抽柕蹇婃閹风粯绻涙潏鍓у埌闁硅绱曢幏褰掓晸閻樻彃鍤戝銈呯箰濡稓澹曟總鍛婄厪濠电偛鐏濇俊鐓幟瑰⿰鍐╄础缂佽鲸甯¢、姘跺川椤撶偟顔戦柣搴$仛濠㈡ḿ鈧矮鍗抽悰顕€宕堕澶嬫櫍闂佺粯蓱瑜板啰绮绘繝姘拻闁稿本鐟чˇ锕傛煙绾板崬浜為柍褜鍓氶崙褰掑礈濞戙垹绠查柕蹇嬪€曠粻鎶芥煛閸愩劍鎼愮亸蹇涙⒒娴e憡璐¢弸顏嗙磼閵娧冨妺缂佸倸绉撮オ浼村醇閻斿搫骞愰梻浣规偠閸庢椽鎮℃笟鈧、鏃堝醇閻斿皝鍋撻崼鏇熺厾缁炬澘宕崢鎾煕鐎n偅灏柍缁樻崌瀹曞綊顢欓悾灞借拫闂傚倷鑳舵灙妞ゆ垵鎳橀弫鍐Χ婢舵ɑ鏅梺鎸庣箓濞诧箑鐣锋径鎰仩婵炴垶甯掓晶鏌ユ煟鎼粹槅鐓兼慨濠呮閹风娀鍨惧畷鍥e亾婵犳碍鐓曢煫鍥ч鐎氬酣鏌涙繝鍐畵妞ゎ偄绻掔槐鎺懳熺拠宸偓鎾绘⒑閼姐倕鏋涢柛瀣躬瀹曠數鈧綆鍓涚壕钘壝归敐鍛棌闁稿孩鍔欓弻娑㈠Ω閵娿儱濮峰┑鈽嗗亞閸犲酣鈥旈崘顔嘉ч柛鈩兠拕濂告⒑閹肩偛濡肩紓宥咃躬楠炲啴鎮欓崫鍕€銈嗗姉婵磭鑺辨繝姘拺闁革富鍘奸崝瀣煕閳轰緤韬€殿喓鍔嶇换婵嗩潩椤撶偐鍋撻崹顐e弿婵☆垳鍘ф禍楣冩倵濮樼偓瀚�40缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箰妤e啫鐒垫い鎺戝枤濞兼劖绻涢崣澶屽ⅹ閻撱倝鏌曟繛褍鎳嶇粭澶愭⒑閸濆嫬鏆欓柣妤€锕幃鈥斥枎閹惧鍘靛銈嗙墪濡鎳熼姘f灁闁割偅娲橀埛鎴犫偓瑙勬礀濞层劎鏁☉娆愬弿濠电姴鍊荤粔鐑橆殽閻愯尙澧﹀┑鈩冩倐婵$兘顢欓挊澶岀处闂傚倷绶氶埀顒傚仜閼活垱鏅堕悧鍫㈢闁瑰濮甸弳顒侇殽閻愬澧柟宄版嚇瀹曘劍绻濋崟銊ヤ壕妞ゆ帒瀚悡鐔煎箹閹碱厼鐏g紒澶愭涧闇夋繝濠傚暟閸╋綁鏌熼鍝勭伈鐎规洖宕埥澶娾枎韫囧骸瀵查梻鍌欑劍閹爼宕曢懡銈呯筏婵炲樊浜滅壕濠氭煙閹规劦鍤欑紒鈧崒鐐寸厱婵炴垵宕鐐繆椤愶絿鐭岀紒杈ㄦ崌瀹曟帒顫濋钘変壕鐎瑰嫭鍣磋ぐ鎺戠倞闁靛⿵绲肩划鎾绘⒑瑜版帗锛熼柣鎺炵畵瀹曟垿鏁撻悩宕囧帗闂佸憡绻傜€氼參宕宠ぐ鎺撶參闁告劦浜滈弸鏃堟煃瑜滈崜娆撳储濠婂牆纾婚柟鍓х帛閻撴洟鏌¢崶銉ュ濞存粎鍋為妵鍕箻鐎涙ǜ浠㈠┑顔硷攻濡炰粙鐛幇顓熷劅闁挎繂娲ㄩ弳銈嗙節閻㈤潧浠╅悘蹇旂懄缁绘盯鍩€椤掑倵鍋撶憴鍕闁搞劌娼¢悰顔嘉熼懖鈺冿紲濠碘槅鍨甸褔宕濋幒妤佲拺闁煎鍊曢弸鎴︽煟閻旀潙鍔ら柍褜鍓氶崙褰掑礈閻旈鏆﹂柕蹇ョ祷娴滃綊鏌熼悜妯诲皑闁归攱妞藉娲川婵犲嫮鐣甸柣搴㈠嚬閸樺ジ顢欒箛鎾斀閻庯綆鍋嗛崢閬嶆煙閸忚偐鏆橀柛銊ョ秺閹﹢鍩¢崒娆戠畾闂佸憡鐟ラˇ顖涙叏閸ヮ煈娈版い蹇撳暙瀹撳棛鈧娲栭妶鎼佸箖閵忋倕浼犻柛鏇ㄥ亜椤╊剟姊婚崒姘偓鐑芥嚄閸撲焦鍏滈柛顐f礀缁€鍫熺節闂堟稒鐏╂繛宸簻閸愨偓濡炪倖鍔戦崕鍗炵毈缂傚倸鍊风欢锟犲磻閸曨厸鍋撳▓鍨⒋婵﹤顭峰畷鎺戭潩椤戣棄浜惧瀣椤愯姤鎱ㄥ鍡楀幊缂傚倹姘ㄩ幉绋款吋閸澀缃曢梻鍌欑閹碱偊宕锕€纾瑰┑鐘崇閸庢鏌涢埄鍐炬▍鐟滅増甯楅弲鏌ユ煕椤愵偄浜滄繛鍫熺懇濮婃椽鎳¢妶鍛€鹃柣搴㈣壘閻楁挸顕i鈧畷鐓庘攽閸℃瑧宕哄┑锛勫亼閸婃牕螞娓氣偓閿濈偞寰勭仦绋夸壕闁割煈鍋嗘晶鍨叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍋為幐鑽ゅ枈瀹ュ鈧啯绻濋崒婊勬闂侀潧绻堥崐鏍偓鐢靛Т椤法鎹勯悜姗嗘!闂佽瀛╁浠嬪箖濡ゅ懎绀傚璺猴梗婢规洟姊绘担鍛婂暈婵炶绠撳畷婊冣槈閵忕姴鍋嶉梻渚囧墮缁夌敻鍩涢幋锔界厱婵犻潧妫楅鈺呮煛閸℃瑥浠遍柡宀€鍠撶划娆撳垂椤旇瀵栧┑鐘灱椤煤閻旇偐宓侀柟閭﹀幗閸庣喐绻涢幋鐑嗘畼闁烩晛閰e缁樼瑹閳ь剙岣胯椤ㄣ儴绠涢弴鐕佹綗闂佸搫娲犻崑鎾诲焵椤掆偓閸婂潡骞婇悩娲绘晢闁稿本绮g槐鏌ユ⒒娴e憡鎯堥柛鐕佸亰瀹曟劙骞栨担绋垮殤濠电偞鍨堕悷锝嗙濠婂牊鐓忛煫鍥э工婢ц尙绱掗埀顒傗偓锝庡枟閻撴瑦銇勯弮鍥舵綈婵炲懎锕ラ妵鍕閳╁啰顦伴梺鎸庣箘閸嬨倝銆佸鈧幃婊堝幢濮楀棙锛呭┑鐘垫暩婵兘寮幖浣哥;闁绘ǹ顕х粻鍨亜韫囨挻顥犵紒鈧繝鍥ㄧ厓鐟滄粓宕滃璺何﹂柛鏇ㄥ灱閺佸啴鏌曡箛濠冩珕闁宠鐗撳铏规嫚閳ヨ櫕鐝紓浣虹帛缁诲牆鐣峰ú顏勭劦妞ゆ帊闄嶆禍婊堟煙閻戞ê鐏ユい蹇d邯閺屽秹鏌ㄧ€n亝璇為梺鍝勬湰缁嬫挻绂掗敃鍌氱闁归偊鍓﹀Λ鐔兼⒒娓氣偓閳ь剛鍋涢懟顖炲储閸濄儳纾兼い鏃傛櫕閹冲洭鏌曢崱鏇狀槮闁宠閰i獮鍥敊閸撗勵潓闂傚倷绀侀幉鈥趁洪敃鍌氱闁挎洍鍋撳畝锝呮健閹垽宕楃亸鏍ㄥ闂備礁鎲¢幐鏄忋亹閸愨晝顩叉繝闈涙川缁犻箖鏌涘▎蹇fШ濠⒀嗕含缁辨帡顢欓崹顔兼優缂備浇椴哥敮鎺曠亽闂傚倵鍋撻柟閭﹀枤濞夊潡姊婚崒娆愮グ妞ゎ偄顦悾宄拔熺悰鈩冪亙濠电偞鍨崺鍕极娴h 鍋撻崗澶婁壕闂佸憡娲﹂崜娑㈠储閸涘﹦绠鹃弶鍫濆⒔閸掓澘顭块悷甯含鐎规洘娲濈粻娑㈠棘鐠佸磭鐩庢俊鐐€栭幐鎾礈濠靛牊鍏滈柛顐f礃閻撴瑥顪冪€n亪顎楅柍璇茬墦閺屾盯濡搁埡鍐毇閻庤娲橀〃濠傜暦閵娾晩鏁嶆繛鎴炨缚濡棝姊婚崒姘偓鎼佸磹妞嬪孩顐芥慨妯挎硾閻掑灚銇勯幒鎴濃偓鍛婄濠婂牊鐓犳繛鑼额嚙閻忥妇鈧娲忛崹浠嬬嵁閺嶃劍濯撮柛锔诲幖楠炴﹢姊绘担鍛婂暈闁告梹岣挎禍绋库枎閹捐櫕妲梺鎸庣箓閹冲寮ㄦ禒瀣叆婵炴垶锚椤忣亪鏌¢崱鈺佸⒋闁哄瞼鍠栭、娆撴偩鐏炴儳娅氶柣搴㈩問閸犳牠鎮ユ總鍝ュ祦閻庯綆鍣弫鍥煟閹邦厽鍎楅柛鐔锋湰缁绘繈鎮介棃娴讹絾銇勯弮鈧悧鐘茬暦閺夎鏃堝川椤旇姤鐝栭梻浣稿暱閹碱偊骞婃惔锝囩焼闁稿本绋撶粻楣冩煙鐎电ǹ浠фい锝呭级閵囧嫰顢曢敐鍡欘槹闂佸搫琚崝宀勫煘閹达箑骞㈡俊顖濇〃閻ヮ亪鏌i悢鍝ョ煂濠⒀勵殘閺侇喖螖閸涱厾鏌ч梺鍝勮閸庢煡鎮¢弴銏$厓闁宠桨绀侀弳鐔兼煙閸愬弶鍤囬柡宀嬬秮楠炴﹢宕樺ù瀣壕闁归棿璁查埀顒佹瀹曟﹢顢欓崲澹洦鐓曢柟鎵虫櫅婵″灝霉閻樻彃鈷旂紒杈ㄥ浮閹瑩顢楁担鍝勫殥缂傚倷绀侀ˇ顖涙櫠鎼淬劌绀嗛柟鐑橆殔閻撴盯鏌涘☉鍗炴灈濞存粍绮庣槐鎺楁倷椤掆偓椤庢粌顪冪€涙ɑ鍊愮€殿喗褰冮埞鎴犫偓锝庡亐閹锋椽姊婚崒姘卞缂佸鎸婚弲鍫曞即閻旇櫣顔曢柣鐘叉厂閸涱垱娈兼俊銈囧Х閸嬫稑螞濠靛鏋侀柟閭﹀幖缁剁偤鎮楅敍鍗炲椤忓綊姊婚崒娆戭槮婵犫偓鏉堛劎浠氭繝鐢靛仜椤曨參宕楀鈧畷娲Ψ閿曗偓缁剁偤鎮楅敐鍐ㄥ缂併劌顭峰娲箰鎼淬埄姊垮銈嗘肠閸愭儳娈ㄥ銈嗘磵閸嬫捇鏌$仦鍓ф创闁糕晝鍋ら獮鍡氼槺濠㈣娲栭埞鎴︽晬閸曨偂鏉梺绋匡攻閻楁粓寮鈧獮鎺懳旀担瑙勭彇闂備線娼ч敍蹇涘焵椤掑嫬纾婚柟鐐墯濞尖晠鏌i幇闈涘妞ゅ骏鎷�28缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亜顒㈡い鎰矙閺屻劑鎮㈤崫鍕戙垻鐥幑鎰靛殭妞ゎ厼娼¢幊婊堟濞戞鏇㈡⒑鏉炴壆顦︽い鎴濇喘楠炲骞栨担鍝ョ潉闂佸壊鍋侀崹鍦矈閿曞倹鈷戦柛娑橈工婵箓鏌涢悩宕囧⒈缂侇喚绮换婵嗩潩椤撶姴骞堥梻浣筋潐瀹曟ḿ浜稿▎鎴犵幓闁哄啫鐗婇悡鍐煟閻旂ǹ顥嬬紒鐘哄皺缁辨帞绱掑Ο鑲╃杽婵犳鍠掗崑鎾绘⒑閹稿海绠撴俊顐g洴婵℃挳骞囬鈺傛煥铻栧┑鐘辫兌閸戝綊姊洪崷顓€褰掑疮閸ф鍋╃€瑰嫭澹嬮弨浠嬫倵閿濆簼绨荤紒鎰洴閺岋絾鎯旈姀鈶╁鐎光偓閿濆懏鍋ョ€规洏鍨介弻鍡楊吋閸″繑瀚奸梻浣告啞缁诲倻鈧凹鍓熷铏節閸ャ劎鍘遍柣搴秵閸嬪懐浜搁悽鐢电<閺夊牄鍔岀粭褔鏌嶈閸撱劎绱為崱娑樼;闁告侗鍘鹃弳锔锯偓鍏夊亾闁逞屽墴閸┾偓妞ゆ帊绶¢崯蹇涙煕閿濆骸娅嶇€规洘鍨剁换婵嬪炊瑜忛悾鐑樼箾鐎电ǹ孝妞ゆ垵鎳樺畷褰掑磼濞戞牔绨婚梺瑙勫閺呮盯鎮橀埡鍌ゆ闁绘劖娼欓悘瀛樻叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崘銊ュ濠电姷鏁搁崑鐘活敋濠婂懐涓嶉柟杈捐缂嶆牗绻濋棃娑卞剰閹喖姊洪崘鍙夋儓闁稿﹤鎲$粋鎺楊敇閵忊檧鎷洪柣搴℃贡婵敻濡撮崘顔藉仯濞达絿鎳撶徊濠氬础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀵告噰闁哄矉缍侀獮鍥濞戞﹩娼界紓鍌氬€哥粔鐢稿垂閸ф钃熼柣鏃傚帶缁€鍌炴煕韫囨洖甯堕柍褜鍓氶崝娆撳蓟閿涘嫪娌柣锝呯潡閵夛负浜滅憸宀€娆㈠璺鸿摕婵炴垯鍨圭粻濠氭煕濡ゅ啫浠滄い顐㈡搐铻栭柣姗€娼ф禒婊呯磼缂佹﹫鑰跨€殿噮鍋婇獮妯肩磼濡粯顏熼梻浣芥硶閸o箓骞忛敓锟�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闂佽姤蓱缁诲啴濡甸崟顖氬唨闁靛ě鍛帓闂備焦妞块崢浠嬪箲閸ヮ剙钃熸繛鎴欏灩缁犲鏌ょ喊鍗炲⒒婵″樊鍣e娲箹閻愭彃顬夌紓浣筋嚙閻楁挸顕f繝姘╅柍鍝勫€告禍婊堟⒑閸涘﹦绠撻悗姘嚇婵偓闁靛繈鍨婚敍婊堟⒑闁偛鑻晶瀵糕偓瑙勬礃鐢繝骞冨▎鎴斿亾閻㈢櫥褰掔嵁閸喓绡€闁汇垽娼ф禒锕傛煕閵娿儳鍩i柡浣稿暣椤㈡洟鏁冮埀顒傜磼閳哄啰纾藉ù锝堢柈缂傛氨绱掗悩鑽ょ暫闁哄本鐩、鏇㈡晲閸モ晝鏆梻浣虹帛鐢骞冮崒鐐茶摕闁挎稑瀚▽顏嗙磼鐎n亞浠㈤柍宄邦樀閹宕归锝囧嚒闁诲孩鍑归崳锝夊春閳ь剚銇勯幒鎴姛缂佸娼ч湁婵犲﹤瀚惌鎺楁煥濠靛牆浠辩€规洖鐖奸、妤佹媴閸欏顏归梻鍌氬€风欢锟犲磻閸℃稑纾绘繛鎴欏灪閸ゆ劖銇勯弽銊р姇婵炲懐濮甸妵鍕即濡も偓娴滈箖姊洪崫鍕拱缂佸甯為幑銏犫攽鐎n亞顦板銈嗗坊閸嬫挻绻涢崼婵堢劯闁哄睙鍥ㄥ殥闁靛牆鎳嶅Σ鎰版⒑閸濆嫭婀版繛鑼枎閻g兘鎮℃惔妯绘杸闂佹悶鍎滅仦鎷樼喐绻濋悽闈浶fい鏃€鐗犲畷瑙勫閺夋嚦褔鏌熼梻瀵割槮闁藉啰鍠栭弻銊モ攽閸♀晜笑缂備胶濯寸紞渚€寮婚敐鍫㈢杸闁哄啠鍋撻柕鍥╁枎闇夋繝濠傚缁犳ḿ绱掗纰卞剰妞ゆ挸鍚嬪鍕節閸パ勬毆闂傚倷绀侀幖顐⒚洪妸鈺佺獥闁规崘顕ч崒銊╂煙闂傚鍔嶉柍閿嬪灴閺屾稑鈽夊鍫熸暰缂備讲鍋撻悗锝庡亞缁犳儳霉閿濆懎鏆辨繛璇х畵瀹曟劙宕奸弴鐔哄弳濠电娀娼уΛ娆撍夐悩鐢电<闁抽敮鍋撻柛瀣崌濮婄粯绗熼埀顒勫焵椤掑倸浠滈柤娲诲灡閺呭爼骞橀鐣屽幈闂佸疇妗ㄧ粈渚€顢旈鐘亾鐟欏嫭绀冨畝锝呮健楠炴垿宕熼姣尖晝鎲歌箛娑樺偍妞ゆ巻鍋撻柍瑙勫灴閹晛鈻撻幐搴㈢槣婵犵鍓濊ぐ鍐箠濡櫣鏆︾憸鐗堝笚椤ュ牊绻涢幋鐐殿暡婵炲牓绠栧濠氬磼濮樺崬顤€婵炴挻纰嶉〃濠傜暦椤栫偛宸濇い鏂垮⒔閻﹀牓姊婚崒姘卞缂佸鎸婚弲鍫曞閵忋垺锛忛梺纭咁潐閸旀牠藟婢舵劖顥嗗鑸靛姈閻撱儲绻濋棃娑欘棡妞ゆ洘姘ㄩ幉鎼佹偋閸繄鐟ㄥ┑顔款潐閻擄繝寮婚敓鐘茬闁靛ě鍐炬澑闂備胶绮幐鎼佸疮娴兼潙绠熺紒瀣氨閸亪鏌涢锝囩畼妞は佸啠鏀介柣鎰綑閻忥妇鐥弶璺ㄐфい銏℃礋閹崇偤濡烽敃鈧鍨攽閳藉棗鐏ユ繛澶嬫礋瀹曞ジ顢旈崼鐔哄帗閻熸粍绮撳畷婊冣枎閹惧磭锛欓梺绉嗗嫷娈旂紒鐘靛█閺岋綁骞囬浣瑰創闁哥儐鍨跺娲箰鎼淬垻锛曢梺绋款儐閹瑰洭寮诲☉銏犳闁圭ǹ楠稿▓妤€鈹戦纭烽練婵炲拑缍侀獮澶愬箻椤旇偐顦板銈嗗姂閸ㄧ顣介梻鍌氬€风粈渚€骞楀⿰鍫濈獥閹肩补妾紓姘舵煥閻斿搫孝缂佺姵鐗犻弻銊╂偄閸濆嫅銏ゆ煕濡や礁鈻曢柡宀嬬秮楠炲洭顢楅崒鍌︾秮閺岋綁鍩℃繝鍌滀桓濡ょ姷鍋涢崯鎶剿囬崷顓涘亾鐟欏嫭绀€闁靛牊鎮傞妴浣肝旈崨顓犲姦濡炪倖甯掔€氼剟鎯屽Δ鍛厸闁搞儮鏅涘暩缂佺偓宕樺Λ鍕箒闂佹寧绻傜€氼噣鎯屽▎鎾寸厱婵犻潧锕ラ鐘电磼鏉堛劌绗ч柟椋庡█楠炴捇骞掗幘鎼敳闁诲骸鍘滈崑鎾绘煥濠靛棛澧涚痪顓炵埣閺岀喐顦版惔鈾€鏋呴悗瑙勬穿缂嶄礁鐣烽幒鎴斿牚闁告劏鏅濇禍鏍磽閸屾瑦绁板鏉戞憸閺侇噣骞掗弴鐘辫埅闂傚倷鑳剁划顖炲垂闂堟耽娲Ω閳哄倸浠奸柡澶婄墑閸斿﹥绂嶅⿰鍕╀簻闁圭虎鍨版晶鑼棯椤撶偟鍩i柡宀€鍠栭幃鐑藉级濞嗗彞绱旈梻浣告贡閸樠呯礊婵犲倻鏆︽繝濠傜墕缁犳盯鏌涢幘鑼跺厡闁挎稓鍠撶槐鎾存媴娴犲鎽甸柣銏╁灲缁绘繂鐣风憴鍕╁亝闁告劑鍔庨ˇ銊╂倵閻熸澘顥忛柛鐘虫礈濡叉劙寮崼鐔哄幗闁瑰吋鐣崺鍕疮韫囨稒鐓曢柨婵嗛濞呭秶鈧娲橀崹鍨暦閻旂⒈鏁嶆慨妯哄船楠炴帡姊洪悷鏉挎倯闁伙綆浜畷婵嗙暆閳ь剛鍒掔拠娴嬫婵炲棗绉崇花濠氭⒑鐟欏嫬绀冩繛澶嬬☉閺嗏晠姊绘担鍝ユ瀮妞ゆ泦鍥ㄥ剹闁稿本鍑瑰ḿ鏍磽娴h偂鎴炲垔閹绢喗鐓熼柣鏃傚帶娴滀即鏌涢妶鍜佸剳缂佽鲸鎸婚幏鍛村礈閹绘帒澹夐梻浣规偠閸斿本鏅舵惔锝囩=闁规儳顕々鐑芥倵閿濆簼绨介柣顐㈠濮婅櫣绮欓幐搴㈡嫳缂備緡鍠栭懟顖炴偩閻戣棄唯闁冲搫鍊婚崢浠嬫煙閸忚偐鏆橀柛銊ヮ煼閸╁﹪寮撮悙鍨畷闂佹寧绻傞幊蹇涘磻閵夆晜鐓曢柍鐟扮仢閻忚尙鈧鍣崳锝呯暦婵傚憡鍋勯柛婵嗗缁犲搫鈹戦悩鎰佸晱闁哥姵顨婇弫鍐煛閸涱厾顦┑顔角归鎰礊閺嶃劎绡€闁哄洨鍋涢弳鐐电磼缂佹ḿ绠為柟顔荤矙濡啫鈽夊Δ浣稿濠电姷鏁搁崑娑㈠触鐎n喗鍋¢柍杞拌兌閺嗭箓鏌曟竟顖楀亾闁稿鎹囬弫鎰償閳╁啰浜堕梻浣规偠閸婃洟鎳熼婵堜簷闂備焦瀵х换鍌炲箠鎼淬劌姹叉繛鍡樺灩绾惧ジ鏌e鈧ḿ褔寮稿☉銏$厸鐎光偓閳ь剟宕伴弽顓犲祦闁糕剝绋掗崑瀣煕椤愵偄浜濇い銉ヮ樀濮婂宕掑▎鎰偘闂佽法鍠嗛崕闈涚暦閹邦兘鏀介悗锝庝海閹芥洖鈹戦悙鏉戠仧闁搞劎鎳撻弫顕€姊绘担鐑樺殌闁宦板妿閹广垽宕掗悙鍙夎緢闂侀潧绶垫0浣虹泿闂備礁鎼崐褰掝敄濞嗗精锝夊箹娴e湱鍘撻柣鐔哥懃鐎氼剟鎮橀幘顔界厵妞ゆ棁顫夊▍鍛存婢舵劖鍊甸柨婵嗛娴滃墽绱掓潏銊ュ摵婵﹦绮粭鐔煎焵椤掆偓宀h儻顦归柟顔ㄥ洤骞㈡繛鎴炨缚閻ゅ洭鏌熼崗鑲╂殬闁告柨鐭傚畷娆撴偐瀹曞洨顔曢梺绯曞墲钃遍悘蹇庡嵆閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹤鐣烽崼鏇熸櫜闁稿本鐭竟鏇㈡⒑閹勭闁稿妫欑粋宥夊冀椤撶啿鎷绘繛杈剧到閹诧繝宕悙鐑樼厸閻忕偠顕ф俊鑺ャ亜閵婏絽鍔︽鐐寸墬閹峰懘宕妷銉ョ闂傚倷娴囬~澶婄暦濮椻偓椤㈡俺顦寸紒顔碱煼閺佹劖寰勭€n剙寮抽梻浣告惈閸燁偊宕愭繝姘闁稿本绋掗崣蹇撯攽閻樻彃鈧綊宕戦妷锔藉弿濠电姴鍟妵婵嬫煛鐏炶姤鍤囬柟顔界懇閹崇姷鎹勬笟顖欑磾婵犵數濮幏鍐沪閼恒儳褰庨柣搴㈩問閸n噣宕戞繝鍌滄殾濠靛倻枪鍞梺鎸庢⒐閸庢娊鐛崼銉︹拺閻犲洩灏欑粻鎶芥煕鐎n偆銆掗柡渚囧櫍瀹曨偊宕熼崹顐㈠厞闂佽崵濞€缂傛艾鈻嶉敐澶嬫櫖婵炴垯鍨洪埛鎴︽煟閻斿憡绶查柍閿嬫⒒缁辨帡顢氶崨顓犱桓閻庢鍠楅悡锟犵嵁閺嶃劍濯撮柛锔诲幖瀵娊姊绘担铏瑰笡婵炲弶鐗犲畷鎰板捶椤撴稑浜炬慨妯煎亾鐎氾拷