删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Classification of the entangled states of 2×L×M×N×H

本站小编 Free考研考试/2021-12-25

贾康康, 李军利, 乔从丰
中国科学院大学物理科学学院, 北京 100049
摘要: 摘要提出一个2×L×M×N×H五体纠缠态基于随机定域操作和经典通信的实用分类方案.该方案将2×L×M×N的纠缠态分类方法推广到五体系统.首先利用矩阵分解将2×L×M×N×H体系的纠缠态分类为不同的粗粒化的标准型,然后利用矩阵重排技术进一步对具有相同标准型的不等价纠缠态进行细粒化辨认.最后给出一个2×2×2×2×2五量子比特系统的分类举例.
关键词: 量子纠缠SLOCC分类非定域参数
Entanglement has been an essential feature of quantum theory, and now is considered to be the key physical resource of quantum information sciences. Many nonclassical applications can only be implemented when entangled states are explored, e.g., quantum teleportation[1], dense coding[2-3], and some of the quantum cryptography protocols[4]. However, many superficially different quantum states may have actually the same function when being applied to carry out the quantum information tasks. It is known that, if two entangled states are interconnected by invertible local operators, i.e., equivalent under stochastic local operation and classical communication (SLOCC), then they would be both applicable for the same quantum information tasks. While there are only two SLOCC inequivalent tri-partite entanglement classes in three-qubit systems[5], the inequivalent classes turn to the infinite when the system consists of more than three partites.
The entanglement classification under SLOCC is generally a difficult task as the particles and dimensions of each partite grow, though it would be much easier when the entangled states have particular symmetries[6]. At present, nine inequivalent families of quantum systems for four-qubit states under SLOCC have been identified due to the symmetric property SU(2)?SU(2)SO(4)[7]. Finer grained classifications could also be achieved with well constructed entangled measures[8-9]. Using the technique of coefficient matrix[10], 28 genuinely entangled families were found for the four-qubit system[11]. The rank of the coefficient matrix is useful in partitioning the entangled states into discrete entanglement families[12]. However as the dimensions and number of particles both grow, it provides a rather coarse grained classification[13]. New method for the entanglement classification of 2×L×M×N system has been proposed[14], and it takes full advantage of the classifications of 2×M×N system[15-18]. The method not only provides an even finer classification for the system, but also is capable of determining the equivalency of two quantum states falling into the same entanglement family.
In this work, we generalize the method[14] to the case of five-partite system of 2×L×M×N×H. The five-partite system with one qubit is first partitioned into tri-partite in form of 2×(L×M)×(N×H), and the standard forms of inequivalent entanglement classes of 2×(LM)×(NH) behave as the entanglement families of 2×L×M×N×H. Then the matrix realignment is utilized to determine the equivalence of two entangled states and the connecting matrices between them within the same family.
1 Entanglement classification of pure system of 2×L×M×N×H1.1 Representation of five-partite statesEvery quantum state |ψ> of five-partite system 2×L×M×N×H may be formulated as
$|\psi >=\sum\limits_{i, m, n, l, h=1}^{2, M, NL, H}{{{\gamma }_{ilmnh}}|i, l, m, n, h>}, $ (1)
where γilmnhC are coefficients of the state in representative bases. Therefore, the quantum state |ψ> may also be represented as a high dimensional complex tensor ψ whose matrix elements are γilmnh. In this form, the SLOCC equivalence of two quantum states ψ′ and ψ[5] may be formulated as
$\psi \prime ={{A}^{(1)}}\otimes {{A}^{(2)}}\otimes {{A}^{(3)}}\otimes {{A}^{(4)}}\otimes {{A}^{(5)}}\psi , $ (2)
here A(1)C2×2, A(2)CL×L, A(3)CM×M, A(4)CN×N, and A(5)CH×H are invertible matrices of 2×2, L×L, M×M, N×N, and H×H, respectively, which act on the corresponding particles.
For the sake of clarity, the quantum state ψ may also be formulated as $\psi \dot{=}\left( _{{{\Gamma }_{2}}}^{{{\Gamma }_{1}}} \right)$, and
$\left( _{{{\Gamma }_{2}}}^{{{\Gamma }_{1}}} \right)=\left( \begin{align} & \left( \begin{matrix} {{\gamma }_{11111}} & {{\gamma }_{11112}} & \ldots & {{\gamma }_{111NH}} \\ {{\gamma }_{11211}} & {{\gamma }_{11212}} & \ldots & {{\gamma }_{112NH}} \\ \vdots & \vdots & \ddots & \vdots \\ {{\gamma }_{1LM11}} & {{\gamma }_{1LM12}} & \ldots & {{\gamma }_{1LMNH}} \\\end{matrix} \right) \\ & \left( \begin{matrix} {{\gamma }_{21111}} & {{\gamma }_{21112}} & \ldots & {{\gamma }_{211NH}} \\ {{\gamma }_{21211}} & {{\gamma }_{21212}} & \ldots & {{\gamma }_{212NH}} \\ \vdots & \vdots & \ddots & \vdots \\ {{\gamma }_{2LM11}} & {{\gamma }_{2LM12}} & \ldots & {{\gamma }_{2LMNH}} \\\end{matrix} \right) \\ \end{align} \right)\text{ },$ (3)
which is obtained by grouping the particles as 2×(L×M)×(N×H). Here ΓiCLM×NH, i.e., complex matrices of LM columns and NH rows (we assume LM≤NH without loss of generalities).
1.2 Entanglement families of 2×L×M×N×H systemIt is easy to observe that the quantum state of tripartite system of 2×LM×NH could also be represented in the same form as Eq.(3). Following the method[14], the SLOCC equivalence of two states ψ′ and ψ in Eq.(2) transforms into the following form
$\psi \prime =T\otimes P\otimes {{Q}^{T}}\psi ,$ (4)
and in the matrix pair representations, we have
$\left( _{\Gamma {{\prime }_{2}}}^{\Gamma {{\prime }_{1}}} \right)=\text{ }{{A}^{(1)}}\left( _{P{{\Gamma }_{2}}Q}^{P{{\Gamma }_{1}}Q} \right),$ (5)
here P=A(2)?A(3), QT=A(4)?A(5), T stands for matrix transposition, A(1) acts on the two matrices Γ1, 2, and P and Q act on the rows and columns of the Γ1, 2 matrices, respectively. The SLOCC equivalence of two 2×L×M×N×H quantum states in Eq.(5) has a form similar to the tripartite 2×LM×NH pure state[16]. The differences lie in the fact that P and Q are not only invertible operators but also direct products of two invertible matrices, A(2) and A(3), A(4) and A(5).
As in Ref.[14], we have the following proposition.
Proposition 1.1 If two quantum states of 2×L×M×N×H are SLOCC equivalent then their corresponding matrix-pairs have the same standard forms as those of 2×LM×NH under the invertible operators T∈C2×2, P∈CLM×LM, and Q∈CNH×NH.
This proposition serves as a necessary condition for the SLOCC equivalence of the entangled states of the 2×L×M×N×H system.
The transforming matrices T0, P0, and Q0 for the standard form can be obtained. Generally the transformation matrices for the standard form are not unique. For example, if T0, P0, and Q0 are the matrices that transform ψ into its standard form, then the following matrices will do likewise,
${{T}_{0}}\otimes S{{P}_{0}}\otimes {{({{Q}_{0}}{{S}^{-1}})}^{T}}\psi =\left( _{J}^{E} \right)\text{ ,}$ (6)
where SJS-1=J, i.e., [S, J]=0. The nonuniqueness comes from the symmetries of the standard forms.
1.3 Entanglement classification of a 2×L×M×N×H systemAs the main result of the paper, we present the following theorem.
Theorem 1.1 Two 2×L×M×N×H quantum states ψ and ψ′ are SLOCC equivalent if and only if their corresponding matrix-pair representations have the same standard forms of 2×LM×NH and the transformation matrices P and Q in Eq.(5) have the forms of direct products of two invertible matrices, i.e.,
$P={{A}^{(2)}}\otimes {{A}^{(3)}}\otimes \text{ }and\text{ }\otimes {{Q}^{T}}={{A}^{(4)}}\otimes {{A}^{(5)}},$
Proof If two 2×L×M×N×H quantum states ψ and ψ′ are SLOCC equivalent, we have
$\psi \prime ={{A}^{(1)}}\otimes {{A}^{(2)}}\otimes {{A}^{(3)}}\otimes {{A}^{(4)}}\otimes {{A}^{(5)}}\psi ,~$ (7)
here A(i) is an invertible matrix, i∈{1, 2, 3, 4, 5}. According to Proposition 1.1, we have
$\psi \prime =T\otimes P\otimes {{Q}^{T}},$ (8)
which means that ψ′ and ψ have the same standard form of 2×LM×NH. Combining Eq.(7) and Eq.(8) yields
$\begin{align} & {{T}^{-1}}{{A}^{(1)}}\otimes ({{P}^{-1}}({{A}^{(2)}}\otimes {{A}^{(3)}}))\otimes \\ & ({{({{Q}^{T}})}^{-1}}{{A}^{(4)}}\otimes {{A}^{(5)}})\psi =\psi \\ \end{align}$ (9)
As the unit matrices E?E?E must be one of the operators which stabilizes the quantum state ψ in the matrix-pair form, P and QT have the solutions of P=A(2)?A(3) and QT=A(4)?A(5).
If the two quantum states have the same standard form, then we will have Eq.(8). And if further P and Q have the decomposions of P=P1?P2 and Q=Q1?Q2 where P1CL×L, P2CM×M and Q1CN×N, Q2CH×H, ψ′ and ψ are SLOCC equivalent entangled states of a 2×L×M×N×H system. As matrices P and Q are invertible if and only if both P1, P2 and Q1, Q2 are invertible, thus
$\psi \prime =T\otimes ({{P}_{1}}\otimes {{P}_{2}})\otimes {{({{Q}_{1}}\otimes {{Q}_{2}})}^{T}}\psi .$ (10)
Thus the classification procedure may be stated as follows. First, we construct the standard forms of the 2×LM×NH system, which behave as the entanglement families of 2×L×M×N×H and the transforming matrices T0, P0, and Q0 are also obtained. If two quantum states transform into different families, they are SLOCC inequivalent. Otherwise, the connecting matrices of T, P, and Q may be obtained. And we can determine whether such matrices have the direct product form or not using the matrix realignment technique[14]. Finally, Theorem 1.1 provides the complete entanglement classification for the two entangled states. In the following, we give detailed examples for 2×2×2×2×2 quantum system as the application of our method.
2 Entanglement classification of 2×2×2×2×2 systemThere are totally 32 inequivalent families for the genuine 2×2×2×2×2 entangled classes according to our method. The genuine entangled families of 2×2×2×2×2 quantum states are listed as follows. The Nf=32 families include:two families from 2×2×2 system (GHZ and W)
|ψ>=|1(11)(11)>+|2(22)(22)>,
|ψ>=|1(11)(11)>+|1(22)(22)>+|2(11)(22)>,
two families from 2×2×3 system
|ψ>=|1(11)(11)>+|1(12)(12)>+|2(12)(21)>,
|ψ>=|1(11)(11)>+|1(12)(12)>+|2(11)(12)>+|2(12)(21)>,
one family from 2×2×4 system
|ψ>=|1(11)(11)>+|1(12)(12)>+|2(11)(21)>+|2(12)(22)>,
six families from 2×3×3 system
|ψ>=|1(11)(11)>+|1(12)(12)>+|2(21)(21)>,
|ψ>=|1(11)(11)>+|1(12)(12)>+|1(21)(21)>+|2(11)(12)>,
|ψ>=|1(11)(11)>+|1(12)(12)>+|2(12)(12)>+|2(21)(21)>,
|ψ>=|1(11)(11)>+|1(12)(12)>+|2(11)(12)>+|2(21)(21)>,
|ψ>=|1(11)(11)>+|1(12)(12)>+|2(12)(21)>+|2(21)(11)>,
|ψ>=|1(11)(11)>+|1(12)(12)>+|1(21)(21)>+|2(11)(12)>+|2(12)(21)>.
five families from 2×3×4 system
|ψ>=|1(11)(11)>+|1(12)(12)>+|1(21)(21)>+|2(21)(22)>,
|ψ>=|1(11)(11)>+|1(12)(12)>+|1(21)(21)>+|2(11)(12)>+|2(21)(22)>,
|ψ>=|1(11)(11)>+|1(12)(12)>+|1(21)(21)>+|2(11)(11)>+|2(21)(22)>,
|ψ>=|1(11)(11)>+|1(12)(12)>+|1(21)(21)>+|2(12)(21)>+|2(21)(22)>,
|ψ>=|1(11)(11)>+|1(12)(12)>+|1(21)(21)>+|2(11)(12)>+|2(12)(21)>+|2(21)(22)>.
The other 16 families come from the standard forms of a 2×4×4 system. Among the 16 standard forms of 2×4×4, there also exist the continuous entanglement families. That is, different entanglement families arise from the different values of the characterization parameters. We have proved that the standard forms, with the continuous parameters belonging to the same entanglement class of 2×4×4 system, correspond to different entanglement families of 2×2×2×2×2 system.
In addition, a necessary condition for the genuine entanglement of a 2×L×M×N×H system is that all dimensions of the five particles shall be involved in the entanglement, requiring that LM≤2NH (assuming the larger value of the dimensions to be LM). The scheme works better for higher dimensions, especially in the case of LM=NH.
3 SummariesWe have proposed a practical classification scheme for the entangled states of 2×L×M×N×H pure system under SLOCC. By using the standard forms of 2×LM×NH, the entangled families of 2×L×M×N×H are obtained. And the invertible local operators that connect two quantum states in the same family may also be constructed by using the matrix realignment technique. This provides a necessary and sufficient condition on the SLOCC equivalence of the two quantum states. As an application, detailed examples of the entanglement classification under SLOCC for five-qubit system is presented, which was not discussed systematically in the literature to the best of our knowledge.
References
[1] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Physical Review Letters, 1993, 70(13):1895–1899.DOI:10.1103/PhysRevLett.70.1895
[2] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J].Physical Review Letters, 1992, 69(20):2881–2884.DOI:10.1103/PhysRevLett.69.2881
[3] Mattle K, Weinfurter H, Kwiat P G. Dense coding in experimental quantum communication[J].Physical Review Letters, 1996, 76(25):4656–4659.DOI:10.1103/PhysRevLett.76.4656
[4] Ekert A K. Quantum cryptography based on Bell's theorem[J].Physical Review Letters, 1991, 67(6):661–663.DOI:10.1103/PhysRevLett.67.661
[5] Dür W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways[J].Physical Review A, 2000, 62(6):062314.DOI:10.1103/PhysRevA.62.062314
[6] Bastin T, Krins S, Mathonet P, et al. Operational families of entanglement classes for symmetric N-qubit states[J].Physical Review Letters, 2009, 103(7):070503.DOI:10.1103/PhysRevLett.103.070503
[7] Verstraete F, Dehaene J, De Moor B, et al. Four qubits can be entangled in nine different ways[J].Physical Review A, 2002, 65(5):052112.DOI:10.1103/PhysRevA.65.052112
[8] Osterloh A, Siewert J. Constructing N-qubit entanglement monotones from antilinear operators[J].Physical Review A, 2005, 72(1):012337.DOI:10.1103/PhysRevA.72.012337
[9] Osterloh A, Siewert J. Entanglement monotones and maximally entangled states in multipartite qubit systems[J].International Journal of Quantum Information, 2006, 4(3):531–540.DOI:10.1142/S0219749906001980
[10] Li X R, Li D F. Classification of general n-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix[J].Physical Review Letters, 2012, 108(18):180502.DOI:10.1103/PhysRevLett.108.180502
[11] Li X R, Li D F. Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states[J].Physical Review A, 2012, 86(4):042332.DOI:10.1103/PhysRevA.86.042332
[12] Wang S H, Lu Y, Gao M, et al. Classification of arbitrary-dimensional multipartite pure states under stochastic local operations and classical communication using the rank of coefficient matrix[J].Journal of Physics A: Mathematical and Theoretical, 2013, 46(10):105303.DOI:10.1088/1751-8113/46/10/105303
[13] Wang S H, Lu Y, Long G L. Entanglement classification of 2×2×2×d quantum systems via the ranks of the multiple coefficient matrices[J].Physical Review A, 2013, 87(6):062305.DOI:10.1103/PhysRevA.87.062305
[14] Sun L L, Li J L, Qiao C F. Classification of the entangled states of 2×L×M×N[J].Quantum Information Processing, 2015, 14(1):229–245.DOI:10.1007/s11128-014-0828-5
[15] Cheng S, Li J L, Qiao C F. Classification of the entangled states of 2×N×N[J].Journal of Physics A: Mathematical and Theoretical, 2010, 43(5):055303.DOI:10.1088/1751-8113/43/5/055303
[16] Li J L, Qiao C F. Classification of the entangled states 2×M×N[J].Quantum Information Processing, 2013, 12(1):251–268.DOI:10.1007/s11128-012-0370-2
[17] Li X K, Li J L, Liu B, et al. The parametric symmetry and numbers of the entangled class of 2×M×N system[J].Science China Physics, Mechanics and Astronomy, 2011, 54(8):1471–1475.DOI:10.1007/s11433-011-4395-9
[18] Li J L, Li S Y, Qiao C F. Classification of the entangled states L×N×N[J].Physical Review A, 2012, 85(1):012301.DOI:10.1103/PhysRevA.85.012301
[19] Zhang T G, Zhao M J, Li M, et al. Criterion of local unitary equivalence for multipartite states[J].Physical Review A, 2013, 88(4):042304.DOI:10.1103/PhysRevA.88.042304
[20] Van Loan C F. The ubiquitous Kronecker product[J].Journal of Computational and Applied Mathematics, 2000, 123(1/2):85–100.
[21] Horn R A, Johnson C R. Topics in Matrix Analysis[M].Cambridge: Cambridge University Press, 1991.
[22] Chen K, Wu L A. A matrix realignment method for recognizing entanglement[J].Quantum Information and Computation, 2003, 3(3):193–202.


相关话题/方案 原文 科学学院 大学物理 中国科学院

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于感兴趣区域的HEVC会话视频容错编码新方案
    和智涛,张灿,陈德元中国科学院大学电子电气与通信工程学院,北京1014082017年05月04日收稿;2017年05月31日收修改稿基金项目:国家自然科学基金(61571416,41776204)和中国科学院大学校所合作基金(Y65201GY00)资助通信作者:张灿,E-mail:czhang@uc ...
    本站小编 Free考研考试 2021-12-25
  • 面向蜂窝物联网的RB动态预分配调度方案
    金叶奇1,2,郑敏1,谭冲1,刘洪11.中国科学院上海微系统与信息技术研究所,上海200050;2.中国科学院大学,北京1000492018年5月24日收稿;2018年7月16日收修改稿基金项目:国家自然科学基金(61401445)资助通信作者:金叶奇,E-mail:yeqi.jin@mail.si ...
    本站小编 Free考研考试 2021-12-25
  • 一种适用于高轨空间的GNSS矢量跟踪方案设计*
    基于全球卫星导航系统(GNSS)的高轨航天器自主导航技术具有重要的应用价值[1]。然而,不同于地面及中、低轨用户,高轨航天器的轨道高度要高于GNSS星座,因此高轨空间GNSS信号传播不仅会受到地球遮挡影响,而且信号传播距离及相应的传播损耗还会显著增加,使得信号可见性和信号品质变差[2-3]。因此,高 ...
    本站小编 Free考研考试 2021-12-25
  • 深海采矿扬矿管的浮力提升方案分析*
    随着现代工业和人类活动消耗资源增加,有限的陆地资源已难以支持人类社会未来长久的可持续发展,作为潜在的资源宝库[1],海底资源的开发利用越来越受到人们的关注和重视[2]。海底集矿机与扬矿管组合的深海采矿系统凭借其高效率和可靠性成为当代深海采矿的主流系统。在海底资源开发系统中,扬矿管是一段长而柔软的管线 ...
    本站小编 Free考研考试 2021-12-25
  • 空地量子密钥分发网络中数据协调方案*
    量子密钥分发(QuantumKeyDistribution,QKD)技术是量子通信中发展比较成熟的一个分支,目前研究人员已经在一些地区设计实验了一些节点数量有限的小型化QKD网络,其中基于量子卫星的QKD网络可以极大地增加通信距离。虽然量子卫星克服了远距离光子损耗的问题,但是通信的实时全方位覆盖和多 ...
    本站小编 Free考研考试 2021-12-25
  • 基于地面基站的定位系统构建和方案*
    随着社会的发展进步及信息化时代的到来,人们的工作、生活等社会活动越来越依赖于位置信息,位置服务逐渐成为大家关注的焦点。目前室外定位导航技术大多依赖于卫星导航系统,经过几十年的发展,到现在已经比较成熟,如今在运载体导航、人员跟踪定位及紧急救助服务等方面发挥着巨大的作用[1],并且实现了广域精准定位,广 ...
    本站小编 Free考研考试 2021-12-25
  • 桁架拓扑优化几何稳定性判定法和约束方案比较*
    桁架结构拓扑优化是结构优化领域的一个重要分支。结构拓扑优化的很多经典问题都是从桁架结构优化中出现并逐步得到解决的,一些新的结构拓扑优化方法往往也通过求解典型的桁架拓扑优化算例进行可行性和有效性的验证。优化过程中桁架拓扑会发生变更,这是拓扑优化不同于尺寸优化的一个显著特点。虽然也有****研究进化类的 ...
    本站小编 Free考研考试 2021-12-25
  • 基于切比雪夫混沌映射和生物识别的身份认证方案*
    云计算是一个新兴的计算领域,可简单理解成提供存储、计算、各种服务和应用程序的技术。目前主要有3种云服务模型:基础设施即服务(IaaS)、平台即服务(PaaS)、软件即服务(SaaS)。云计算有各种优势,可以实现随时随地、随需应变地从可配置资源共享池中获取所需资源,使管理资源的工作量和与服务提供商的交 ...
    本站小编 Free考研考试 2021-12-25
  • 基于FPGA的高光谱异常目标检测RXD算法加速方案*
    高光谱遥感(hyperspectralremotesensing)兴起于20世纪80年代,是一种融合光谱学理论与成像技术的前沿技术[1]。相比于传统的单波段或多光谱图像,高光谱遥感图像拥有更为精细的光谱信息,具有“图谱合一”的特性和优势[2],将反映目标辐射属性的光谱信息和包含目标二维空间的图像信息 ...
    本站小编 Free考研考试 2021-12-25
  • GBAS基准站布设方案设计与评估方法*
    地基增强系统(GroundBasedAugmentationSystem,GBAS)利用位置已知的地面基准站,基于局域差分校正技术,为机场空域内的飞机提供精密进近服务,可以满足民航领域对卫星导航系统的应用需求。目前,国际上很多机场已完成或正在进行GBAS开发与建设工作。德国法兰克福机场、瑞士苏黎世机 ...
    本站小编 Free考研考试 2021-12-25