0 引言
二十一世纪世界农业面临粮食安全与资源环境协同发展的巨大挑战。据预测,2050年全世界人口总数将超过90亿,相对应的粮食产量需要翻一番才能满足人类的需求[1,2]。2033年我国粮食生产需要增长35%才能满足我国人口增长及人均需要增长的需求[3]。保证粮食需求决定了农业在我国国民经济中的首要地位。玉米、小麦和水稻作为我国三大主要粮食作物,2016年的播种面积分别达到367.7×105、241.9×105和301.8×105 hm2,总播种面积占全国粮食作物总播种面积的80.6%(图1-A)[4];2016年的产量分别达到21 955×104、12 885×104和20 708×104 t,总产量达到全国粮食总产的90%以上(图1-B)[4]。因而,玉米、小麦和水稻三大粮食作物在保障我国粮食安全中具有重要的地位和作用。显示原图|下载原图ZIP|生成PPT
图1我国三大粮食作物的总播种面积及总产量
-->Fig. 1Total sown area and total yield of the three major cereal crops in China
-->
保障当前和未来粮食安全同时减少粮食生产带来的巨大环境影响成为农业可持续发展的必然要求,科学施肥是保证高产高效及减少环境污染的重要措施之一。然而,当前我国三大粮食主产区的施肥问题仍然比较突出。由于社会经济变革导致农业劳动力短缺,我国粮食生产中过量施肥、不合理施肥的现象仍然普遍存在。不仅造成肥料利用率低,同时导致地下水硝酸盐污染[5]、水体富营养化[6]和温室气体排放[7,8]等问题,严重影响了农业生态环境和人类健康[9,10]。张福锁等[11]研究认为我国三大粮食作物的肥料利用率远低于国际水平,与20世纪80年代相比均呈下降趋势。作物高产与养分高效的本质是养分供应的时空有效性与作物的需求同步[12,13,14],即供肥必须与作物的养分吸收规律相吻合,实现根层养分供应与高产作物需求在数量上匹配、时间上同步、空间上一致,这就要求在作物生产中必须进行多次施肥,这与当前我国农业劳动力短缺的社会现实是相矛盾的,已有的科学施肥技术因劳动力不足很难在我国大面积粮食生产中发挥作用。因此,当前我国的粮食生产迫切需要探索一套既省工节本又稳定高产的简化施肥技术,在满足作物生长的前提下,简化施肥管理,以实现减少劳动力投入,同时提高养分利用效率,协调作物高产与环境保护的目的。一次性施用控释肥不仅能满足作物整个生育期的养分需求,而且能简化操作和减少环境污染,具有重要的环境效益和经济效益[15,16],因而开展一次性施肥技术的研究,可为我国粮食生产的施肥转型提供新思路,为保障我国农村劳动力短缺现状下的粮食安全提供技术支撑,对保障国家粮食安全以及农业的可持续发展具有重大意义。
1 一次性施肥技术的概念
进行简化栽培已成为当前我国粮食生产的必然需求。简化栽培是运用现代农业机械代替人工操作,简化种植管理,减少田间作业次数,将农机和农艺技术结合以减轻劳动强度,实现农业生产轻便简捷、节本增效的施肥与耕作栽培方法[17]。简化栽培是与传统复杂的手工操作生产相对应的概念[18,19,20],是建立在当前农业发展的水平之上的,因此,简化栽培技术是动态和不断发展的,其具体的管理措施与保障技术等都随当前农业的发展水平而不断变化、提升和完善,但不管如何变化,简化栽培都要满足在实现作物高效生产的前提下,获得高产、优质、生态、安全和可持续发展[18]。施肥技术是作物栽培体系中的重要组成部分,是作物高产的根本保证。作为简化栽培发展的高级形式,一次性施肥技术是指小麦、玉米等种子直播作物在播种的同时将肥料施入,水稻等移栽作物在插秧移栽或整地时将肥料施入,整个生育期内不需要再次追肥,实现作物不减产或小幅度增产,达到经济效益、环境效益和社会效益协同提高的目标。与将普通肥料作为底肥或口肥的“一炮轰”施肥方式不同,一次性施肥技术是以作物专用控释肥料为支撑,与农业机械同步实施,同时可将传统多次施肥习惯进行简化,实现大幅节省劳动力成本[21]。控释肥料具有传统速效肥料不可比拟的优势[22]。依托新型肥料为载体的施肥技术不仅能简化施肥过程,而且还能提高肥料利用率,降低施肥量[23]。
对于不同的作物,一次性施肥技术的管理方式也不完全相同。玉米一次性施肥技术是根据土壤肥力情况和玉米需肥特性确定最佳的施肥量,在整地时将玉米全生育期所需的专用缓控释氮肥配合磷、钾肥作底肥(或播种时作基肥)一次性施入,整个生育期内不再追肥的方法。小麦一次性施肥技术是指播种期根据小麦不同生育阶段对各营养成分的需求特点,结合当地的气候特征和土壤条件,以小麦目标产量为基础,按科学施肥理论和肥料改型改性技术,采用缓控释氮肥掺混磷钾等其他养分的方法,将小麦整个生育期所需的养分,在播种的同时一次性施入的技术[24]。水稻一次性施肥技术是指水稻从移栽到收获整个生育期只施肥一次,依据水稻高产稳产对肥料养分的动态需求以及结合当地的气候特征和土壤条件进行科学配方,将专用缓控释肥在水稻移栽前作基肥结合耕作措施全层施用,一次施用无需追肥,就能满足整个水稻生长期对养分的需求,同时实现增产增收的一项新技术[25,26]。
一次性施肥技术与农机结合是简化管理、减少生产环节以及进行大面积作业的重要措施。我国粮食主产区可实现一次性施肥技术的农业生产方式主要包括以下三类:(1)一次性基施控释氮肥,将控释氮肥与配套农机相结合,通过专用控释肥实现作物全生育期的养分需求,不仅省工省力、简化操作,而且还能提高肥料利用率、减少环境污染[15,16];(2)氮肥减施技术,通过氮肥减量施用技术探寻作物氮素需求与土壤氮素供应之间的平衡关系,以实现农业高产、高效和持续健康的发展,已被国内外广泛使用[27,28,29]。本文所述氮肥减施技术是指通过控释肥等新型肥料的应用实现氮肥施用量的进一步优化;(3)化学调控技术,施肥时通过添加化学调控剂(如硝化抑制剂、脲酶抑制剂等)调控养分释放和进行简化操作,以解决普通肥料肥效短以及肥料利用率低的问题。
2 一次性施肥技术在主要粮食作物上的应用
缓控释肥料是一次性施肥技术的重要载体,其中控释肥料又是缓释肥料的高级形式[30,31,32]。目前关于控释肥的研究工作主要集中在包膜材料的选用、研制和控释机制的研究上[33,34]。国际上,美日两国是目前研究控释肥及其应用技术最成熟的国家,美国也是最先研制出控释氮肥的国家。美国生产的控释肥在世界上具有较广阔的应用范围,以硫包膜、聚合物包膜和生物降解膜为主;日本的控释肥包膜技术较为先进,以高分子包膜肥料为主;欧洲发达国家关于控释肥的研究更侧重于微溶性含氮化合物包膜[34,35,36,37]。由于控释肥的价格是普通肥料的3—8倍,国际上控释肥主要使用在花卉、水果、草坪等经济价值较高的植物上。随着国外控释肥研究技术的不断进步,控释肥的使用逐渐推广到了水稻、玉米、小麦、马铃薯、棉花和蔬菜等大田作物和经济作物上[38]。我国缓控释肥的研究开展较晚,真正形成产品产业化也仅有10余年的时间[39,40]。同发达国家相比,我国缓控释肥料的研发水平还较低,但发展较为迅速,特别是2016年,由金正大生态工程集团股份有限公司主导制定的“控释肥料”国际标准的发布,极大提升了我国控释肥料行业的国际话语权,目前在包膜材料以及包膜工艺的研究和开发上均取得了一定的成果[41]。据统计,2005—2015年,我国缓控释氮肥的总生产量为2 100万吨,总推广面积达到3 300万公顷[42]。缓控释肥及其应用技术的研究对一次性施肥技术的发展具有重要意义。2.1 一次性施肥技术在玉米上的应用
经过60年的不懈努力,我国玉米栽培的目标已由高产为主向高产、高效、生态、安全等多目标协同发展,近年来玉米生产立足于农机农艺结合,逐渐形成了不同主产区的全程机械化生产技术规范,并且实现产量和效率的协同提高[43]。一次性施肥技术因操作简便、高效、生态、节肥和省工等特点而被广泛应用于农业生产,并在提高作物产量、氮肥利用率、培肥地力以及降低环境污染等方面取得了明显的效果。赵贵哲等[44]研究表明,与农民传统施肥方式相比,一次性基施控释肥可显著提高玉米产量16.6%,与农家肥混施增产率高达56.6%。许海涛等[45]研究表明,一次性基施控释肥有利于促进夏玉米叶面积增大和根系增多,改善玉米的产量性状,提高千粒重和产量。与掺混肥(尿素+二铵+氯化钾)相比,一次性基施控释肥明显促进玉米对氮素的吸收利用,提高氮肥当季利用率38.1%—86.6%,同时降低氨挥发速率40%—96.5%,减少氨挥发损失量39.2%—81.3%[46]。胡小康等[47]的研究结果表明,一次性基施控释肥能够显著降低夏玉米季土壤N2O的排放,N2O排放系数(0.30%)显著低于分次施用尿素处理(1.15%),生长季内土壤排放的N2O总量显著降低73.4%。张婧等[48]的研究结果表明,一次性基施控释氮肥可有效减少冬小麦/夏玉米轮作系统土壤N2O排放,较普通尿素分次施用相比N2O年排放总量显著减少22.8%。LI等[49]的研究表明,与普通尿素分次施用相比,一次性基施控释氮肥可使0—1.3 m土层的氮素淋溶显著降低53%。与碳酸氢铵和普通尿素相比,一次性基施控释氮肥可有效地降低氮素径流损失15%—25%[50]。对一次性基施缓控释肥在我国玉米主产区上的应用效果进行了系统总结,全国大范围的试验结果表明与农民传统施肥相比,一次性基施缓控释肥可使玉米产量、氮肥利用率平均提高8.3%、37.5%,使氨挥发、N2O排放、氮淋溶和氮径流平均降低58.6%、24.5%、25.7%和22.4%[51]。上述研究表明一次性基施缓控释肥不仅协同提高了玉米产量和氮肥利用率,而且还减少了活性氮的损失,改善了农田环境。全量或减量施用缓控释肥在玉米上均具有增产效果[52,53]。在减氮20%的情况下,玉米一次性基施控释氮肥仍可比普通肥料增产18.3%[53]。在减少1/3的纯氮用量的情况下,施用控释尿素仍可维持夏玉米产量不下降[54]。索东让等[55]的研究表明,玉米一次性基施控释氮肥可以节约氮肥25%,与普通尿素相比,氮肥利用率提高16.5%。彭正萍等[56]在河北省的研究表明,控释氮肥减施20%较优化施肥(尿素)处理相比可使玉米增产2.7%,氮肥利用率增加5.0%,同时减少氮素表观损失76.6%。表明控释氮肥减量施用可在保证作物产量的同时,提高肥料利用率,实现经济效益、社会效益和生态效益的最大化[29]。史桂芳等[57]研究指出,综合考虑玉米产量、氮素利用效率和经济效益,缓控释肥减氮20%可以达到省工、高产、高效和节肥的目的,适宜在华北夏玉米主产区推广应用。
除缓控释肥以外,向普通尿素中添加硝化抑制剂或脲酶抑制剂也可实现玉米一次性施肥,并且提高氮肥利用率和产量。2015年我国混合硝化抑制剂和脲酶抑制剂的氮肥生产量达到了140万吨,应用面积达到200万公顷[42]。化学调控技术已逐渐成为提高氮肥利用率和减少活性氮损失的关键策略。研究表明,添加硝化抑制剂可使玉米产量较农民习惯施肥增加7.1%,较优化施肥(尿素)增加8.6%,同时提高氮肥利用率5.0%和减少氮素表观损失53.0%[56]。夏龙龙等[51]通过文献综述的方法总结了硝化抑制剂与脲酶抑制剂在我国玉米主产区上的应用效果,研究发现添加硝化抑制剂使玉米产量和氮肥利用率分别提高6.5%和23.9%,同时使N2O排放显著减少38.9%,但对农田氨挥发无显著影响;添加脲酶抑制剂使玉米的产量和氮肥利用率分别提高6.1%和40.7%,NH3、N2O的排放分别减少46.1%和37%。此外,林海涛等[58]的研究结果表明氮肥与硝化抑制剂配施可显著增加玉米的产量、氮肥偏生产力以及农学效率,同时可降低纯氮用量60 kg·hm-2,增收346元/hm2,实现了玉米生产的节本增效。
2.2 一次性施肥技术在小麦上的应用
近年来缓控释肥的研究和应用实践证明,一次性施用缓控释肥能够提高肥料利用率,改善作物生长后期的供肥能力,促进作物增产[59]。张春伦等[60]研究表明,在冬小麦上,一次性基施缓控释肥比分次施用普通尿素增产18.3%—27.8%。汪强等[61]报道,一次性基施缓控释肥可促进小麦产量增加10.0%—11.2%,氮肥利用率提高6.2%—11.6%。彭正萍等[56]在河北省的研究表明,一次性基施控释氮肥使小麦产量较农民习惯施肥相比增加5.7%,氮肥利用率增加53.7%;与优化施肥相比增产3.1%,氮肥利用率提高35.5%。王茹芳等[62]研究表明,与普通尿素相比,一次性基施缓控释肥能使冬小麦产量提高23.8%,小麦籽粒的粗蛋白、氨基酸、湿面筋和总糖含量分别增加3.5%、21.3%、4.6%和43.8%。刘蕊等[63]研究表明,控释尿素的养分控制释放性能显著促进了小麦的生长及对氮素的吸收,产量、氮肥利用率较普通尿素分别提高13.1%—31.7%、48.9%—59.3%;与普通尿素相比,控释尿素使土壤氨挥发速率峰值有效推迟3—5 d,降低氨挥发速率峰值44.4%—69.5%,减少整个小麦季氨挥发累积损失量39.3%—52.1%。肖强等[64]通过冬小麦-夏玉米轮作3年6季的田间试验的研究表明,缓控释肥料能提高小麦氮素利用率2.8—23.4百分点、玉米氮素利用率1.0—21.6百分点,土壤-作物系统的氮素损失比普通化肥配施处理减少2.0—24.9百分点。徐钰等[65]的研究表明一次性基施控释肥可使N2O排放显著降低22.4%—35.5%,CH4的吸收量增加9.3%—44.2%,一次性基施控释肥能够抵消由于秸秆还田引起的N2O增排。利用文献综述和数据挖掘的方法总结和分析了一次性基施缓控释肥在我国小麦主产区的应用效果,一次性基施缓控释肥较农民习惯施肥相比可使小麦的产量、氮肥利用率分别提高6.4%和30.2%,使NH3、N2O排放分别减少33.8%、34.9%,但对麦田氮素淋溶和径流的影响并不显著[51]。综合产量、效益、养分效率和生态环境等方面,控释氮肥减量施用技术在小麦上可以实现一次性施肥,具有简化生产环节、节本增收、提高养分利用和减少环境污染等优势。朱晓霞等[66]在鲁西地区的研究结果表明,与农民习惯施氮(300 kg·hm-2)相比,在优化施氮的基础上缓控释肥减氮20%(168 kg·hm-2)能够保证小麦稳产,其氮素回收率、氮肥偏生产力分别提高19.7%和34.3%。彭正萍等[56]在河北省的研究结果表明,控释氮肥减氮20%与农民习惯施肥相比使小麦产量增加7.1%,与优化施肥相比增产4.5%,氮肥利用率提高12.2%,且表观损失氮减少57.3%。谭德水等[67]研究表明,与普通尿素分次施用相比,一次性基施控释氮肥使小麦生长季N2O排放显著减少22.7%,同时降低小麦收获期土壤硝态氮残留,从而减少了氮向土壤深层淋溶和向大气排放的环境风险。张英鹏等[68]在山东棕壤上的研究发现一次性施用缓控释肥减少37%的氮肥用量仍可保证小麦获得高产,并且显著提高氮肥利用率以及降低硝态氮的淋溶风险。表明氮肥减量施用技术可实现小麦节本、稳产、增效以及环境友好的目标,与传统施肥方式相比具有较大的优势,有望在我国冬麦区全面推广应用[67]。
与农民习惯施肥相比,添加硝化抑制剂小麦产量增加13.4%;与优化施肥处理相比,添加硝化抑制剂小麦增产10.6%,氮肥利用率提高16.4%,表观损失氮减少76.7%[56]。添加硝化抑制剂能够显著抑制旱地冬小麦季N2O排放对施肥的响应,并能在普通尿素分次施用的基础上提升产量10.9%,同时降低单位产量N2O排放量22.1%[69]。对化学调控技术在我国小麦主产区上的应用效果进行了系统的总结,研究发现与农民传统施肥习惯相比,添加硝化抑制剂可使小麦产量和氮肥利用率分别提高12.3%和31.6%,同时使N2O排放、氮淋溶和氮径流分别减少31.8%、41.8%和46.1%,但对麦田NH3排放无显著影响;添加脲酶抑制剂使小麦的产量和氮肥利用率分别提高5.8%和25.4%,使NH3、N2O的排放分别减少51.2%、11.9%[51]。
2.3 一次性施肥技术在水稻上的应用
国际上美国、欧洲和澳大利亚等发达国家的水稻种植以机械直播为主[70,71]。美国水稻种植80%采用机械旱直播,澳大利亚80%采用飞机撒播的方式,大型农业机械与飞机的应用可以快速地提高工作效率,同时机械化耕作、施肥、除虫以及收获也保证了水稻的高效种植[72]。日本人多地少,地块小、分散,日本政府对粮食生产和施肥技术非常重视,不断研究、开发和推广了大量适合本国农业生产的新技术和新机具,使日本一次性施肥技术达到了世界领先水平。我国水稻种植区域跨度大,研发适合我国区域生产条件的一次性施肥技术,同时提高水稻生产机械化水平是实现水稻高产高效的重要途径,也是解决劳动力短缺、提高劳动生产率的关键。我国水稻机械化以机械插秧和机械直播为主,针对目前我国水稻生产中面临的问题,水稻一次性施肥技术不断发展,并在大面积应用上取得了较好的应用效果。研究表明,采用同步开沟起垄水稻机械化穴播技术,与人工撒播相比平均增产16.7%,与机械插秧相比增产4.1%—27.0%;与人工插秧、人工抛秧和机械插秧相比,分别可降低生产成本4.4%、7.7%和7.9%[72]。采用60 d释放期的缓控释肥可促进水稻对氮素的吸收和减少氮肥用量,实现早稻和晚稻的一次性施肥[73]。沈寅寅等[74]报道,水稻缓控释肥养分释放速度平稳,能有效减少无效分蘖,提高水稻成穗率。纪雄辉等[75]的研究表明,控释肥料一次性基施可提高早、晚稻产量10.3%—18.3%。FU等[76]的研究表明,与普通尿素相比,一次性基施控释肥料可使早稻的肥料利用率提高13.6%—86.4%,晚稻提高100%— 164%。控释肥料能够有效地控制氮素的释放,降低氮素的氨挥发损失,降低稻田氧化亚氮的排放,提高氮素利用率,减少因氮素损失对环境造成的污染[75]。郑圣先等[77]的研究结果表明,一次性基施控释氮肥的氨挥发、淋失和硝化-反硝化的损失量分别比普通尿素处理下降54.0%、32.5%和94.2%。王春枝等[78]等研究表明,缓控释肥可明显抑制NH3和NOx的挥发损失。邹洪涛等[79]研究了不同膜质材料覆膜制成的包膜肥料对抑制氮素挥发的影响,结果表明,与对照相比,包膜肥料的氮素挥发总量减少了18.1%—26.0%。周亮等[80]研究表明,与普通尿素处理比较,氨挥发累积损失量早稻控释氮肥处理比普通尿素处理低43.0%—54.3%,晚稻降低了27.8%—35.3%。通过整合分析的方法对一次性基施缓控释肥在我国水稻主产区的应用效果进行了总结,与传统施肥方式相比,一次性基施缓控释肥水稻的产量和氮肥利用率提高了9.3%和36.6%,NH3、N2O排放、氮素淋溶和径流分别降低69.1%、48.9%、15.3%和43.2%[51]。
在减少20%施氮量的情况下,一次性基施缓控释肥较分次施用普通尿素相比可使水稻产量持平或略增加,氮肥利用率显著提高2.3%—20.4%[81]。陈建生等[82]的研究表明,一次性施用水稻控释肥较常规施肥相比在纯氮、磷分别减少22.1%和21.8%的情况下,仍能实现增产8.2%。控释氮肥减量施用可以在维持水稻产量不降低的情况下平均节氮20%,同时提高氮肥利用率以及减少稻田氮素损失,实现水稻节本增收、稳产高效以及环境友好的可持续生产。
与传统施肥方式相比,添加硝化抑制剂可使早稻产量增加12.4%,氮肥利用率、氮肥农学利用率、氮肥偏生产力分别增加27.3%、21.9%、10.3%,经济效益增加2 615元/hm2;使晚稻增产9.9%,氮肥利用率、氮肥农学利用率、氮肥偏生产力分别增加78.3%、27.1%、10.0%,经济效益增加2 528元/hm2[83]。周旋等[84]研究表明,与普通尿素相比,添加脲酶抑制剂可使水稻增产22.2%—22.8%,经济效益提高24.6%— 25.2%;添加硝化抑制剂使水稻增产20.1%,经济效益提高22.2%。对化学调控技术在我国水稻主产区上的应用效果进行了全面总结,研究发现与农民传统施肥相比,配施硝化抑制剂可使水稻产量和氮肥利用率分别提高11.4%和24.4%,使N2O排放和氮淋溶分别降低51.0%和31.6%,但使稻田NH3的排放增加34.7%;配施脲酶抑制剂使水稻产量显著增加11.1%,NH3和N2O排放分别降低46.7%和45.2%,但对氮肥利用率无显著影响[51]。
养分供应与作物需求的时空匹配是实现三大粮食作物一次施肥技术的关键,针对不同作物、土壤类型和气候条件,研发与三大粮食作物养分需求相匹配的系列缓控释肥料,研制适宜当地种植条件和一次性施肥配套的农业机械,形成一次性施肥关键技术指标,在全国主要粮食主产区实现作物稳产高产、资源高效、农民增收、生态安全和农业的可持续发展(图2)。
显示原图|下载原图ZIP|生成PPT
图2三大粮食作物一次性施肥技术
-->Fig. 2The diagram of one-off fertilization technique for three major cereal crops
-->
3 结论
一次性施肥技术实现了三大粮食作物在整个生育期内只需施肥一次,既能实现根层养分供应与作物养分需求在数量、时间和空间上相吻合,又能简化农事操作、节省劳动力和降低生产成本。农业生产中一次性施肥技术因作物品种、区域气候类型和土壤条件的不同而产生不同的应用效果。一次性施肥技术为我国劳动力短缺情况下实现粮食可持续生产提供了一个有效途径。4 展望
一次性施肥技术作为一项高产高效、环境友好和节约劳动力的农业生产技术,在我国未来农业的发展中具有良好的应用前景。然而,目前一次性施肥技术在农业生产中仍然存在一些不足:(1)缓控释肥存在养分释放不能做到完全与作物的需肥规律相一致;(2)缓控释肥的市场价格相对较高,限制了其在大田作物上的推广;(3)我国机械化水平仍然较低,农业机械装备总量不足,结构不合理,地区之间农业机械化水平严重不平衡;(4)现有农业机械缺少与一次性施肥技术的有效结合,施肥作业的效果不能适应不同土壤条件、不同种植方式和作物不同生长阶段的需求;(5)对一次性施肥技术在田间的应用效果缺乏科学系统的评价(经济效益、社会效益、环境效益及长远效益等方面)。针对上述问题,今后的工作需要从以下几个方面展开:(1)开展缓控释肥养分释放机理的研究,研发与作物养分需求相匹配的专用缓控释肥;(2)研发低成本的包膜材料,降低缓控释肥生产的成本和肥料价格,使其在更多的作物上应用和推广;(3)根据一次性施肥技术需求研发相应的农业机械,特别是发展中小型多功能农业机械,以适应多生态条件、多耕地类型的耕种与收获;(4)进行农机农艺融合,建立我国区域一次性施肥技术体系,形成区域技术规程和模式,将成为我国一次性施肥技术发展的重要方向;(5)通过田间试验和跟踪调查等方式,综合评价一次性施肥技术在不同作物主产区的应用效果。
The authors have declared that no competing interests exist.
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1] | ., Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here. 漏 2010 American Association for the Advancement for Science. All Rights Reserved. |
[2] | ., |
[3] | ., Abstract China has to feed 20% of the global population with only about 5% of the planet's water resources and 7% of its arable land. With such limited natural conditions, however, China's grain production has increased from about 200 kg per capita in 1949 to about 400 kg in the early 1990s. Hunger as a social problem has largely disappeared after being prevalent in China for several thousand years with the rise and decline of dynasties. This achievement has been accompanied by a 2.5-fold increase in the population and a 4.5-fold increase in total grain production. Although total cropped land has increased slightly in some areas, land used for cropping has decreased from 0.18 hectare per capita in the 1950s to less than 0.1 hectare per capita today. Apparently, yield increase or improved land productivity is the major contributor to the increase of food production per capita. What are the major reasons for the unprecedented achievement in China's food production? Political decisions, good or bad, on land distribution and ownership changes, have caused unusual fluctuation in grain production. Technical progress, however, has maintained a long-term increasing trend. The semi-dwarf cultivars of rice and wheat, the use of heterosis in rice and maize, and the alleviation of salinized soil stress in the major grain-producing areas have all played significant roles in increasing China's food production capability. |
[4] | |
[5] | ., The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha 611 on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat ( Triticum aestivum L.)–maize ( Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple ( Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha 611, with residual soil nitrate-N after harvest amounting to 221–275, 1173 and 613 kg N ha 611 in the top 90 cm of the soil profile and 213–242, 1032 and 976 kg N ha 611 at 90–180 cm depth in wheat–maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs. |
[6] | ., |
[7] | ., Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China's use of N fertilizer, we quantify the carbon footprint of China's N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20-63%, amounting to 102-357 Tg CO2-eq annually. Such reduction would decrease China's total GHG emissions by 2-6%, which is significant on a global scale. |
[8] | ., Anthropogenic emissions of reactive nitrogen to the atmosphere and water bodies can damage human health and ecosystems. As a measure of a nation鈥檚 contribution to this potential damage, a country鈥檚 nitrogen footprint has been defined as the quantity of reactive nitrogen emitted during the production, consumption and transportation of commodities consumed within that country, whether those commodities are produced domestically or internationally. Here we use global emissions databases, a global nitrogen cycle model, and a global input-output database of domestic and international trade to calculate the nitrogen footprints for 188 countries as the sum of emissions of ammonia, nitrogen oxides and nitrous oxide to the atmosphere, and of nitrogen potentially exportable to water bodies. Per-capita footprints range from under 7 kg N yrin some developing countries to over 100 kg N yrin some wealthy nations. Consumption in China, India, the United States and Brazil is responsible for 46% of global emissions. Roughly a quarter of the global nitrogen footprint is from commodities that were traded across country borders. The main net exporters have significant agricultural, food and textile exports, and are often developing countries, whereas important net importers are almost exclusively developed economies. We conclude that substantial local nitrogen pollution is driven by demand from consumers in other countries. |
[9] | ., |
[10] | ., Reactive nitrogen (Nr) plays a central role in food production, and at the same time it can be an important pollutant with substantial effects on air and water quality, biological diversity, and human health. China now creates far more Nr than any other country. We developed a budget for Nr in China in 1980 and 2010, in which we evaluated the natural and anthropogenic creation of Nr, losses of Nr, and transfers among 14 subsystems within China. Our analyses demonstrated that a tripling of anthropogenic Nr creation was associated with an even more rapid increase in Nr fluxes to the atmosphere and hydrosphere, contributing to intense and increasing threats to human health, the sustainability of croplands, and the environment of China and its environs. Under a business as usual scenario, anthropogenic Nr creation in 2050 would more than double compared with 2010 levels, whereas a scenario that combined reasonable changes in diet, N use efficiency, and N recycling could reduce N losses and anthropogenic Nr creation in 2050 to 52% and 64% of 2010 levels, respectively. Achieving reductions in Nr creation (while simultaneously increasing food production and offsetting imports of animal feed) will require much more in addition to good science, but it is useful to know that there are pathways by which both food security and health/environmental protection could be enhanced simultaneously. |
[11] | . , 总结了近年来在全国粮食主产区进行的1 333个田间试验结果,分析了目前条件下中国主要粮食作物水稻、小麦和玉米氮磷钾肥的偏生产力、农学效率、肥料利用率和生理利用率等,发现水稻、小麦和玉米的氮肥农学效率分别为10.4 kg kg-1、8.0 kg kg-1和9.8 kg kg-1,氮肥利用率分别为28.3%、28.2%和26.1%,远低于国际水平,与20世纪80年代相比呈下降趋势。造成肥料利用率低的主要原因包括高产农田过量施肥,忽视土壤和环境养分的利用,作物产量潜力未得到充分发挥以及养分损失未能得到有效阻控等。要大幅度提高肥料利用率就必须从植物营养学、土壤学、农学等多学科联合攻关入手,充分利用来自土壤和环境的养分资源,实现根层养分供应与高产作物需求在数量上匹配、时间上同步、空间上一致,同时提高作物产量和养分利用效率,协调作物高产与环境保护。 ., 总结了近年来在全国粮食主产区进行的1 333个田间试验结果,分析了目前条件下中国主要粮食作物水稻、小麦和玉米氮磷钾肥的偏生产力、农学效率、肥料利用率和生理利用率等,发现水稻、小麦和玉米的氮肥农学效率分别为10.4 kg kg-1、8.0 kg kg-1和9.8 kg kg-1,氮肥利用率分别为28.3%、28.2%和26.1%,远低于国际水平,与20世纪80年代相比呈下降趋势。造成肥料利用率低的主要原因包括高产农田过量施肥,忽视土壤和环境养分的利用,作物产量潜力未得到充分发挥以及养分损失未能得到有效阻控等。要大幅度提高肥料利用率就必须从植物营养学、土壤学、农学等多学科联合攻关入手,充分利用来自土壤和环境的养分资源,实现根层养分供应与高产作物需求在数量上匹配、时间上同步、空间上一致,同时提高作物产量和养分利用效率,协调作物高产与环境保护。 |
[12] | ., |
[13] | ., |
[14] | ., 78 We examined future transformation of agriculture in China. 78 China must increase grain yield, resource use efficiency and protect environment. 78 We proposed a “double high” model with high-yield and high resource-use efficiency. 78 Food security and environment protection can be harmonized by the concept. 78 New technologies and unique transfer ways in China support such as transformation. |
[15] | ., ABSTRACT N itrogen fertilizer has played an important role in increasing rice yields, and total consumption of N for rice production has increased gradually worldwide (Zhu and Chen, 2002; Singh et al., 2012). However, fertilizer N use efficiency of rice is generally low for rice grown in a transplanted culture ranging from 25 to 45%, and average about 35% (Dobermann and Cassman, 2002; Roy and Misra, 2002). More than half of the N fertilizer applied is lost and results not only in an environmental hazard but also a substantial economic loss (Matson et al., 1997; Galloway, 1998; Choudhury and Kennedy, 2005; Li et al., 2009). Even though practices such as deep application (Roberts et al., 2009) and subsequent multiple topdressings of N fertilizer improve N fertilizer use efficiency, lack of application machinery and rising cost of labor and the shortage of agricultural workers often limit the implementation of these practices (Zhang, 2008). Therefore, many studies have focused on the development of new types of fertilizers with emphasis on reduced cost, convenience of application, and higher N use efficiency. Sulfur coated and resin-coated urea are two kinds of coated and CRU, which can reduce nutrient losses to the environment while increasing nutrient availability for the plant or the crop by slow release the nutrient from the coated fertilizer ( |
[16] | ., Controlled release nitrogen fertilizer (CRNF) has been shown to increase yield of crops and improve the nitrogen (N) use efficiency of fertilizer in a number of production systems. However, the synchronized relationships between N release of CRNF and N requirements of cotton were rarely studied. In the present study, the effects of two CRNF including polymer coated urea (PCU) and polymer coating of sulfur-coated urea (PSCU) on yield and nutrients uptake of cotton were investigated under field conditions in 2012 and 2013. The results indicated that the successive release rate of N from CRNF corresponded well to the N requirements of cotton plants. In addition, significant linear correlations between N release rate of CRNF and N requirements of cotton were observed during the whole growth periods of cotton. Moreover, the release rate showed significantly positive correlations with cotton yield, soil inorganic N content, N use efficiency, total N uptake and biomass of aboveground. The seed cotton yields in treatments which applied PCU and PSCU once were increased by 14.81鈥18.15% compared with U1 (urea applied as basal fertilizer). However, there was no significant difference between CRNF and U2 (twice-split applications of urea fertilizer). Although the numbers of bolls and lint percentage were not significantly enhanced by using CRNF, the boll weight was 3.63鈥11.51% higher than that in urea treatments. In addition, the N uptake and N use efficiency of cotton plant were improved by CRNF compared to the urea treatments. The inorganic N content supplied by soil was also enhanced by using CRNF, especially from full bloom stage to initial boll-opening stage. The results suggest that the release rate curves of CRNF were ideal patterns which could synchronize N release with N requirements pattern of cotton. In addition, it could be economical and eco-friendly and widely used for cotton production. |
[17] | |
[18] | . , 正作物轻简化生产是与传统复杂的手工操作作物生产相对应的概念。它是利用现代农业科学技术手段,使作物生产变得更轻便、简捷的生产方式,在实现作物高效生产的前提下,获得高产、优质、生态、安全和可持续发展。随着社会经济的发展,我国农村劳动力由第一产业向第二、第三产业转移。据 ., 正作物轻简化生产是与传统复杂的手工操作作物生产相对应的概念。它是利用现代农业科学技术手段,使作物生产变得更轻便、简捷的生产方式,在实现作物高效生产的前提下,获得高产、优质、生态、安全和可持续发展。随着社会经济的发展,我国农村劳动力由第一产业向第二、第三产业转移。据 |
[19] | ., Cotton (Gossypium hirsutum L.) production in China has developed rapidly during the last 60 years. In 2012, the planting area and total output in the country were 5.3 million hectares and 7.62 million tons, respectively, and the unit yield was 85% higher than the world average. China currently accounts for about 30% of the world's cotton output with only 15% of the world's cotton land. Enhanced cotton production, particularly the high unit yield is largely due to adoption of a series of intensive farming technologies and cultural practices. The intensive farming technologies for cotton production in China mainly include seedling transplanting, plastic mulching, double cropping, plant training and super-high plant density technique, which have played important roles in promoting unit yield and total output. Although such intensive farming technologies meet the need of a growing population under limited arable land in China, they are labor-intensive and involve large input of various kinds of chemical products like fertilizers, pesticides, and plastic films. Thus, there are increasing challenges from soil pollution and labor shortage. Here, the achievements, challenges, countermeasures and prospects for intensive cotton cultivation in China are reviewed. An important conclusion from this review is that the establishment of a new farming technology through reform of the current intensive technology is inevitable to support sustainable cotton production in the nation. A series of comprehensive countermeasures should be taken to reduce soil pollution through rational use of plastic film and chemicals, labor saving through simplifying field managements and mechanization and increasing benefits by reforming the cropping system and management mode. China's cotton production would be sustainable with a bright prospect if supported by new farming technologies. |
[20] | |
[21] | . , 对由不同缓释氮肥与速效氮肥组合成的单季稻一次性施肥方案进行多点田间小区试验,并选择类似商品缓控释肥在浙江、安徽等省进行多点大区对比。多点小区试验结果表明:在合适的缓释氮肥支持下,长江下游单季稻一次性施肥大部分试验点可达到与尿素常规分次施用处理持平或略增的产量。4种一次性施肥处理中,树脂包膜尿素与普通尿素60%∶40%配比处理的平均产量最高(8 287.6 kg·hm-2),与常规分次施用处理的产量(8 151.4 kg·hm-2)相比略有增加。多点大区对比试验结果验证了多点小区试验的结果,树脂包膜尿素有明显的增产作用,平均产量9 356.0 kg·hm-2,比常规分次施肥平均增产9.78%。土壤类型影响一次性施肥的效果,树脂包膜尿素在大部分土壤中有明显的增产作用,稳定性肥在各种土壤上的差异较为明显,在较黏重的土壤上一次性施肥的效果好于较轻质土壤。不同缓释氮肥品种支持的一次性施肥效果在不同水稻品种类型间亦有明显差异。 ., 对由不同缓释氮肥与速效氮肥组合成的单季稻一次性施肥方案进行多点田间小区试验,并选择类似商品缓控释肥在浙江、安徽等省进行多点大区对比。多点小区试验结果表明:在合适的缓释氮肥支持下,长江下游单季稻一次性施肥大部分试验点可达到与尿素常规分次施用处理持平或略增的产量。4种一次性施肥处理中,树脂包膜尿素与普通尿素60%∶40%配比处理的平均产量最高(8 287.6 kg·hm-2),与常规分次施用处理的产量(8 151.4 kg·hm-2)相比略有增加。多点大区对比试验结果验证了多点小区试验的结果,树脂包膜尿素有明显的增产作用,平均产量9 356.0 kg·hm-2,比常规分次施肥平均增产9.78%。土壤类型影响一次性施肥的效果,树脂包膜尿素在大部分土壤中有明显的增产作用,稳定性肥在各种土壤上的差异较为明显,在较黏重的土壤上一次性施肥的效果好于较轻质土壤。不同缓释氮肥品种支持的一次性施肥效果在不同水稻品种类型间亦有明显差异。 |
[22] | ., Abstract Multifunctional slow-release organic-inorganic compound fertilizer (MSOF) has been investigated to improve fertilizer use efficiency and reduce environmental pollution derived from fertilizer overdosage. The special fertilizer is based on natural attapulgite (APT) clay used as a matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid (SA-g-P(AA-co-AM)/HA) superabsorbent polymer used as an outer coating. The coated multielement compound fertilizer granules were produced in a pan granulator, and the diameter of the prills was in the range of 2.5-3.5 mm. The structural and chemical characteristics of the product, as well as its efficiency in slowing the nutrients release, were examined. In addition, a mathematical model for nutrient release from the fertilizer was applied to calculate the diffusion coefficient D of nutrients in MSOF. The degradation of the SA-g-P(AA-co-AM)/HA coating was assessed by examining the weight loss with incubation time in soil. It is demonstrated that the product prepared by a simple route with good slow-release property may be expected to have wide potential applications in modern agriculture and horticulture. |
[23] | . , 控释肥已成为国内外肥料研究的热点 ,但是评价控释肥养分释放特性的方法研究相对滞后 ,至今没有较为完善的方法和统一的测试标准。本文综述了包膜控释肥养分释放特性的现有评价方法 :水中 (或溶液 )溶出率法、土壤溶出率法、扩散率法、渗透率法、电超滤法和同位素示踪法等 ;评述了各种方法的优缺点及改进途径 ;并展望了今后评价方法的研究方向 ., 控释肥已成为国内外肥料研究的热点 ,但是评价控释肥养分释放特性的方法研究相对滞后 ,至今没有较为完善的方法和统一的测试标准。本文综述了包膜控释肥养分释放特性的现有评价方法 :水中 (或溶液 )溶出率法、土壤溶出率法、扩散率法、渗透率法、电超滤法和同位素示踪法等 ;评述了各种方法的优缺点及改进途径 ;并展望了今后评价方法的研究方向 |
[24] | |
[25] | . , ., 2005( |
[26] | . 2015( |
[27] | ., Nonpoint pollution problems resulting from current agricultural practices are forcing policymakers to examine alternative mitigation strategies. Two mechanisms suggested to control the use of nitrogen fertilizer, a source of potentially harmful contaminants of water sources, are quantitative standards and incentives through per-unit taxation.Impacts of both policies on the distribution of farm net returns are analyzed. Risk attitudes are observed to influence the magnitude of farmer response to alternative policies. |
[28] | ., Agricultural activities are the main source of non-point pollution in the Taihu Lake region, and therefore reduction of nitrogen (N) fertilizer is imperative in this area. A two-year experiment was carried out in a paddy field of summer rice–winter wheat rotation in the Taihu Lake area, and the rice growing seasons were mainly concerned in this research. Grain yield, N accumulation at rice crucial stages, N use efficiency, as well as N losses via run off during rice growing season were determined under different N application rates. No significant differences were observed in grain yield under N fertilizer application rates of 135–270 kg N ha 611 (50–100% of the conventional N application rate). Nitrogen accumulation before the heading stage (Pre-NA) accounted for 61–95% of total nitrogen absorption in mature rice, and was positively correlated with straw dry matter at harvest. Positive correlations were found between Pre-NA and straw (0.53, p < 0.05), and between grain yield and N accumulation after the heading stage (Post-NA) (0.58, p < 0.05), suggesting that increasing nitrogen accumulation after the heading stage is crucial for grain yield improvement. Poor agronomic efficiency of applied N (AE N), partial factor productivity of applied N (PFP N) and internal utilization efficiency of applied N (IE N) were observed for the higher soil fertility and a higher N fertilizer input; a simple N fertilizer reduction could significantly increase the nitrogen use efficiency in this region. Nitrogen loss via runoff was positively linearly related to N application rates and severely affected by rainfall events. The highest-yielding N rates were around 232–257 kg N ha 611, accounting for 86–95% of the conventional N application rates for the rice season. To reduce N losses and enhance N use efficiency, the recommendable N fertilization rate should be lower than that of the highest yield rate for rice season. Our findings indicated that nitrogen fertilizer reduction in the Taihu Lake area is feasible and necessary for maintaining grain yield, enhancing nitrogen use efficiency, and reducing environmental impact. However, the longer-term yield sustainability for the proper N application rate needs to be further investigated. |
[29] | . , 2016( 氮肥对提高农作物的产量具有重要作用,但过量施氮不仅会影响作物产量和品质,还会对生态环境产生负面影响,而适当减量施氮,既能保证作物产量、提高肥料利用率,又能减少对环境的危害,从而实现农业高产、高效、持续健康的发展。本文综述了氮肥减量施用技术及其对农作物产量和生态环境影响的最新研究进展,提出了减量施肥过程中存在的问题及展望,旨在为保证作物高产和兼顾环境友好的氮肥减量施用技术提供思路和参考。 ., 2016( 氮肥对提高农作物的产量具有重要作用,但过量施氮不仅会影响作物产量和品质,还会对生态环境产生负面影响,而适当减量施氮,既能保证作物产量、提高肥料利用率,又能减少对环境的危害,从而实现农业高产、高效、持续健康的发展。本文综述了氮肥减量施用技术及其对农作物产量和生态环境影响的最新研究进展,提出了减量施肥过程中存在的问题及展望,旨在为保证作物高产和兼顾环境友好的氮肥减量施用技术提供思路和参考。 |
[30] | . , 从控释和缓释肥料提高肥料利用率的基本原理出发,对国际肥料工业协会(IFA)提出的和国际上公认的肥料养分释放、缓释、控释、控释肥、缓释肥和稳定性肥料的概念和定义进行了讨论和认定。介绍了山东农业大学主持承担的国家“948”项目、农业部跨越计划项目和山东省优秀中青年科学家科研奖励基金项目———包膜控释肥研究与开发的进展情况,包括包膜控释肥的包膜材料与工艺流程的选择、研制的包膜控释肥生产设备、开发出的控释肥系列品种、控释肥的质量检测标准、控释肥在多种作物上的应用效果,并分析了控释肥的经济、社会、生态效益及推广应用前景。 ., 从控释和缓释肥料提高肥料利用率的基本原理出发,对国际肥料工业协会(IFA)提出的和国际上公认的肥料养分释放、缓释、控释、控释肥、缓释肥和稳定性肥料的概念和定义进行了讨论和认定。介绍了山东农业大学主持承担的国家“948”项目、农业部跨越计划项目和山东省优秀中青年科学家科研奖励基金项目———包膜控释肥研究与开发的进展情况,包括包膜控释肥的包膜材料与工艺流程的选择、研制的包膜控释肥生产设备、开发出的控释肥系列品种、控释肥的质量检测标准、控释肥在多种作物上的应用效果,并分析了控释肥的经济、社会、生态效益及推广应用前景。 |
[31] | ., |
[32] | . , ., |
[33] | . , 影响包膜肥养分释放的关键因素是包膜材料本身的特性.从目前国内外新型缓释/控释肥包膜材料无机和有机两大方面进行归类和总结,区分缓释与控释肥概念的不同,重点探讨可生物降解性,并且对其发展趋势进行展望,以期为今后的研究提供理论参考. ., 影响包膜肥养分释放的关键因素是包膜材料本身的特性.从目前国内外新型缓释/控释肥包膜材料无机和有机两大方面进行归类和总结,区分缓释与控释肥概念的不同,重点探讨可生物降解性,并且对其发展趋势进行展望,以期为今后的研究提供理论参考. |
[34] | ., A comparative study of the release of P and K from two zeolite fertilizers and from solid KH 2 PO 4 was performed using the percolation reactor at constant solution flow. In all cases the nutrient release takes place in several stages and follows a first-order kinetic law, whose rate constants were determined. Zeolite fertilizers supply available P after more than 70 days of continuous percolation, whereas P from KH 2 PO 4 is exhausted after 50 days. A previous treatment of the zeolite with H 3 PO 4 improved the P release pattern throughout the whole experiment. In contrast, acid treatment was shown to influence negatively the K release pattern of the zeolite with regard to the untreated mineral. All fertilizers supplied available K throughout the whole experimental period, but unlike KH 2 PO 4 , both zeolite fertilizers provided controlled release of potassium. |
[35] | . , 缓/控释肥料能够在保证粮食产量的前提下,提高养分利用率,减少肥料养分流失对环境造成的危害。包膜型缓/控释肥料对养分具有更好的控释效果,通过包膜材料的组成设计,最有可能实现养分的释放速率与作物的需肥规律相匹配。本文综述了包膜型缓/控释肥料的国内外研究现状,肥料养分的控释机理和释放性能评价方法,阐述了包膜型缓/控释肥料研究和应用中存在的问题及未来的发展趋势。 ., 缓/控释肥料能够在保证粮食产量的前提下,提高养分利用率,减少肥料养分流失对环境造成的危害。包膜型缓/控释肥料对养分具有更好的控释效果,通过包膜材料的组成设计,最有可能实现养分的释放速率与作物的需肥规律相匹配。本文综述了包膜型缓/控释肥料的国内外研究现状,肥料养分的控释机理和释放性能评价方法,阐述了包膜型缓/控释肥料研究和应用中存在的问题及未来的发展趋势。 |
[36] | ., A previously validated method for the determination of nitrogen release patterns of slow- and controlled-release fertilizers (SRFs and CRFs, respectively) was submitted to the Expert Review Panel (ERP) for Fertilizers for consideration of First Action Official MethodSM status. The ERP evaluated the single-laboratory validation results and recommended the method for First Action Official Method status and provided recommendations for achieving Final Action. The 180 day soil incubation-column leaching technique was demonstrated to be a robust and reliable method for characterizing N release patterns from SRFs and CRFs. The method was reproducible, and the results were only slightly affected by variations in environmental factors such as microbial activity, soil moisture, temperature, and texture. The release of P and K were also studied, but at fewer replications than for N. Optimization experiments on the accelerated 74 h extraction method indicated that temperature was the only factor found to substantially influence nutrient-release rates from the materials studied, and an optimized extraction profile was established as follows: 2 h at 2500°C, 2 h at 5000°C, 20 h at 5500°C, and 50 h at 6000°C. |
[37] | . , 介绍了美国、西欧、日本、以色列、中国缓释 /控制释放肥料生产、消费及市场情况。 90年代中期世界年消费量约 56.5万吨 ,并以每年 4%~ 5%的速度增长。估计 90年代末期世界年生产量约为 70万吨。由于聚合物包膜控制释放肥料市场价格为普通肥料的 3~ 8倍 ,限制了它在农业上的施用。而我国开发的以肥料包裹肥料的缓释 /控制释放肥料被认为是足以廉价用于农业的缓释肥料。简要介绍了世界主要包膜 (裹 )控制释放肥料供应商。 ., 介绍了美国、西欧、日本、以色列、中国缓释 /控制释放肥料生产、消费及市场情况。 90年代中期世界年消费量约 56.5万吨 ,并以每年 4%~ 5%的速度增长。估计 90年代末期世界年生产量约为 70万吨。由于聚合物包膜控制释放肥料市场价格为普通肥料的 3~ 8倍 ,限制了它在农业上的施用。而我国开发的以肥料包裹肥料的缓释 /控制释放肥料被认为是足以廉价用于农业的缓释肥料。简要介绍了世界主要包膜 (裹 )控制释放肥料供应商。 |
[38] | [D]. , [D]. , |
[39] | . , 用多聚甲醛代替甲醛溶液与尿素反应制取脲甲醛缓释肥,适宜的工艺 条件为:n(尿素)/n(甲醛)=1.4,反应温度50℃;羟甲基化阶段控制pH=8.0,反应时间40 min;亚甲基化阶段控制pH=3.0,反应时间60 min.在此条件下得到产品的活性指数AI=72.88%,氮的转化率为74.99%,达到了AOAC的标准. ., 用多聚甲醛代替甲醛溶液与尿素反应制取脲甲醛缓释肥,适宜的工艺 条件为:n(尿素)/n(甲醛)=1.4,反应温度50℃;羟甲基化阶段控制pH=8.0,反应时间40 min;亚甲基化阶段控制pH=3.0,反应时间60 min.在此条件下得到产品的活性指数AI=72.88%,氮的转化率为74.99%,达到了AOAC的标准. |
[40] | . , 为了探明控释肥包衣剂的控释性能,参考国标GB/T 8572-2001对样品进行前处理,测定样品中N、P、K含量,并测定包衣肥中养分初期释放率、微分释放率和养分累积释率。结果显示:包衣肥中养分N、P、K的初期释放率〈15%,其中N的初期释放率大于P和K的初期释放率;与未包衣的对照肥相比,包衣肥养分N、P、K的初期释放率均明显降低,包衣肥中养分的释放更均匀平稳,能够满足作物生长中对养分的需求,提高肥料利用率,表明控释肥包衣剂的控释性能良好。 . 为了探明控释肥包衣剂的控释性能,参考国标GB/T 8572-2001对样品进行前处理,测定样品中N、P、K含量,并测定包衣肥中养分初期释放率、微分释放率和养分累积释率。结果显示:包衣肥中养分N、P、K的初期释放率〈15%,其中N的初期释放率大于P和K的初期释放率;与未包衣的对照肥相比,包衣肥养分N、P、K的初期释放率均明显降低,包衣肥中养分的释放更均匀平稳,能够满足作物生长中对养分的需求,提高肥料利用率,表明控释肥包衣剂的控释性能良好。 |
[41] | . , ., |
[42] | . , ., |
[43] | . , 玉米是全球也是中国第一大作物,在保障国家粮食安全中占有重要地位。当前,面对经济社会的快速发展和人增地减、资源紧缺、生态环境恶化等一系列突出问题,玉米栽培学科正面临着严峻挑战和新的历史发展机遇,在此重要历史关头,回顾中国玉米栽培研究历程和科技进展,探索未来发展方向具有重要的意义。分析表明,经过60年不懈努力,玉米栽培研究的目标已由产量为主向高产、优质、高效、生态、安全等多目标协同发展,研究内容不断拓宽与深入,形成了具有显著中国特色的玉米栽培科学与技术体系。进入21世纪以来,玉米栽培研究进入黄金发展期,在栽培理论、关键技术创新与应用方面取得一系列重要突破,在保障国家粮食安全中发挥了重要的作用。围绕未来玉米生产对科技的需求,依据现代科技的发展趋势,笔者认为高产、优质、高效、生态、安全仍将是未来玉米栽培研究的主要目标,并提出今后20年重点研究的方向与任务:一是继续探索不同生态区玉米产量潜力及突破技术途径,努力提高单产水平;二是转变生产方式,围绕籽粒生产效率,以提高资源利用效率和劳动生产效率为目标,降低生产成本,提高商品质量,增强玉米市场竞争力;适度发展青贮玉米和鲜食玉米等,促进玉米生产向多元化方向发展;三是应对全球气候变化,开展抗逆、减灾、稳产理论和技术研究,实施保护性耕作,实现玉米可持续生产;四是依托现代信息技术,开展智能化栽培技术研究,实现玉米精准生产与管理;五是强化栽培学科基础研究,玉米设计栽培,夯实玉米科技研究和生产发展基础。 ., 玉米是全球也是中国第一大作物,在保障国家粮食安全中占有重要地位。当前,面对经济社会的快速发展和人增地减、资源紧缺、生态环境恶化等一系列突出问题,玉米栽培学科正面临着严峻挑战和新的历史发展机遇,在此重要历史关头,回顾中国玉米栽培研究历程和科技进展,探索未来发展方向具有重要的意义。分析表明,经过60年不懈努力,玉米栽培研究的目标已由产量为主向高产、优质、高效、生态、安全等多目标协同发展,研究内容不断拓宽与深入,形成了具有显著中国特色的玉米栽培科学与技术体系。进入21世纪以来,玉米栽培研究进入黄金发展期,在栽培理论、关键技术创新与应用方面取得一系列重要突破,在保障国家粮食安全中发挥了重要的作用。围绕未来玉米生产对科技的需求,依据现代科技的发展趋势,笔者认为高产、优质、高效、生态、安全仍将是未来玉米栽培研究的主要目标,并提出今后20年重点研究的方向与任务:一是继续探索不同生态区玉米产量潜力及突破技术途径,努力提高单产水平;二是转变生产方式,围绕籽粒生产效率,以提高资源利用效率和劳动生产效率为目标,降低生产成本,提高商品质量,增强玉米市场竞争力;适度发展青贮玉米和鲜食玉米等,促进玉米生产向多元化方向发展;三是应对全球气候变化,开展抗逆、减灾、稳产理论和技术研究,实施保护性耕作,实现玉米可持续生产;四是依托现代信息技术,开展智能化栽培技术研究,实现玉米精准生产与管理;五是强化栽培学科基础研究,玉米设计栽培,夯实玉米科技研究和生产发展基础。 |
[44] | . , 以自制的脲甲醛低聚物和磷酸二氢钾-磷酸混合液反应合成了一种多营养元素高分子缓释化肥.通过控制投料比使其N∶P2O5∶K2O=10∶7.6∶1.5,符合玉米生长对N,P,K的需要.大田试验结果表明,单独施用高分子化肥的增产率为16.56%,高分子化肥与农家肥混合施用的增产率为56.51%,明显高于常规施肥的SV玉米专用肥和农家肥混用时的增产率49.11%. . 以自制的脲甲醛低聚物和磷酸二氢钾-磷酸混合液反应合成了一种多营养元素高分子缓释化肥.通过控制投料比使其N∶P2O5∶K2O=10∶7.6∶1.5,符合玉米生长对N,P,K的需要.大田试验结果表明,单独施用高分子化肥的增产率为16.56%,高分子化肥与农家肥混合施用的增产率为56.51%,明显高于常规施肥的SV玉米专用肥和农家肥混用时的增产率49.11%. |
[45] | . , 为明确缓控释肥对夏玉米主要生产性状和耕层土壤性状的影响,以创玉198为试材,以不施肥和施用相同养分的普通化肥(配比分期施肥、配比一次施肥)为对照,研究了施用缓控释肥对夏玉米叶面积指数、根条数、单株干物质重和产量性状以及耕层土壤性状的影响。结果表明:施用缓控释肥有助于夏玉米叶面积指数增大和根条数增多,单株干物质积累快,改善玉米的产量性状,明显提高千粒重和产量;可有效提高土壤蛋白酶活性以及速效氮、速效磷和速效钾含量。施用缓控释肥能够促进夏玉米生长发育、延缓叶片衰老,改善玉米主要产量性状,明显提高土壤速效养分含量,最终显著提高产量。在相同施肥量条件下,施用缓控释肥较施用普通化肥增产4.59%~8.81%。 ., 为明确缓控释肥对夏玉米主要生产性状和耕层土壤性状的影响,以创玉198为试材,以不施肥和施用相同养分的普通化肥(配比分期施肥、配比一次施肥)为对照,研究了施用缓控释肥对夏玉米叶面积指数、根条数、单株干物质重和产量性状以及耕层土壤性状的影响。结果表明:施用缓控释肥有助于夏玉米叶面积指数增大和根条数增多,单株干物质积累快,改善玉米的产量性状,明显提高千粒重和产量;可有效提高土壤蛋白酶活性以及速效氮、速效磷和速效钾含量。施用缓控释肥能够促进夏玉米生长发育、延缓叶片衰老,改善玉米主要产量性状,明显提高土壤速效养分含量,最终显著提高产量。在相同施肥量条件下,施用缓控释肥较施用普通化肥增产4.59%~8.81%。 |
[46] | . , <p>【目的】 随着一次性施肥逐渐发展为东北地区玉米种植的主要施肥方式,控释肥料、 脲甲醛肥料和稳定性肥料等新型高氮复混(合)肥料在一次性施肥中的比例不断增加。本文在吉林省中部黑钙土上设置玉米田间试验,以明确相同养分条件下,不同类型高氮复混(合)肥料在玉米上一次性施用的增产效果及氨挥发状况。【方法】 试验于2013年5月至10月在吉林省梨树县榆树台镇新兴黄家窝保村进行,试验地土壤为黑钙土,试验共设7个处理,分别为不施氮(N0)、常规施肥(Con)、高塔肥料(HT)、掺混肥(BB)、控释肥(CRF)、脲甲醛肥(UF)和稳定性肥料(SF),每个处理3次重复,小区面积40 m<sup>2</sup>。除常规施肥处理的氮肥分为基肥和追肥(基追肥比例为1:2)外,其他处理均采用一次性基施。各处理氮、磷、钾施用量分别为224、88、88 kg/hm<sup>2</sup>。在施肥后采用通气法对土壤氨挥发状况进行原位连续测定,于播种前和收获后分别用土钻采集0—100 cm土壤样品,采用1 mol/L的KCl溶液浸提,然后用连续流动注射分析仪[AA3(AUTOANALYSIS3),德国产]测定土壤NH<sup>+</sup><sub>4</sub>-N和NO<sup>-</sup><sub>3</sub>-N含量。玉米成熟期对各处理进行测产,并在每个小区选取3株有代表性的植株,分为秸秆和籽粒,烘干后称重,全部粉碎后测定植株中的氮含量,计算植株吸氮量。【结果】 从收获后产量及氮素养分吸收利用的分析可以看出,与不施氮处理相比,施氮肥具有明显的增产效果,增产率达到18.9%~24.1%,而在施氮量相同的条件下,一次性施用不同类型的高氮复混(合)肥间的产量无明显差异,介于12197~12899 kg/hm<sup>2</sup>之间;控释肥、脲甲醛肥料和稳定性肥料3个处理的氮肥当季利用率分别为27.9%、37.7%和28.8%;植株吸氮量分别为277.5、299.3和279.3 kg/hm<sup>2</sup>,均高于其他处理;肥料施入土壤后,不同时期的氨挥发速率整体上表现为先增加后降低的趋势,各肥料的氨挥发速率的差异主要集中在施肥后的3~13天,氨挥发速率峰值的大小为常规施肥>高塔肥料>掺混肥>控释肥>稳定性肥料>脲甲醛肥;控释肥、脲甲醛肥和稳定性肥料的氨挥发量分别为10.6、8.1和10.3 kg/hm<sup>2</sup>,相当于施氮量的4.7%、3.6%和4.6%,明显低于掺混肥(14.8 kg/hm<sup>2</sup>)和高塔肥料(23.0 kg/hm<sup>2</sup>);从土壤-作物体系中的氮素平衡可以看出,控释肥、脲甲醛肥和稳定性肥料的表观损失量分别为103、79和73 kg/hm<sup>2</sup>,明显低于掺混肥(136 kg/hm<sup>2</sup>)和高塔肥料(123 kg/hm<sup>2</sup>);且与掺混肥相比,控释肥、脲甲醛肥和稳定性肥料可以提高氮肥利用率7.7~17.5个百分点,有效降低氮素损失。【结论】 在黑钙土区一次性施肥模式下,不同类型高氮复混(合)肥间的玉米产量无明显差异;与掺混肥相比,控释肥、脲甲醛肥和稳定性肥料3种新型肥料可以促进植株对氮素的吸收利用,氮肥当季利用率提高38.1%~86.6%,氨挥发速率降低40%~96.5%,氨挥发损失量减少39.2%~81.3%,且在环境可接受范围内有效维持玉米生育期间的土壤无机氮含量,保证了土壤氮素供应。</p> ., <p>【目的】 随着一次性施肥逐渐发展为东北地区玉米种植的主要施肥方式,控释肥料、 脲甲醛肥料和稳定性肥料等新型高氮复混(合)肥料在一次性施肥中的比例不断增加。本文在吉林省中部黑钙土上设置玉米田间试验,以明确相同养分条件下,不同类型高氮复混(合)肥料在玉米上一次性施用的增产效果及氨挥发状况。【方法】 试验于2013年5月至10月在吉林省梨树县榆树台镇新兴黄家窝保村进行,试验地土壤为黑钙土,试验共设7个处理,分别为不施氮(N0)、常规施肥(Con)、高塔肥料(HT)、掺混肥(BB)、控释肥(CRF)、脲甲醛肥(UF)和稳定性肥料(SF),每个处理3次重复,小区面积40 m<sup>2</sup>。除常规施肥处理的氮肥分为基肥和追肥(基追肥比例为1:2)外,其他处理均采用一次性基施。各处理氮、磷、钾施用量分别为224、88、88 kg/hm<sup>2</sup>。在施肥后采用通气法对土壤氨挥发状况进行原位连续测定,于播种前和收获后分别用土钻采集0—100 cm土壤样品,采用1 mol/L的KCl溶液浸提,然后用连续流动注射分析仪[AA3(AUTOANALYSIS3),德国产]测定土壤NH<sup>+</sup><sub>4</sub>-N和NO<sup>-</sup><sub>3</sub>-N含量。玉米成熟期对各处理进行测产,并在每个小区选取3株有代表性的植株,分为秸秆和籽粒,烘干后称重,全部粉碎后测定植株中的氮含量,计算植株吸氮量。【结果】 从收获后产量及氮素养分吸收利用的分析可以看出,与不施氮处理相比,施氮肥具有明显的增产效果,增产率达到18.9%~24.1%,而在施氮量相同的条件下,一次性施用不同类型的高氮复混(合)肥间的产量无明显差异,介于12197~12899 kg/hm<sup>2</sup>之间;控释肥、脲甲醛肥料和稳定性肥料3个处理的氮肥当季利用率分别为27.9%、37.7%和28.8%;植株吸氮量分别为277.5、299.3和279.3 kg/hm<sup>2</sup>,均高于其他处理;肥料施入土壤后,不同时期的氨挥发速率整体上表现为先增加后降低的趋势,各肥料的氨挥发速率的差异主要集中在施肥后的3~13天,氨挥发速率峰值的大小为常规施肥>高塔肥料>掺混肥>控释肥>稳定性肥料>脲甲醛肥;控释肥、脲甲醛肥和稳定性肥料的氨挥发量分别为10.6、8.1和10.3 kg/hm<sup>2</sup>,相当于施氮量的4.7%、3.6%和4.6%,明显低于掺混肥(14.8 kg/hm<sup>2</sup>)和高塔肥料(23.0 kg/hm<sup>2</sup>);从土壤-作物体系中的氮素平衡可以看出,控释肥、脲甲醛肥和稳定性肥料的表观损失量分别为103、79和73 kg/hm<sup>2</sup>,明显低于掺混肥(136 kg/hm<sup>2</sup>)和高塔肥料(123 kg/hm<sup>2</sup>);且与掺混肥相比,控释肥、脲甲醛肥和稳定性肥料可以提高氮肥利用率7.7~17.5个百分点,有效降低氮素损失。【结论】 在黑钙土区一次性施肥模式下,不同类型高氮复混(合)肥间的玉米产量无明显差异;与掺混肥相比,控释肥、脲甲醛肥和稳定性肥料3种新型肥料可以促进植株对氮素的吸收利用,氮肥当季利用率提高38.1%~86.6%,氨挥发速率降低40%~96.5%,氨挥发损失量减少39.2%~81.3%,且在环境可接受范围内有效维持玉米生育期间的土壤无机氮含量,保证了土壤氮素供应。</p> |
[47] | . , 4O fluxes from summer maize soil in North China Plain were measured in 2008 using a close chamber method. Four different nitrogen management levels were used: nitrogen application at the rate of 300 kg N/ha (N300), nitrogen application at the rate of 250 kg N/ha (N250), improved nitrogen management methods (Optimized), and the application of slow-release urea (SRU). The summer maize soil was a net sink of CH and an emission source of NO during the whole growing season. The accumulative CH oxidation rate of Optimized, N250, SRU, and N300 was 624.16, 590.07, 487.89, and 316.02 g CH-C/ha, respectively. The difference of accumulative CH oxidation rate between four treatments was not significant (t-test, P ) content in the soil of maize root layer, and balance phosphorus and potassium fertilizer application rate, could reduce NO emission obviously compared to N300 and N250. The application of SRU could also reduce NO emission significantly. The accumulative NO emissions of N300, N250, Optimized and SRU were 3462.18, 2340.07, 1680.00, and 911.91 g NO-N/ha, respectively, and the fertilizer-induced NO emission factors were 1.15, 0.94, 0.91, and 0.30%, respectively. ., 4O fluxes from summer maize soil in North China Plain were measured in 2008 using a close chamber method. Four different nitrogen management levels were used: nitrogen application at the rate of 300 kg N/ha (N300), nitrogen application at the rate of 250 kg N/ha (N250), improved nitrogen management methods (Optimized), and the application of slow-release urea (SRU). The summer maize soil was a net sink of CH and an emission source of NO during the whole growing season. The accumulative CH oxidation rate of Optimized, N250, SRU, and N300 was 624.16, 590.07, 487.89, and 316.02 g CH-C/ha, respectively. The difference of accumulative CH oxidation rate between four treatments was not significant (t-test, P ) content in the soil of maize root layer, and balance phosphorus and potassium fertilizer application rate, could reduce NO emission obviously compared to N300 and N250. The application of SRU could also reduce NO emission significantly. The accumulative NO emissions of N300, N250, Optimized and SRU were 3462.18, 2340.07, 1680.00, and 911.91 g NO-N/ha, respectively, and the fertilizer-induced NO emission factors were 1.15, 0.94, 0.91, and 0.30%, respectively. |
[48] | ., ., |
[49] | ., The effectiveness of polyolefin-coated urea (Meister-5 and Meister-10; CU) in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system was studied in lysimeter plots located in the North China Plain for three consecutive maize-wheat-maize cropping seasons. An isotopic method was used to compare the fate of CU to that of non-coated urea (NCU), and N application rates of 0, 100, 150 and 225 kg N ha 611 were evaluated. The results showed that the nitrogen use efficiency ( 15NUE) of CU was 13.3%–21.4% greater than that of NCU for the first crop. Alternatively, when the difference method was applied (apparent NUE), no significant variations were observed among treatments in all three seasons. Although inorganic N leached from the 1.3 m layer was less than 1% of the total applied N, unidentified losses of 15N (losses of 15N = 15N applied as fertilizer – 15N absorbed by crops – 15N remaining in the 0–0.2 m layer – 15N leached from the 1.3 m layer) in CU-treated plots were 24.2%–26.5% lower than those of NCU-treated plots. The nitrate concentration in the 0–1.3 m layer of CU plots at the end of the experiment was 53% lower than that of NCU-treated plots. Thus, CU increased crop N uptake from fertilizer and reduced unidentified losses of applied N, which can reduce the risk of groundwater pollution. |
[50] | . , ., |
[51] | ., Abstract Knowledge-based nitrogen (N) management, which is designed for a better synchronization of crop N demand with N supply, is critical for global food security and environmental sustainability. Yet, a comprehensive assessment on how these N management practices affect food production, greenhouse gas emission (GHG), and N pollution in China is lacking. We compiled the results of 376 studies (1166 observations) to evaluate the overall effects of seven knowledge-based N management practices on crop productivity, nitrous oxide (N 2 O) emission, and major reactive N (Nr) losses (ammonia, NH 3 ; N leaching and runoff), for staple grain (rice, wheat, and corn) production in China. These practices included the application of controlled-release N fertilizer, nitrification inhibitor (NI) and urease inhibitor (UI), higher splitting frequency of fertilizer N application, lower basal N fertilizer (BF) proportion, deep placement of N fertilizer, and optimal N rate based on soil N test. Our results showed that, compared to traditional N management, these knowledge-based N practices significantly increased grain yields by 1.3-10.0%, which is attributed to the higher aboveground N uptake (5.1-12.1%) and N use efficiency in grain (8.0-48.2%). Moreover, these N management practices overall reduced GHG emission and Nr losses, by 5.4-39.8% for N 2 O emission, 30.7-61.5% for NH 3 emission (except for the NI application), 13.6-37.3% for N leaching, and 15.5-45.0% for N runoff. The use of NI increased NH 3 emission by 27.5% (9.0-56.0%), which deserves extra-attention. The cost and benefit analysis indicated that the yield profit of these N management practices exceeded the corresponding input cost, which resulted in a significant increase of the net economic benefit by 2.9-12.6%. These results suggest that knowledge-based N management practice can be considered an effective way to ensure food security and improve environmental sustainability, while increasing economic return. 脗漏 2016 John Wiley & Sons Ltd. |
[52] | . , ., |
[53] | . , 田间试验以常规施肥为对照,分析了华北平原北部小麦-玉米轮作区缓控释肥不同配比和用量土壤硝态氮含量和产量性状的变化。结果表明,常规用量分次施肥(100%UD)处理,土壤中NO<sup>-</sup><sub>3</sub>-N含量在小麦生育后期仍然维持较高的水平,并且穗数、千粒重以及产量相对较高; 缓控释肥处理土壤中硝态氮(NO<sup>-</sup><sub>3</sub>-N)含量与100%UD相比处于较低的水平,但产量无显著差异。玉米生长季缓控释肥表现出了明显优势,肥料利用率提高,玉米穗秃尖长度减小; 其中减少20%用量的缓控释肥处理(80%SCR)产量显著高于常规施肥处理,增产达到18.3 %。缓控释肥缓慢释放的特性有利于被作物及时充分吸收,减少了在土壤中因淋失而造成浪费的机会,从而使得肥料利用率提高。从小麦、玉米两季的变化情况来看,还需要进一步优化肥料在不同生长季之间的配置,使缓控释肥料发挥其最大潜力,实现小麦玉米产量双高产和经济效益、环境效益同步提高。 . 田间试验以常规施肥为对照,分析了华北平原北部小麦-玉米轮作区缓控释肥不同配比和用量土壤硝态氮含量和产量性状的变化。结果表明,常规用量分次施肥(100%UD)处理,土壤中NO<sup>-</sup><sub>3</sub>-N含量在小麦生育后期仍然维持较高的水平,并且穗数、千粒重以及产量相对较高; 缓控释肥处理土壤中硝态氮(NO<sup>-</sup><sub>3</sub>-N)含量与100%UD相比处于较低的水平,但产量无显著差异。玉米生长季缓控释肥表现出了明显优势,肥料利用率提高,玉米穗秃尖长度减小; 其中减少20%用量的缓控释肥处理(80%SCR)产量显著高于常规施肥处理,增产达到18.3 %。缓控释肥缓慢释放的特性有利于被作物及时充分吸收,减少了在土壤中因淋失而造成浪费的机会,从而使得肥料利用率提高。从小麦、玉米两季的变化情况来看,还需要进一步优化肥料在不同生长季之间的配置,使缓控释肥料发挥其最大潜力,实现小麦玉米产量双高产和经济效益、环境效益同步提高。 |
[54] | . , 采用控释尿素和普通尿素2种氮素肥料在驻马店市驿城区水屯镇新坡村和驻马店市遂平县和兴乡和兴农场进行夏玉米肥效试验研究.两地试验结果表明:100%控释尿素处理玉米产量最高,为6 665 kg/hm2和6 375 kg/hm2,与同等氮素用量的普通尿素相比增产500 kg/hm2,335 kg/hm2,增幅为8.1%,5.5%,增产效果显著;控释尿素用量在50%,70%到100%时,产量随氮肥用量的增加而增加,普通尿素也呈现同样趋势,随尿素用量的增加玉米产量增加;70%控释尿素处理与100%普通尿素处理、50%控释尿素处理与70%普通尿素处理之间相比,产量差异不大,没有达到显著性差异.说明施用控释尿素可以比普通尿素用量减少1/3的纯氮用量,玉米产量并不下降. ., 采用控释尿素和普通尿素2种氮素肥料在驻马店市驿城区水屯镇新坡村和驻马店市遂平县和兴乡和兴农场进行夏玉米肥效试验研究.两地试验结果表明:100%控释尿素处理玉米产量最高,为6 665 kg/hm2和6 375 kg/hm2,与同等氮素用量的普通尿素相比增产500 kg/hm2,335 kg/hm2,增幅为8.1%,5.5%,增产效果显著;控释尿素用量在50%,70%到100%时,产量随氮肥用量的增加而增加,普通尿素也呈现同样趋势,随尿素用量的增加玉米产量增加;70%控释尿素处理与100%普通尿素处理、50%控释尿素处理与70%普通尿素处理之间相比,产量差异不大,没有达到显著性差异.说明施用控释尿素可以比普通尿素用量减少1/3的纯氮用量,玉米产量并不下降. |
[55] | . , ., |
[56] | . , 为解决作物生产中氮肥过量施用问题,采用田间小区试验法,设置农民习惯施氮(FN)、优化减氮(ON)、优化减氮后再减氮20%配施不同氮素调控剂等处理,研究持续氮素调控对小麦/玉米轮作系统作物产量、氮素利用和表观损失及经济效益的影响。结果表明:与FN比,ON的小麦和玉米产量、氮素吸收量均未受影响,而氮素利用率、氮肥生产效率、氮肥农学效率均提高。ON的小麦和玉米两茬作物总N输入量较FN减少207.7kg/hm~2,N素表观损失减少119.1kg/hm~2,增收672.8元/hm~2,说明在农民习惯施氮肥基础上合理减少施氮量不但没有影响作物产量,反而促进作物氮素利用,减少氮素损失,降低氮肥生产成本,增加纯收益。与ON比,在优化减氮的基础上再减氮20%并配施硝化抑制剂(DCD),小麦和玉米两茬作物增产9.54%,氮素吸收量提高3.83%,氮素利用率提升5%以上,N素表观损失减少114.5kg/hm~2,增收3 292元/hm~2。综合考虑,各氮素调控措施中以ON80%+DCD效果较好,既能持续获得作物稳定高产,减少氮肥用量,又能减少氮素向环境中的损失,同时获得更高经济效益。 ., 为解决作物生产中氮肥过量施用问题,采用田间小区试验法,设置农民习惯施氮(FN)、优化减氮(ON)、优化减氮后再减氮20%配施不同氮素调控剂等处理,研究持续氮素调控对小麦/玉米轮作系统作物产量、氮素利用和表观损失及经济效益的影响。结果表明:与FN比,ON的小麦和玉米产量、氮素吸收量均未受影响,而氮素利用率、氮肥生产效率、氮肥农学效率均提高。ON的小麦和玉米两茬作物总N输入量较FN减少207.7kg/hm~2,N素表观损失减少119.1kg/hm~2,增收672.8元/hm~2,说明在农民习惯施氮肥基础上合理减少施氮量不但没有影响作物产量,反而促进作物氮素利用,减少氮素损失,降低氮肥生产成本,增加纯收益。与ON比,在优化减氮的基础上再减氮20%并配施硝化抑制剂(DCD),小麦和玉米两茬作物增产9.54%,氮素吸收量提高3.83%,氮素利用率提升5%以上,N素表观损失减少114.5kg/hm~2,增收3 292元/hm~2。综合考虑,各氮素调控措施中以ON80%+DCD效果较好,既能持续获得作物稳定高产,减少氮肥用量,又能减少氮素向环境中的损失,同时获得更高经济效益。 |
[57] | . , 试验通过长效控释肥在夏玉米播种时一次性基施,探讨了不同用量的长效控释肥对玉米生长发育、产量、经济效益及环境的影响。结果表明:与农民习惯施肥(苗期及大喇叭口期各追482.1 kg/hm^2高氮复合肥)相比,除60%控释肥处理略有减产外,其余控释肥处理均表现不同程度地增产,增产率为1.1%-7.4%,部分处理的产量差异达到显著水平。在本试验条件下,综合考虑玉米产量、氮素利用效率和经济效益,采用普通施肥量80%水平的控释肥一次施用,可以达到省工、高产、高效、节肥的目的,宜于在华北平原夏玉米生产区推广应用。 ., 试验通过长效控释肥在夏玉米播种时一次性基施,探讨了不同用量的长效控释肥对玉米生长发育、产量、经济效益及环境的影响。结果表明:与农民习惯施肥(苗期及大喇叭口期各追482.1 kg/hm^2高氮复合肥)相比,除60%控释肥处理略有减产外,其余控释肥处理均表现不同程度地增产,增产率为1.1%-7.4%,部分处理的产量差异达到显著水平。在本试验条件下,综合考虑玉米产量、氮素利用效率和经济效益,采用普通施肥量80%水平的控释肥一次施用,可以达到省工、高产、高效、节肥的目的,宜于在华北平原夏玉米生产区推广应用。 |
[58] | . , ., |
[59] | . , 【目的】探讨水稻一次性施用控释肥增产机理。【方法】采用盆栽试验和网箱试验,研究了3种控释肥对土壤速效氮含量、水稻根系生长发育、后期衰老和抗倒伏能力的影响。【结果】与专用肥分次施用处理比较,一次性施用等养分的植物素包膜控释肥(CRF1)、高分子材料包膜尿素复混肥(CRF3)显著提高了土壤速效氮含量,移栽30 d以后平均含量分别高出12.0%和147.9%;明显促进根系生长,根系数量大、分布深广、活力增强;灌浆后期旗叶叶绿素含量分别提高9.5%和15.5%,可溶性蛋白提高89.7%和108.0%,CAT酶活性明显增加;茎基部粗壮,根深指数大,茎根比降低。即使施用低钾含量的磷酸铵镁包膜控释肥CRF2也能促进根系发育、提高根系活力、增强旗叶生理功能。【结论】水稻一次性施用控释肥增产主要机理表现为显著提高了氮素供应水平,明显促进水稻根系生长发育,强化根系吸收养分能力,延缓后期衰老速度,并显著改善了水稻抗倒伏能力。 . , 【目的】探讨水稻一次性施用控释肥增产机理。【方法】采用盆栽试验和网箱试验,研究了3种控释肥对土壤速效氮含量、水稻根系生长发育、后期衰老和抗倒伏能力的影响。【结果】与专用肥分次施用处理比较,一次性施用等养分的植物素包膜控释肥(CRF1)、高分子材料包膜尿素复混肥(CRF3)显著提高了土壤速效氮含量,移栽30 d以后平均含量分别高出12.0%和147.9%;明显促进根系生长,根系数量大、分布深广、活力增强;灌浆后期旗叶叶绿素含量分别提高9.5%和15.5%,可溶性蛋白提高89.7%和108.0%,CAT酶活性明显增加;茎基部粗壮,根深指数大,茎根比降低。即使施用低钾含量的磷酸铵镁包膜控释肥CRF2也能促进根系发育、提高根系活力、增强旗叶生理功能。【结论】水稻一次性施用控释肥增产主要机理表现为显著提高了氮素供应水平,明显促进水稻根系生长发育,强化根系吸收养分能力,延缓后期衰老速度,并显著改善了水稻抗倒伏能力。 |
[60] | . , 1996~1997年的试验结果表明,在不同肥力的两种土壤上,施用缓释尿素当季小麦产量比普通尿素增产18.3~27.8%;后季残效试验,不再施肥情况下,水稻产量比普尿增产27.5~50.4%;氮素利用率,当季小麦比普尿高7.3~7.9%;麦—稻两季氮素利用率比普尿高24.0~55.8%;试验结果足以说明缓释尿素确实具有肥效持久,氮素利用率极高,一季施用,两季增产的肥力特点。 ., 1996~1997年的试验结果表明,在不同肥力的两种土壤上,施用缓释尿素当季小麦产量比普通尿素增产18.3~27.8%;后季残效试验,不再施肥情况下,水稻产量比普尿增产27.5~50.4%;氮素利用率,当季小麦比普尿高7.3~7.9%;麦—稻两季氮素利用率比普尿高24.0~55.8%;试验结果足以说明缓释尿素确实具有肥效持久,氮素利用率极高,一季施用,两季增产的肥力特点。 |
[61] | . , 以不施氮肥、尿素基施和尿素基追比5:5等3个处理做对照,对3种包膜缓/控释肥处理冬小麦产量、产量相关因子、不同时期植株含氮量及肥料利用率进行了分析比较。结果表明,缓/控肥处理的以上几个指标均接近于尿素基追比5:5处理。与尿素基施相比,包膜缓/控释肥增产10.03%~11.17%,有效穗数和穗粒数增加,返青-拔节期植株含氮量明显提高,氮肥利用率提高了6.18%~11.57%。3种缓/控释肥相比较,产量、产量因子、植株含氮量及肥料利用率没有显著性差异。 ., 以不施氮肥、尿素基施和尿素基追比5:5等3个处理做对照,对3种包膜缓/控释肥处理冬小麦产量、产量相关因子、不同时期植株含氮量及肥料利用率进行了分析比较。结果表明,缓/控肥处理的以上几个指标均接近于尿素基追比5:5处理。与尿素基施相比,包膜缓/控释肥增产10.03%~11.17%,有效穗数和穗粒数增加,返青-拔节期植株含氮量明显提高,氮肥利用率提高了6.18%~11.57%。3种缓/控释肥相比较,产量、产量因子、植株含氮量及肥料利用率没有显著性差异。 |
[62] | . , Pot experiment was conducted to study the effects of felted slow-release fertilizer on the growth, yield and (nutrient) status of wheat and available nutrients in soil using no fertilizer (CK1) and equal rate of NPK fertilizers (CK2) as controls. The results showed that felted slow-release fertilizer increased yield significantly comparing to CK2. Applying slow-release fertilizer felted by clay and by plastic increased yield by 14.85% and 27.48%, respectively. The chlorophyll content in leaf increased due to the application of felted slow-release fertilizer. Compared to CK2, applying felted slow release fertilizer could increase the dry weights of single plant at different stages as well. For slow-release fertilizer felted by clay and by plastic increased dry weight by 9.24%—45.50%,7.53%—45.64%, respectively.The available N and P in the soil with the application of felted slow-release fertilizers were lower in earlier stage and higher in midterm and late stage than that of the control. ., Pot experiment was conducted to study the effects of felted slow-release fertilizer on the growth, yield and (nutrient) status of wheat and available nutrients in soil using no fertilizer (CK1) and equal rate of NPK fertilizers (CK2) as controls. The results showed that felted slow-release fertilizer increased yield significantly comparing to CK2. Applying slow-release fertilizer felted by clay and by plastic increased yield by 14.85% and 27.48%, respectively. The chlorophyll content in leaf increased due to the application of felted slow-release fertilizer. Compared to CK2, applying felted slow release fertilizer could increase the dry weights of single plant at different stages as well. For slow-release fertilizer felted by clay and by plastic increased dry weight by 9.24%—45.50%,7.53%—45.64%, respectively.The available N and P in the soil with the application of felted slow-release fertilizers were lower in earlier stage and higher in midterm and late stage than that of the control. |
[63] | [D]. , [D]. , |
[64] | . , 通过冬小麦-夏玉米轮作下3年6季的田间试验,研究纳米级材料胶结包膜型缓/控释肥料对氮素利用率和硝态氮淋溶损失的影响。结果表明,与普通氮磷钾化肥配施相比,4种纳米级材料胶结包膜型缓/控释肥料提高小麦对氮素的利用率2.80~23.38个百分点,玉米对氮素的利用率1.01~21.63个百分点。在0―80 cm土层,PS、BC208和306处理下土壤硝态氮含量高于普通氮磷钾化肥配施处理,而F208处理低于普通氮磷钾化肥配施处理;在80―160 cm土层,均低于普通氮磷钾化肥配施处理;在接近地下水水位土层(140―160 cm),减少硝态氮1.61~2.42 mg/kg。4种纳米级材料胶结包膜型缓/控释肥料损失出土壤-作物系统的氮素比普通氮磷钾化肥配施处理减少2.00~24.90个百分点。结果表明,纳米级材料胶结包膜型缓/控释肥料能有效的提高氮素利用率和减少硝态氮的淋溶损失。 ., 通过冬小麦-夏玉米轮作下3年6季的田间试验,研究纳米级材料胶结包膜型缓/控释肥料对氮素利用率和硝态氮淋溶损失的影响。结果表明,与普通氮磷钾化肥配施相比,4种纳米级材料胶结包膜型缓/控释肥料提高小麦对氮素的利用率2.80~23.38个百分点,玉米对氮素的利用率1.01~21.63个百分点。在0―80 cm土层,PS、BC208和306处理下土壤硝态氮含量高于普通氮磷钾化肥配施处理,而F208处理低于普通氮磷钾化肥配施处理;在80―160 cm土层,均低于普通氮磷钾化肥配施处理;在接近地下水水位土层(140―160 cm),减少硝态氮1.61~2.42 mg/kg。4种纳米级材料胶结包膜型缓/控释肥料损失出土壤-作物系统的氮素比普通氮磷钾化肥配施处理减少2.00~24.90个百分点。结果表明,纳米级材料胶结包膜型缓/控释肥料能有效的提高氮素利用率和减少硝态氮的淋溶损失。 |
[65] | . , 利用静态暗箱-气相色谱法对华北地区4种农业管理措施下的小麦农田生态系统温室气体(CO_2、CH_4和N_2O)的排放通量进行了观测,并对其综合增温潜势进行了估算。结果表明,麦季农田土壤是N_2O和CO_2的排放源,CH_4的吸收汇。与秸秆不还田(SN)相比,秸秆还田(SR)显著提高了CO_2和N_2O的排放量,但增加了CH_4的吸收量。通过施用新型肥料(SRC)或采用氮肥条施(SRR)的施肥方式,可以降低22.4%~35.5%的N_2O排放量,并增加9.3%~44.2%的CH_4吸收量。尤其是SRR可以抵消由于秸秆还田引起的N_2O增排。4种管理措施下的麦田是大气总温室气体的吸收汇,在秸秆还田基础上施用新型氮肥品种或采用氮肥条施的施肥方式,能够达到温室气体减排,且增产增效的效果。 ., 利用静态暗箱-气相色谱法对华北地区4种农业管理措施下的小麦农田生态系统温室气体(CO_2、CH_4和N_2O)的排放通量进行了观测,并对其综合增温潜势进行了估算。结果表明,麦季农田土壤是N_2O和CO_2的排放源,CH_4的吸收汇。与秸秆不还田(SN)相比,秸秆还田(SR)显著提高了CO_2和N_2O的排放量,但增加了CH_4的吸收量。通过施用新型肥料(SRC)或采用氮肥条施(SRR)的施肥方式,可以降低22.4%~35.5%的N_2O排放量,并增加9.3%~44.2%的CH_4吸收量。尤其是SRR可以抵消由于秸秆还田引起的N_2O增排。4种管理措施下的麦田是大气总温室气体的吸收汇,在秸秆还田基础上施用新型氮肥品种或采用氮肥条施的施肥方式,能够达到温室气体减排,且增产增效的效果。 |
[66] | . , 通过对控释氮肥减量且随小麦播种一次性施用(CRF),与农民习惯施肥(FP)及优化施肥(OPT)进行对比试验研究.结果表明:(1)减量施用控释氮肥使小麦群体及产量构成因素整体表现优于FP和OPT处理;(2)CRF处理能够保证小麦稳产,单位面积(667m2)较FP处理增收66.8元,其氮素回收率和氮偏生产力较FP处理分别提高19.7%和34.3%;(3)CRF处理各深度土层硝态氮含量均低于OPT和FP处理,极大降低硝态氮向土壤深层次淋溶的风险.在小麦上减量使用控释氮肥具有简化生产环节、节本增收、提高氮养分利用和减少环境污染等优势,具有应用前景. . 通过对控释氮肥减量且随小麦播种一次性施用(CRF),与农民习惯施肥(FP)及优化施肥(OPT)进行对比试验研究.结果表明:(1)减量施用控释氮肥使小麦群体及产量构成因素整体表现优于FP和OPT处理;(2)CRF处理能够保证小麦稳产,单位面积(667m2)较FP处理增收66.8元,其氮素回收率和氮偏生产力较FP处理分别提高19.7%和34.3%;(3)CRF处理各深度土层硝态氮含量均低于OPT和FP处理,极大降低硝态氮向土壤深层次淋溶的风险.在小麦上减量使用控释氮肥具有简化生产环节、节本增收、提高氮养分利用和减少环境污染等优势,具有应用前景. |
[67] | . , ., |
[68] | . , 在山东招远棕壤区的小麦-玉米轮作区,通过田间试验,研究了不同 氮肥调控处理对冬小麦主要性状、氮肥利用率以及土壤硝态氮时空变化的影响。结果表明:施用控释肥B的处理( CRF B 处理)与习惯施肥处理相比,尽管降低了37%的氮肥用量,仍能够获得小麦最高产量,且氮肥偏生产力和农学效率最高,同时氮肥利用率和氮肥生理利用率较高, 硝态氮在不同土层的积累较少,没有淋溶风险。因此CRFB 是最佳的氮肥调控处理。 ., 在山东招远棕壤区的小麦-玉米轮作区,通过田间试验,研究了不同 氮肥调控处理对冬小麦主要性状、氮肥利用率以及土壤硝态氮时空变化的影响。结果表明:施用控释肥B的处理( CRF B 处理)与习惯施肥处理相比,尽管降低了37%的氮肥用量,仍能够获得小麦最高产量,且氮肥偏生产力和农学效率最高,同时氮肥利用率和氮肥生理利用率较高, 硝态氮在不同土层的积累较少,没有淋溶风险。因此CRFB 是最佳的氮肥调控处理。 |
[69] | . , 为了解陕西黄土高原南部旱地冬小麦季N2O排放规律, 探索旱地N<sub>2</sub>O减排方法, 采用密闭式静态箱法, 以不同施氮处理[CK: 对照, 不施氮; CON: 当地农民习惯施氮, 施氮量220 kg?hm<sup>-2</sup>; OPT: 优化施氮加秸秆还田, 施氮量150 kg?hm<sup>-2</sup>; OPT+DCD: 优化施氮加秸秆还田, 同时施用施氮量5%的硝化抑制剂DCD; OPT(SR): 优化施氮(所用肥料为包膜型缓控释肥)加秸秆还田]为基础, 研究黄土高原南部旱地冬小麦农田N<sub>2</sub>O季节排放特征和减排措施。结果表明: 黄土高原南部旱地冬小麦季N<sub>2</sub>O排放具有首月持续、大量排放, 末月雨后瞬间排放, 中期低排放的特点。各处理中, OPT+DCD和OPT(SR)在播种-返青期能显著减少N<sub>2</sub>O排放水平, 而返青-成熟期, 各优化处理差异不显著。从整个小麦季N<sub>2</sub>O排放总量来看, 各优化处理能够减少N<sub>2</sub>O排放量, 提高作物产量, 降低单位产量N<sub>2</sub>O排放量。具体表现为: ①与CON处理的N<sub>2</sub>O排放量相比, OPT、OPT+ DCD和OPT(SR)处理分别减排29.2%(<i>P</i><0.01)、38.7%(<i>P</i><0.01)和39.3%(<i>P</i><0.01), 但3个优化处理间差异不显著; ②与CON处理的产量相比, OPT、OPT+DCD和OPT(SR)处理分别增产3.8%(<i>P</i>>0.05)、15.2%(<i>P</i><0.05)和9.5%(<i>P</i><0.05); ③与CON处理的单位产量N<sub>2</sub>O排放量相比, OPT处理单位产量N<sub>2</sub>O排放量减少31.7% (<i>P</i><0.05); 而相对于OPT处理, OPT+DCD处理和OPT(SR)处理分别减少了单位产量排放量的22.1%(<i>P</i><0.05)和18.9% (<i>P</i><0.05)。本研究表明, 减少施氮量至150 kg?hm<sup>-2</sup>, 并施用秸秆是减少N<sub>2</sub>O排放的重要手段, 而施用缓控释肥或一定量的DCD可提升作物产量。 ., 为了解陕西黄土高原南部旱地冬小麦季N2O排放规律, 探索旱地N<sub>2</sub>O减排方法, 采用密闭式静态箱法, 以不同施氮处理[CK: 对照, 不施氮; CON: 当地农民习惯施氮, 施氮量220 kg?hm<sup>-2</sup>; OPT: 优化施氮加秸秆还田, 施氮量150 kg?hm<sup>-2</sup>; OPT+DCD: 优化施氮加秸秆还田, 同时施用施氮量5%的硝化抑制剂DCD; OPT(SR): 优化施氮(所用肥料为包膜型缓控释肥)加秸秆还田]为基础, 研究黄土高原南部旱地冬小麦农田N<sub>2</sub>O季节排放特征和减排措施。结果表明: 黄土高原南部旱地冬小麦季N<sub>2</sub>O排放具有首月持续、大量排放, 末月雨后瞬间排放, 中期低排放的特点。各处理中, OPT+DCD和OPT(SR)在播种-返青期能显著减少N<sub>2</sub>O排放水平, 而返青-成熟期, 各优化处理差异不显著。从整个小麦季N<sub>2</sub>O排放总量来看, 各优化处理能够减少N<sub>2</sub>O排放量, 提高作物产量, 降低单位产量N<sub>2</sub>O排放量。具体表现为: ①与CON处理的N<sub>2</sub>O排放量相比, OPT、OPT+ DCD和OPT(SR)处理分别减排29.2%(<i>P</i><0.01)、38.7%(<i>P</i><0.01)和39.3%(<i>P</i><0.01), 但3个优化处理间差异不显著; ②与CON处理的产量相比, OPT、OPT+DCD和OPT(SR)处理分别增产3.8%(<i>P</i>>0.05)、15.2%(<i>P</i><0.05)和9.5%(<i>P</i><0.05); ③与CON处理的单位产量N<sub>2</sub>O排放量相比, OPT处理单位产量N<sub>2</sub>O排放量减少31.7% (<i>P</i><0.05); 而相对于OPT处理, OPT+DCD处理和OPT(SR)处理分别减少了单位产量排放量的22.1%(<i>P</i><0.05)和18.9% (<i>P</i><0.05)。本研究表明, 减少施氮量至150 kg?hm<sup>-2</sup>, 并施用秸秆是减少N<sub>2</sub>O排放的重要手段, 而施用缓控释肥或一定量的DCD可提升作物产量。 |
[70] | . , ., |
[71] | . , ., |
[72] | [D]. , [D]. , |
[73] | . , 【目的】缓释肥料是一次性施肥及减量化施肥的重要载体,探讨缓释尿素对水稻养分吸收动态及产量形成的影响,为新型肥料的研发以及水稻产量的进一步提高提供重要的理论指导。【方法】早稻及晚稻的大田试验共设5个处理:1)不施氮(CK);2)普通尿素分次施用(PU1,基肥50%、返青肥20%、拔节肥30%);3)普通尿素一次性基施(PU2);4)60天型养分释放期的缓释尿素一次性施用(PCU60);5)90天型养分释放期的缓释尿素一次性施用(PCU90)。除不施氮处理外,其他处理氮肥用量均为N 150 kg/hm~2,所有处理磷钾的用量分别为P_2O_5 55 kg/hm~2、K_2O 130 kg/hm~2,肥源分别为过磷酸钙及氯化钾。田间小区随机排列,各处理重复4次。在早稻拔节期、孕穗期、抽穗期及灌浆期采集植株样品进行养分分析,在灌浆期采集剑叶及籽粒样品进行养分分析,并测定灌浆期伤流液中氮的含量以及灌浆期剑叶SPAD值的变化;在早稻及晚稻采收后记录产量和产量构成要素。【结果】早稻产量以60天型缓释尿素处理及分次施肥处理最高,其次为普通尿素一次性施用处理及90天型缓释尿素处理,不施氮对照产量最低;而在晚稻上90天型缓释尿素处理、60天型缓释尿素处理与分次施肥处理之间水稻产量没有显著性差异。90天型缓释尿素养分释放期过长,导致了灌浆期氮素供应过剩,水稻贪青导致灌浆不足,降低了千粒重。90天及60天型缓释尿素的处理提高了早稻拔节期、孕穗期、抽穗期及灌浆期地上部及地下部氮、磷的含量,其中以90天型缓释尿素处理最高。在早稻灌浆期,90天及60天型缓释尿素的处理水稻剑叶及籽粒氮含量、茎导管伤流氮含量以及剑叶SPAD值均高于其他处理。一次性施用60天及90天缓释尿素还可以提高土壤碱解氮的含量。【结论】缓释尿素可以用于水稻一次性施肥,但在水稻上90天型缓释尿素的养分释放期过长,而60天型缓释尿素养分释放期适中。缓释尿素可以促进水稻对氮素的吸收并且可以用于减量化施肥,缓释尿素对磷的吸收有显著的协同作用,在施用缓释尿素时还可以适当减少磷的施用量。 ., 【目的】缓释肥料是一次性施肥及减量化施肥的重要载体,探讨缓释尿素对水稻养分吸收动态及产量形成的影响,为新型肥料的研发以及水稻产量的进一步提高提供重要的理论指导。【方法】早稻及晚稻的大田试验共设5个处理:1)不施氮(CK);2)普通尿素分次施用(PU1,基肥50%、返青肥20%、拔节肥30%);3)普通尿素一次性基施(PU2);4)60天型养分释放期的缓释尿素一次性施用(PCU60);5)90天型养分释放期的缓释尿素一次性施用(PCU90)。除不施氮处理外,其他处理氮肥用量均为N 150 kg/hm~2,所有处理磷钾的用量分别为P_2O_5 55 kg/hm~2、K_2O 130 kg/hm~2,肥源分别为过磷酸钙及氯化钾。田间小区随机排列,各处理重复4次。在早稻拔节期、孕穗期、抽穗期及灌浆期采集植株样品进行养分分析,在灌浆期采集剑叶及籽粒样品进行养分分析,并测定灌浆期伤流液中氮的含量以及灌浆期剑叶SPAD值的变化;在早稻及晚稻采收后记录产量和产量构成要素。【结果】早稻产量以60天型缓释尿素处理及分次施肥处理最高,其次为普通尿素一次性施用处理及90天型缓释尿素处理,不施氮对照产量最低;而在晚稻上90天型缓释尿素处理、60天型缓释尿素处理与分次施肥处理之间水稻产量没有显著性差异。90天型缓释尿素养分释放期过长,导致了灌浆期氮素供应过剩,水稻贪青导致灌浆不足,降低了千粒重。90天及60天型缓释尿素的处理提高了早稻拔节期、孕穗期、抽穗期及灌浆期地上部及地下部氮、磷的含量,其中以90天型缓释尿素处理最高。在早稻灌浆期,90天及60天型缓释尿素的处理水稻剑叶及籽粒氮含量、茎导管伤流氮含量以及剑叶SPAD值均高于其他处理。一次性施用60天及90天缓释尿素还可以提高土壤碱解氮的含量。【结论】缓释尿素可以用于水稻一次性施肥,但在水稻上90天型缓释尿素的养分释放期过长,而60天型缓释尿素养分释放期适中。缓释尿素可以促进水稻对氮素的吸收并且可以用于减量化施肥,缓释尿素对磷的吸收有显著的协同作用,在施用缓释尿素时还可以适当减少磷的施用量。 |
[74] | . , ., |
[75] | . , 结合当前我国控释肥料的研究和应用现状,介绍控释肥料在提高我国南方水稻产量和养分利用率方面的潜在优势,论述控释肥料在削减稻田环境污染中的作用,并提出了一些建议。 . , 结合当前我国控释肥料的研究和应用现状,介绍控释肥料在提高我国南方水稻产量和养分利用率方面的潜在优势,论述控释肥料在削减稻田环境污染中的作用,并提出了一些建议。 |
[76] | ., |
[77] | . , 通过土壤渗漏装置、微区和田间小区试验,研究了<sup>15</sup>N标记控释氮肥在淹水稻田土壤上氮素的去向和利用率。结果表明,施用控释氮肥能明显地降低氨挥发、淋失和硝化—反硝化的损失。控释氮肥处理的氨挥发量比尿素降低54.0%,氮淋失量降低32.5%。尿素的硝化—反硝化损失量占施入氮量的34.5%,而控释氮肥的只占2.0%;控释肥料与尿素氮在0—80cm土层中的残留率相近。控释氮肥一次性全量作基肥施入土壤,水稻的氮肥利用率平均为65.6%,比尿素(基肥+追肥)高出32.2个百分点。控释氮肥的农学效率显著地高于尿素。 ., 通过土壤渗漏装置、微区和田间小区试验,研究了<sup>15</sup>N标记控释氮肥在淹水稻田土壤上氮素的去向和利用率。结果表明,施用控释氮肥能明显地降低氨挥发、淋失和硝化—反硝化的损失。控释氮肥处理的氨挥发量比尿素降低54.0%,氮淋失量降低32.5%。尿素的硝化—反硝化损失量占施入氮量的34.5%,而控释氮肥的只占2.0%;控释肥料与尿素氮在0—80cm土层中的残留率相近。控释氮肥一次性全量作基肥施入土壤,水稻的氮肥利用率平均为65.6%,比尿素(基肥+追肥)高出32.2个百分点。控释氮肥的农学效率显著地高于尿素。 |
[78] | . , 以盆栽试验的方法研究了涂层尿素施入水田后NH3和NOx挥发损 失情况.研究结果表明:尿素涂层可明显抑制NH3和NOx的挥发损失,在等氮量条件下施入土壤7d内涂层尿素与未涂层尿素相比NH3+NOx挥发损失可降 低22.1%~24.8%,且这一降低挥发效果随尿素用量增加而增大.说明尿素涂层不仅能提高氮素利用率,而且能够减少NOx等气体的排放,使生态环境得 到了改善. ., 以盆栽试验的方法研究了涂层尿素施入水田后NH3和NOx挥发损 失情况.研究结果表明:尿素涂层可明显抑制NH3和NOx的挥发损失,在等氮量条件下施入土壤7d内涂层尿素与未涂层尿素相比NH3+NOx挥发损失可降 低22.1%~24.8%,且这一降低挥发效果随尿素用量增加而增大.说明尿素涂层不仅能提高氮素利用率,而且能够减少NOx等气体的排放,使生态环境得 到了改善. |
[79] | . , 本文研究用三种不同膜质材料覆膜制成包膜肥料,(分别用代号PG、PGg、PGf表示)对抑制氮素挥发的影响。结果表明,与CK相比,PG、PGg、PGf的氮素挥发总量分别减少了18.1%、26.0%和19.3%。其中,PGg型膜质材料制成的包膜肥料抑制氮素挥发效果最为明显,是理想的包膜材料。 ., 本文研究用三种不同膜质材料覆膜制成包膜肥料,(分别用代号PG、PGg、PGf表示)对抑制氮素挥发的影响。结果表明,与CK相比,PG、PGg、PGf的氮素挥发总量分别减少了18.1%、26.0%和19.3%。其中,PGg型膜质材料制成的包膜肥料抑制氮素挥发效果最为明显,是理想的包膜材料。 |
[80] | . , ., |
[81] | . , . , |
[82] | . , 通过盆栽试验、田间小区试验和生产大面积应用示范研究了一次基施水稻控释肥的养分利用率及其增产效果.结果表明,一次基施水稻控释肥技术与等养分量的专用肥处理比较,盆栽试验相对提高氮素利用率12.2%~22.7%,磷素利用率7.0%~35.0%;小区试验相对提高氮素利用率17.1%.综合广东不同水稻生态类型稻作区连续3年共167点(次)应用示范结果,表明一次基施水稻控释肥技术较常规分次施肥平均减少氮和磷养分用量分别为22.11%和21.81%,降低了施肥成本,获得8.2%的增产效果. ., 通过盆栽试验、田间小区试验和生产大面积应用示范研究了一次基施水稻控释肥的养分利用率及其增产效果.结果表明,一次基施水稻控释肥技术与等养分量的专用肥处理比较,盆栽试验相对提高氮素利用率12.2%~22.7%,磷素利用率7.0%~35.0%;小区试验相对提高氮素利用率17.1%.综合广东不同水稻生态类型稻作区连续3年共167点(次)应用示范结果,表明一次基施水稻控释肥技术较常规分次施肥平均减少氮和磷养分用量分别为22.11%和21.81%,降低了施肥成本,获得8.2%的增产效果. |
[83] | . , 采用大田试验,在施氮量为180 kg/hm2氮肥供应下研究不同氮肥类型对黄泥田双季稻产量、干物质及氮素积累量、花后干物质积累量及氮肥利用率的影响。结果表明:与不施氮对照(CK)相比,各施氮处理早稻产量增幅77.7%~103.5%,效益增幅7 149~10 648元/hm2,晚稻产量增幅56.4%~72.9%,效益增幅8 055~10 950元/hm2;与普通尿素(prilled urea, PU)习惯施肥(PU 100%)相比,不同缓/控释肥料一次性基施处理在早、晚稻上的表现不一致,在早稻上脲甲醛(ureaformaldehyde, UF)一次性基施(UF 100%)和生化抑制尿素(urea with nitrapyrin, NPU)一次性基施(NPU 100%)处理、晚稻上生化抑制尿素一次性基施(NPU 100%)和70%硫磺树脂双包膜尿素(sulfurpolyester resincoated urea, SPCU)掺混30%普通尿素一次性基施(SPCU 70%+PU 30%)处理能显著提高水稻产量、经济效益和氮肥农学利用率,增幅分别达9.9%、2 281元/hm2和3.7 kg/kg以上,用NPU 100%处理的早稻和晚稻的氮肥利用率显著提高了27.3%和78.3%.从产量、效益和氮肥利用率各方面综合考虑,NPU 100%或UF 100%可作为早稻的适宜施氮模式,NPU 100%或SPCU 70%+PU 30%可作为晚稻的适宜施氮模式,NPU在早、晚稻上的表现均最佳,可在该区域双季稻上推广应用. ., 采用大田试验,在施氮量为180 kg/hm2氮肥供应下研究不同氮肥类型对黄泥田双季稻产量、干物质及氮素积累量、花后干物质积累量及氮肥利用率的影响。结果表明:与不施氮对照(CK)相比,各施氮处理早稻产量增幅77.7%~103.5%,效益增幅7 149~10 648元/hm2,晚稻产量增幅56.4%~72.9%,效益增幅8 055~10 950元/hm2;与普通尿素(prilled urea, PU)习惯施肥(PU 100%)相比,不同缓/控释肥料一次性基施处理在早、晚稻上的表现不一致,在早稻上脲甲醛(ureaformaldehyde, UF)一次性基施(UF 100%)和生化抑制尿素(urea with nitrapyrin, NPU)一次性基施(NPU 100%)处理、晚稻上生化抑制尿素一次性基施(NPU 100%)和70%硫磺树脂双包膜尿素(sulfurpolyester resincoated urea, SPCU)掺混30%普通尿素一次性基施(SPCU 70%+PU 30%)处理能显著提高水稻产量、经济效益和氮肥农学利用率,增幅分别达9.9%、2 281元/hm2和3.7 kg/kg以上,用NPU 100%处理的早稻和晚稻的氮肥利用率显著提高了27.3%和78.3%.从产量、效益和氮肥利用率各方面综合考虑,NPU 100%或UF 100%可作为早稻的适宜施氮模式,NPU 100%或SPCU 70%+PU 30%可作为晚稻的适宜施氮模式,NPU在早、晚稻上的表现均最佳,可在该区域双季稻上推广应用. |
[84] | . , ., |