0 引言
【研究意义】黄淮海地区是我国最大的夏玉米主产区,产量约占全国的35%[1],但由于长期不合理施肥,造成养分利用效率降低,在浪费资源的同时加重了环境的负担[2,3]。近年来,随着劳动力成本的提高,夏玉米一次性施肥已为越来越多的****所推崇[4,5,6]。开展黄淮海夏玉米一次性施肥应用效果研究,能够为黄淮海区夏玉米生产实现稳产增产,提高养分利用率,及保障国家粮食安全提供理论基础和数据参考。【前人研究进展】已有研究表明缓/控释氮肥因具有养分释放与作物吸收同步的特点,对提高玉米产量、品质和氮肥利用率有较好的作用[7,8,9,10],因此成为了一次性施肥技术中的重要环节。而夏玉米对氮肥敏感,且耐肥性强,施氮增产效果显著,合理施用氮肥能有效提高夏玉米产量和氮肥利用率,减轻环境压力[11,12,13]。【本研究切入点】黄淮海夏玉米区内针对一次性施肥方式对玉米产量、氮肥效应及氮素平衡影响的研究虽已有一定报道[5,10,14-16],但研究地块的面积有限,区域代表性较小,对于一次性施肥在整个黄淮海夏玉米区的应用效果评价缺乏代表性。为此,笔者连续2年在河北、河南、山东3省的8个试验点进行了一次性施肥技术对夏玉米生长状况、产量、氮素利用率及0—90 cm土层硝态氮含量分布的影响研究。【拟解决的关键问题】旨在摸清一次性施肥在黄淮海区夏玉米上的应用效应,以期为黄淮海夏玉米区合理施肥、实现轻简化栽培等提供科学依据。1 材料与方法
1.1 试验时间和地点
试验于2015年和2016年在黄淮海夏玉米主产区的河北、河南和山东3省的8处试验点进行。该区属暖温带半湿润性季风气候,气温高,蒸发量大,无霜期170—220 d,降雨量丰富,夏季降雨量占全年70%以上。地下水资源丰富,灌溉条件好。试验点土壤类型及基本养分含量见表1。Table 1
表1
表1各试验点土壤类型及养分指标
Table 1Soil type and nutrient index of each experimental site
试验地点 Experimental location | 土壤类型 Soil type | pH | 有机质 O.M (g·kg-1) | 全氮 Total N (g·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|
河北农科院大河试验站 Dahe experimental station, Hebei academy of agricultural science | 褐土 Cinnamon soil | 8.2 | 17.41 | 1.14 | 44.88 | 132.60 |
河南驻马店西平县盆尧镇于营村 Yuying village, Penyao town, Xiping county, Zhumadian, Henan | 砂姜黑土 Shajiang black soil | 6.1 | 9.30 | 0.10 | 10.60 | 54.30 |
河南驻马店农科院农场 Nongkeyuan farm, Zhumadian, Henan | 砂姜黑土 Shajiang black soil | 6.4 | 9.40 | 0.11 | 11.20 | 63.40 |
山东桓台县生态与可持续发展实验站 Experimental station for ecology and sustainable development of Huantai, Shandong | 褐土 Cinnamon soil | 8.48 | 18.80 | 0.41 | 8.40 | 86.20 |
山东临沂市农科院试验站 Experimental station of Linyi academy of agricultural sciences, Shandong | 潮土 Fluvo-aquic soil | 6.4 | 11.90 | 1.28 | 18.30 | 135.00 |
山东章丘龙山试验站 Longshan experimental station of Zhangqiu, Shandong | 棕壤 Brown soil | 7.8 | 10.60 | 1.10 | 7.90 | 41.30 |
山东德州六一农场 Liuyi farm, Dezhou, Shandong | 潮土 Fluvo-aquic soil | 7.9 | 12.80 | 0.45 | 30.52 | 99.72 |
山东德州市农科院科技园 Science and technology park, Dezhou academy of agricultural sciences, Shandong | 潮土 Fluvo-aquic soil | 7.8 | 7.20 | 1.42 | 25.86 | 77.24 |
新窗口打开
1.2 试验设计
试验共设7个处理,分别为:(1)不施氮、只施磷钾肥处理(N0PK);(2)习惯施肥,根据各地前期调研得出具体的氮磷钾用量(FP);(3)优化施肥,根据玉米需肥规律及当地土壤供肥能力对施肥量进行优化(OPT);(4)控释肥A替代OPT处理中的氮肥,且氮磷钾施肥量与OPT处理相同(CRFA);(5)CRFA处理氮肥减施20%(CRFA80%N);(6)控释肥B替代CRFA80%N中的控释肥A(CRFB80%N);(7)控释肥C替代CRFA80%N中的控释肥A (CRFC80%N)。3次重复,随机区组排列。试验用控释肥A为山东省农业资源与环境研究所研制的水基树脂包膜的控释尿素,膜可生物降解,含N 44%,控释期为30 d;控释肥B为金正大公司生产的热固性有机树脂包膜尿素,含N 29%,控释期为60 d;控释肥C为山东省农业资源与环境研究所研制的水基树脂包膜的控释尿素,膜可生物降解,含N 44%,控释期为45 d。其余肥料均由市场购置:氮肥为尿素(含N 46%),磷肥为过磷酸钙(含P2O5 12%)、钾肥为氯化钾(含K2O 60%)。不同试验点各处理氮磷钾施用量如表2所示。磷钾肥全部一次性底施,大喇叭口期对FP和OPT处理追施氮肥。各试验点试验期内均采用高产玉米栽培的管理方法,玉米品种和种植密度均按照当地高产栽培技术推荐。播种时间为6月上旬,在玉米达到生理成熟、乳线完全消失时收获,收获时间在10月初。
Table 2
表2
表2各试验点施肥情况
Table 2Fertilization of each experimental location
试验地点 Experimental location | 试验处理 Experimental treatment | N (kg·hm-2) | 氮肥基追比 The ration of basic N to topdressing N | P2O5 (kg·hm-2) | K2O (kg·hm-2) |
---|---|---|---|---|---|
河北农科院大河试验站 Dahe experimental station, Hebei academy of agricultural science | N0PK | 0 | - | 90 | 120 |
FP | 150 | 1﹕0 | 90 | 120 | |
OPT | 150 | 1﹕1 | 90 | 120 | |
CRFA | 150 | 1﹕0 | 90 | 120 | |
CRFA80%N | 120 | 1﹕0 | 90 | 120 | |
CRFB80%N | 120 | 1﹕0 | 90 | 120 | |
CRFC80%N | 120 | 1﹕0 | 90 | 120 | |
河南驻马店西平县盆尧镇于营村 Yuying village, Pengyao town, Xiping county, Zhumadian, Henan | N0PK | 0 | - | 90 | 120 |
FP | 225 | 2﹕3 | 90 | 120 | |
OPT | 180 | 2﹕3 | 90 | 120 | |
CRFA | 180 | 1﹕0 | 90 | 120 | |
CRFA80%N | 144 | 1﹕0 | 90 | 120 | |
CRFB80%N | 144 | 1﹕0 | 90 | 120 | |
CRFC80%N | 144 | 1﹕0 | 90 | 120 | |
河南驻马店农科院农场 Nongkeyuan farm, Zhumadian, Henan | N0PK | 0 | - | 90 | 120 |
FP | 225 | 2﹕3 | 90 | 120 | |
OPT | 180 | 2﹕3 | 90 | 120 | |
CRFA | 180 | 1﹕0 | 90 | 120 | |
CRFA80%N | 144 | 1﹕0 | 90 | 120 | |
CRFB80%N | 144 | 1﹕0 | 90 | 120 | |
CRFC80%N | 144 | 1﹕0 | 90 | 120 | |
山东桓台县生态与可持续发展实验站 Experimental station for ecology and sustainable development of Huantai, Shandong | N0PK | 0 | - | 120 | 90 |
FP | 240 | 2﹕3 | 120 | 90 | |
OPT | - | - | - | - | |
CRFA | 240 | 1﹕0 | 120 | 90 | |
CRFA80%N | 192 | 1﹕0 | 120 | 90 | |
CRFB80%N | 192 | 1﹕0 | 120 | 90 | |
CRFC80%N | - | - | - | - | |
山东临沂市农科院试验站 Experimental station of Linyi academy of agricultural sciences, Shandong | N0PK | 0 | 78.75 | 132.75 | |
FP | 262.5 | 1﹕2 | 90 | 90 | |
OPT | 230.5 | 1﹕2 | 78.75 | 132.75 | |
CRFA | 230.5 | 1﹕0 | 78.75 | 132.75 | |
CRFA80%N | 184.5 | 1﹕0 | 78.75 | 132.75 | |
CRFB80%N | 184.5 | 1﹕0 | 78.75 | 132.75 | |
CRFC80%N | - | - | - | - | |
山东章丘龙山试验站 Longshan experimental station of Zhangqiu, Shandong | N0PK | 0 | - | 90 | 120 |
FP | 196 | 2﹕3 | 96 | 96 | |
OPT | 240 | 2﹕3 | 90 | 120 | |
CRFA | 240 | 1﹕0 | 90 | 120 | |
CRFA80%N | 192 | 1﹕0 | 90 | 120 | |
CRFB80%N | 192 | 1﹕0 | 90 | 120 | |
CRFC80%N | 192 | 1﹕0 | 90 | 120 | |
续表2 Continued table 2 | |||||
试验地点 Experimental location | 试验处理 Experimental treatment | N (kg·hm-2) | 氮肥基追比 The ration of basic N to topdressing N | P2O5 (kg·hm-2) | K2O (kg·hm-2) |
山东德州六一农场 Liuyi farm, Dezhou, Shandong | N0PK | 0 | - | 90 | 120 |
FP | 197.2 | 1﹕1 | 60 | 60 | |
OPT | 240 | 2﹕3 | 90 | 120 | |
CRFA | 240 | 1﹕0 | 90 | 120 | |
CRFA80%N | 192 | 1﹕0 | 90 | 120 | |
CRFB80%N | 192 | 1﹕0 | 90 | 120 | |
CRFC80%N | 192 | 1﹕0 | 90 | 120 | |
山东德州市农科院科技园 Science and technology park, Dezhou academy of agricultural sciences, Shandong | N0PK | 0 | 105 | 135 | |
FP | 270 | 2﹕3 | 45 | 45 | |
OPT | 240 | 1﹕2 | 105 | 135 | |
CRFA | 240 | 1﹕0 | 105 | 135 | |
CRFA80%N | 192 | 1﹕0 | 105 | 135 | |
CRFB80%N | 192 | 1﹕0 | 105 | 135 | |
CRFC80%N | 192 | 1﹕0 | 105 | 135 |
新窗口打开
1.3 测定项目与方法
1.3.1 植株性状、茎秆特征及土样采集 收获前去掉两侧边行各1行及小区两端各去掉1 m为收获区,选取连续10株,测量株高,计算平均值;另连续取选20穗考种,调查穗长、穗行数、穗粒数、行粒数和百粒重等。收获中间2行植株样品,分别装入尼龙网袋,晒干脱粒称重,以含水量14%的重量折算产量[5]。收获植株样品时,采集0—30、30—60、60—90 cm剖面新鲜土样,土壤样品由低温保鲜箱保存,带回实验室测定土壤残留硝态氮含量。
1.3.2 植株、籽粒养分及土壤硝态氮含量 收获时,连续取5株植株样品,分为籽粒、茎、叶和其他,计算各器官生物量,并烘干粉碎,测定各器官氮含量及其累积量,计算氮肥利用效率。采用浓H2SO4-H2O2消煮-蒸馏定氮法[17]分析植株各部分全氮含量。土壤样品硝态氮含量测定采用2 mol·L-1 KCl溶液振荡提取后,利用连续流动分析仪进行测定。
1.3.3 有关指标计算和统计方法
变异系数[18](CV)=标准差/均值 (1)
氮肥农学效率(NAE,kg·kg-1)=(施氮区籽粒产量–不施氮区籽粒产量)/施氮量[19] (2)
氮肥表观利用率(NRE,%)=(施氮区植株地上部养分吸收量-不施氮区植株地上部养分吸收量)/施氮量×100[20] (3)
氮肥偏生产力(PFPN,kg·kg-1)= 籽粒产量/施氮量[5] (4)
氮素需求量(ANA,kg·t-1)=植株地上部分氮素养分积累量/产量[5] (5)
养分积累量(kg·hm-2)=(非收获物干重×非收获物氮素含量)+(收获物干重×收获物氮素含量)[5] (6)
1.4 数据统计分析
采用Excel 2010和SAS 8.1 软件进行数据处理和统计分析。2 结果
2.1 一次性施肥对黄淮海区夏玉米株高及穗部性状的影响
表3所示数据为2015年和2016年8个试验点相关指标的平均值。与不施氮肥处理(N0PK)相比,2015年和2016年其余各处理施用氮肥后使夏玉米的株高、穗长、穗粗分别增加17.47%、21.81%、8.60%和16.28%、21.34%、11.22%以上,均达显著性差异水平(P<0.05),但对秃尖长无显著影响;此外,一次性施肥的CRFA、CRFA80%N、CRFB80%N、CRFC80%N处理与FP、OPT处理的各项指标均无显著差异,表明一次性施肥技术对黄淮海区夏玉米长势及外观性状无显著影响。Table 3
表3
表3不同处理对夏玉米株高及穗部性状的影响
Table 3Effects of different fertilizer treatments on plant height and ear character of summer maize
处理 Treatments | 株高Plant height (cm) | 穗长Ear length (cm) | 秃尖长Bare tip length (cm) | 穗粗Ear width (cm) | ||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | |
N0PK | 188.39b | 187.74b | 13.80b | 13.59b | 0.81a | 1.14a | 4.07b | 4.10b |
FP | 234.45a | 234.38a | 17.38a | 16.56a | 0.57a | 1.03a | 4.66a | 4.79a |
OPT | 229.96a | 232.84a | 17.45a | 16.84a | 0.50a | 0.93a | 4.66a | 4.79a |
CRFA | 232.10a | 232.1a | 16.81a | 16.49a | 0.64a | 0.90a | 4.65a | 4.80a |
CRFA80%N | 228.62a | 228.74a | 17.11a | 16.55a | 0.50a | 1.00a | 4.60a | 4.71a |
CRFB80%N | 231.89a | 230.22a | 17.11a | 16.49a | 0.77a | 0.89a | 4.61a | 4.74a |
CRFC80%N | 221.31a | 218.31a | 17.17a | 16.60a | 0.97a | 1.25a | 4.42ab | 4.56ab |
新窗口打开
2.2 一次性施肥对黄淮海区夏玉米产量及其构成因素的影响
从表4可以看出,一次性施肥处理和OPT处理与FP处理相比,在穗粒数和百粒重上并无显著差异。2016年,FP和OPT处理的百粒重较N0PK处理显著增加9.20%和9.69%(P<0.05),但与一次性施肥技术各处理无显著差异;与N0PK处理相比,各处理的平均产量均有较大幅度增产,除2015年的CRFC80%N处理外,其余处理在2年试验期内的增产效果稳定且显著(P<0.05)。各处理两年的产量变异系数均保持在0.20左右,说明各试验点不同处理间的产量稳定性较好,但各处理2016年的产量变异系数较2015年均有所增加,可能与山东桓台县生态与可持续发展试验站和河北农科院大河试验站玉米成熟期时当地阴雨天气较多而整体减产有关。与FP处理相比,CRFA处理2年的平均增产率最高,达7.91%,且2016年各一次性施肥技术处理的增产率较2015年均有较大提高,表明一次性施肥技术对于黄淮海区夏玉米的稳产增产效应明显。Table 4
表4
表4不同处理对试验期内夏玉米产量及其构成因素的影响
Table 4Effects of different fertilizer treatments on summer maize yield and it’s component
处理 Treatments | 穗粒数 Grains per ear (No.) | 百粒重 100 grain weight (g) | 平均产量 Average grain yield (t·hm-2) | 变异系数 CV | 增产率 Increased rate (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | |
N0PK | 432.03a | 397.22a | 28.89a | 31.42b | 6.51b | 6.09b | 0.29 | 0.27 | - | - |
FP | 506.70a | 438.89a | 30.43a | 34.31a | 8.51a | 8.36a | 0.17 | 0.21 | - | - |
OPT | 496.65a | 455.95a | 29.52a | 34.47a | 9.00a | 9.18a | 0.20 | 0.25 | 5.79 | 9.85 |
CRFA | 505.06a | 440.71a | 30.63a | 33.69ab | 9.18a | 9.00a | 0.19 | 0.21 | 7.83 | 7.99 |
CRFA80%N | 502.31a | 446.63a | 30.20a | 32.84ab | 8.79a | 8.86a | 0.22 | 0.24 | 3.28 | 6.01 |
CRFB80%N | 483.81a | 435.41a | 30.49a | 33.16ab | 8.74a | 8.55a | 0.25 | 0.24 | 2.75 | 2.28 |
CRFC80%N | 465.81a | 441.11a | 28.93a | 32.93ab | 8.14ab | 8.78a | 0.21 | 0.26 | -4.36 | 5.07 |
新窗口打开
由于黄淮海夏玉米种植区内的气温、降水等气候环境因素存在较大差异,一次性施肥技术在不同土壤类型上对夏玉米平均产量水平影响变异较大(表5)。在棕壤上,除CRFC80%N外,其余一次性施肥处理较FP处理均表现出较好的稳产增产效果,其中CRFA处理的增产率最高,达12.74%;在褐土上,仅CRFA处理出现稳产增产效果,其中在砂姜黑土上的增产率为7.17%,达显著性水平(P<0.05);在潮土上,一次性施肥处理均表现出较好的增产效果,其中CRFC80%N的增产率显著高于FP处理(P<0.05),达11.66%;一次性施肥处理在砂姜黑土上未表现出明显的稳产增产效果。利用一次性施肥技术的4个处理中,CRFA和CRFA80%N处理在不同土壤类型上均表现出较好的稳产增产效果,说明控释肥A对于黄淮海夏玉米区不同土壤类型的适应性相对较好,能够作为黄淮海夏玉米区轻简化施肥技术的推荐备选措施。
Table 5
表5
表5不同处理对不同土壤类型夏玉米产量的影响
Table 5Effects of different fertilizer treatments on summer maize yield of different soil types (t·hm-2)
处理Treatments | 棕壤Brown soil | 褐土Cinnamon soil | 潮土Fluvo-aquic soil | 砂姜黑土Shajiang black soil |
---|---|---|---|---|
N0PK | 5.91d | 5.13d | 6.45c | 8.95a |
FP | 7.69b | 7.11b | 9.35b | 9.82a |
OPT | 6.85c | 7.52a | 10.44a | 10.44a |
CRFA | 8.67a | 7.62a | 10.10ab | 9.93a |
CRFA80%N | 8.44a | 7.00bc | 10.09ab | 9.45a |
CRFB80%N | 8.40a | 6.67c | 9.82ab | 9.58a |
CRFC80%N | 6.77c | 6.92bc | 10.44a | 9.29a |
新窗口打开
2.3 一次性施肥对黄淮海区夏玉米氮肥利用效率的影响
由表6可知,与FP处理相比,一次性施肥技术在试验期内,对黄淮海区夏玉米的氮肥农学效率、氮肥表观利用率及氮素吸收量均表现出一定程度的提高趋势,但未达显著性差异水平。在氮肥偏生产力上,一次性施肥技术的各处理亦表现出较明显的增长趋势,其中一次性减氮施肥处理在2年的试验期内均显著提高了氮肥偏生产力(P<0.05),CRFA80%N、CRFB80%N和CRFC80%N处理在2015年和2016年分别较FP处理增加32.15%、31.27%、27.55%和40.94%、36.43%、45.45%,平均提高达33.85%。因此,一次性减氮施肥技术能够在实现黄淮海区夏玉米轻简化管理的同时,显著提高氮肥偏生产力,明显提高氮肥利用率。Table 6
表6
表6不同处理夏玉米氮肥利用效率
Table 6N fertilizer use efficiency of different fertilizer treatments
处理 Treatments | 氮肥农学效率NAE (kg·kg-1) | 氮肥表观利用率NER (%) | 氮肥偏生产力PFPN (kg·kg-1) | 需求量ANA (kg·t-1) | ||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | |
N0PK | - | - | - | - | - | - | 17.33b | 16.81a |
FP | 10.66a | 9.99a | 37.36a | 34.91a | 39.20c | 36.89d | 24.05a | 20.84a |
OPT | 14.10a | 15.56a | 41.59a | 39.55a | 43.31bc | 44.14bcd | 22.34a | 19.15a |
CRFA | 13.01a | 14.31a | 41.24a | 42.73a | 43.42bc | 42.58cd | 22.48a | 19.89a |
CRFA80%N | 16.11a | 16.65a | 39.75a | 37.91a | 51.80a | 51.99ab | 21.88a | 18.23a |
CRFB80%N | 15.81a | 14.99a | 42.18a | 37.08a | 51.46a | 50.33abc | 22.90a | 18.98a |
CRFC80%N | 15.34a | 16.63a | 40.72a | 38.95a | 50.00ab | 53.66a | 24.04a | 18.55a |
新窗口打开
2.4 一次性施肥对黄淮海区夏玉米0-90cm土壤NO3--N含量的影响
图1为各试验点不同处理2016年夏玉米收获时0—90 cm土层NO3--N含量平均值分布情况。由图可知,0—30 cm土层,CRFA和FP处理的硝态氮含量显著高于其余处理(P<0.05),分别达18.00和17.40 mg·kg-1。0—90 cm土层范围内,除CRFA处理外,其余处理的硝态氮量均显著低于FP处理,此外,OPT处理的土壤NO3--N含量显著高于一次性减氮施肥处理(P<0.05),达9.16 mg·kg-1。显示原图|下载原图ZIP|生成PPT
图1不同处理对0—90 cm土层硝态氮含量的影响
-->Fig. 1Effect of different fertilizer treatments on soil NO3--N content in 0-90 cm
-->
2.5 一次性施肥技术经济效益分析
不同处理经济效益分析如表7所示,一次性施肥技术处理的夏玉米产值较FP处理均不同程度提高,其中CRFA处理的产值最高,达14 444.92 元/hm2,且由于其为一次性施肥,省去了后期追肥900 元/hm2的人工费,因此其收益亦高于其他处理,较FP处理增收1 772.61元/hm2,说明一次性减量施肥能够减少追肥人工投入,增加农民纯收入。此外,CRFA80%N和CRFA处理的收益均高于OPT处理,CRFB80%N和CRFC80%N处理则略低于OPT处理,说明控释肥A在黄淮海夏玉米区的整体适应性相对较好,且CRFA80%N处理可作为农民增收的推荐施肥技术。Table 7
表7
表7不同处理经济效益分析
Table 7Economic analysis of different treatments (yuan/hm2)
处理 Treatments | 两年平均产量 Average yield (kg·hm-2) | 产值 Output value (yuan/hm2) | 人工费[5] Labour cost (yuan/hm2) | 氮肥成本 N cost (yuan/hm2) | 收益 Profit (yuan/hm2) | 增收 Net income (yuan/hm2) |
---|---|---|---|---|---|---|
N0PK | 6235.94 | 9977.50 | 0 | - | 9977.50 | - |
FP | 8329.90 | 13327.85 | 900 | 862.99 | 11564.86 | - |
OPT | 9026.16 | 14441.86 | 900 | 815.79 | 12726.07 | 1161.21 |
CRFA | 9028.08 | 14444.92 | 0 | 1107.45 | 13337.47 | 1772.61 |
CRFA80%N | 8749.53 | 13999.26 | 0 | 886.03 | 13113.23 | 1548.37 |
CRFB80%N | 8591.03 | 13745.65 | 0 | 1033.98 | 12711.67 | 1146.81 |
CRFC80%N | 8362.19 | 13379.50 | 0 | 887.24 | 12492.26 | 927.40 |
新窗口打开
3 讨论
氮素是夏玉米生长所必需的重要元素[21],也是夏玉米产量形成的重要限制因子[22],氮肥施用不当,不但容易造成作物减产和氮肥利用率下降,还会引发一系列的环境问题[23,24,25]。近年来,在提高化肥利用率方面,国内已有一些成果报道,如氮肥深施、平衡施肥、以水带肥、腐殖酸配施等技术[21,26-27],但在提高肥料利用率的同时,显著增加玉米产量的能力仍有待进一步提高[28]。研究表明,作物生育期内干物质的积累是产量形成的基础,干物质积累的水平决定了最终籽粒产量的高低[29,30,31]。玉米的干物质生产主要来自叶片的光合作用[32]。生育后期干物质积累多,说明花后光合生产能力强[33]。周宝元等[34]研究发现,与常规施肥处理比,施用缓释肥明显改善了玉米的光合性能,使植株开花后仍然保持较高的叶面积指数和光合速率,且下降缓慢,有利于生产更多的光合产物,此外,缓/控释肥根据玉米生长特性进行选择性释放,显著提高花后土壤氮素的供应能力[9],从而改善后期光合性能,延缓了叶片衰老[35]。因此,施用缓/控释肥料是提高作物产量和肥料利用率的重要手段和方法[34,36]。研究表明,与等氮量的常规施肥相比,缓控释氮肥在不同地区不同土壤对玉米均有不同程度的增产[5,37-38],与本试验一次性施肥技术中施用缓/控释氮肥的结果相吻合。由此可知,夏玉米底肥一次性施用缓/控释肥能满足夏玉米全生育期养分需求,节约追肥成本,从而实现轻简化生产。本试验条件下,2016年夏玉米收获时,OPT处理0—90 cm土层中NO3--N含量显著低于等施氮量的CRFA处理(图1),这可能是OPT处理的氮肥非一次性施入,减少了淋溶等损失比例,并在一定程度上提高了氮肥利用效率(表6),从而减少了土壤中NO3--N的累积。而CRFA处理的养分释放相对较慢,能够明显减少肥料氮的损失[38],在氮肥吸收量基本相当的情况下(表6),势必有可能造成土壤残留氮含量的升高。因此,在计算后茬作物的施肥量时应考虑土壤中残留氮的供肥能力,否则长此以往,势必会增加对大气和地下水环境的污染风险[38]。一次性减氮施肥处理在保证稳产增产、减少土壤NO3--N的累积,提高氮素利用效率和农民收入方面均有良好的表现,其中CRFA80%N和CRFB80%N的表现尤为稳定。
本试验期内,优化施肥和一次性施肥技术处理的氮肥利用率均较农民习惯处理有所提高,与王宜伦等[5]提出的减低施氮量可有效提高氮肥利用效率的结论相一致,但如何在保证稳产增产及保持土壤地力或培肥土壤的前提下,进一步提高氮肥利用效率,优化节约用肥仍需要进行深入的研究。
4 结论
黄淮海夏玉米底肥一次性施用缓/控释氮肥对夏玉米的生长状况和产量影响效果并不显著,但在黄淮海夏玉米区内的棕壤、潮土和砂姜黑土上表现出较好的稳产增产效果,较好地满足了夏玉米生育后期对氮素的吸收利用,提高了产量和氮肥偏生产力,其中CRFA和CRFA80%N处理在黄淮海夏玉米区不同土壤类型上均表现出较好的稳产增产效果,平均增产率分别为7.91%和4.64%。采用夏玉米专用缓/控释肥一次性施用,避免了夏玉米生育后期的追肥,节约了追肥人工成本,实现了黄淮海夏玉米轻简化和高效施肥的目的。其中一次性减量施用氮肥处理能够保证黄淮海夏玉米的稳产增产,并有效提高氮素利用效率,其中氮肥偏生产力较FP处理显著提高33.85%。从配合国家化肥使用量零增长以及化肥减量施用政策考虑,推荐减少20%氮用量的CRFA施肥模式在黄淮海夏玉米生产上一次性施用。
致谢:各试验点及当地农业科学院相关人员对本试验的田间管理及样品采集均做了大量的工作,特此感谢!
The authors have declared that no competing interests exist.
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[1] | [D]. , [D]. , |
[2] | . , 2004年至今,在国家支农政策的推动下,农业种植结构大幅度调整,粮食产量连续增加,而且启动了全国测土配方施肥项目。采用2008年的农户调研数据与2001年进行对比,揭示了我国粮食生产体系中化肥效率的变化。结果表明,过去7年中小麦和玉米的单位面积化肥用量分别增加5.4%和29.0%,而水稻减少4.3%。全国粮食作物化肥消费总量增加1.3×106t,但占全国化肥消费总量的比重从68%下降到50%。用PFP(粮食产量除以化肥用量)表征化肥效率,发现三大粮食作物的化肥效率大小排列顺序为水稻小麦玉米;7年中小麦和水稻的化肥偏生产力分别从10.6 kg/kg增加到11.9 kg/kg,13.9 kg/kg增加到15.7 kg/kg,玉米的化肥偏生产力从13.8 kg/kg下降到11.5kg/kg。我国农业种植结构调整对化肥施用量影响较大。粮食作物向优势主产区集中以及机械和管理措施的改善有利于进一步提高粮食作物化肥效率,但经济作物播种面积仍在大幅增加,这将对全国化肥效率变化带来变数。 ., 2004年至今,在国家支农政策的推动下,农业种植结构大幅度调整,粮食产量连续增加,而且启动了全国测土配方施肥项目。采用2008年的农户调研数据与2001年进行对比,揭示了我国粮食生产体系中化肥效率的变化。结果表明,过去7年中小麦和玉米的单位面积化肥用量分别增加5.4%和29.0%,而水稻减少4.3%。全国粮食作物化肥消费总量增加1.3×106t,但占全国化肥消费总量的比重从68%下降到50%。用PFP(粮食产量除以化肥用量)表征化肥效率,发现三大粮食作物的化肥效率大小排列顺序为水稻小麦玉米;7年中小麦和水稻的化肥偏生产力分别从10.6 kg/kg增加到11.9 kg/kg,13.9 kg/kg增加到15.7 kg/kg,玉米的化肥偏生产力从13.8 kg/kg下降到11.5kg/kg。我国农业种植结构调整对化肥施用量影响较大。粮食作物向优势主产区集中以及机械和管理措施的改善有利于进一步提高粮食作物化肥效率,但经济作物播种面积仍在大幅增加,这将对全国化肥效率变化带来变数。 |
[3] | ., ABSTRACT Crop rotation and N are management methods that can increase corn (Zea mays L.) grain yields. Our objective was to determine the corn grain yield response to six crop rotation sequences and four N rates in a long-term (35-yr) study. The rotations were continuous corn (CC), corn-alfalfa (Medicago sativa L.) (CA), corn-soybean [Glycine max (L.) Merr.] (CS), corn-corn-corn-affalfa-alfalfa (CCCAA), corn-corn-oat (Avena sativa L.) with alfalfa seeding-alfalfa-alfalfa (CCOaAA), and corn-soybean-corn-oat with alfalfa seeding-alfalfa (CSCOaA). From 1970 to 2004, first-yr corn grain yields (CCCAA, CCOaAA, and CSCOaA) increased from 79 to 100 kg ha(-1) yr(-1). Increasing N rates did not influence grain yield trends, indicating that an alfalfa crop produced the N required by first-yr corn. However, 224 kg N ha(-1) was needed to improve second and third-yr grain yield trends 69 and 58 kg ha(-1) yr(-1), respectively. Grain yield trends for CC did not improve despite increasing N treatments, although grain yield tended to increase over time at 224 kg N ha(-1) (P < 0.10). From 1989 to 2004, corn grain yield trends of CA and CS decreased by 161 kg ha(-1) yr(-1) if no N was added. The 2-yr rotation was not sufficient to improve grain yield trends, whereas the 5-yr rotation was able to enhance corn grain yield and decrease the need for fertilizer N. Effects on pathogens and insects were not evaluated but warrant further investigations. Overall, this data shows that extended rotations involving forage crops reduce N inputs, increase corn grain yields, and are more agronomically sustainable than current short-term rotations. |
[4] | . , ., |
[5] | . , 【目的】探讨实现超高产夏玉米(≥12000kg·hm^-2)简化、高产和高效施肥技术。【方法】2007年和2008年在河南省浚县通过大田试验研究了超高产夏玉米植株氮素吸收、分配和积累特性及具有知识产权的缓/控释氮肥施用效果。【结果】拔节期至大喇叭口期和吐丝期至灌浆中期是超高产夏玉米两个氮素吸收关键时期,从出苗到吐丝期,叶片是氮素的分配中心,吐丝期以后,籽粒/果穗成为氮素的分配中心;吐丝后超高产夏玉米氮素吸收积累量占总积累量的40%—48%,生育后期土壤充足供氮促进夏玉米对氮素的吸收利用保证籽粒灌浆,对实现超高产至关重要。苗期一次性施用缓/控释氮肥的植株氮素积累量比常规2次施氮提高了6%—7%,产量提高了3%—4%,氮肥利用率提高了5个百分点,氮肥农学效率提高了1.26—1.59kg·kg^-1。【结论】施用缓/控释氮肥有利于超高产夏玉米生育后期氮素吸收利用,实现了超高产夏玉米的一次性施肥,增产显著且省工高效。 ., 【目的】探讨实现超高产夏玉米(≥12000kg·hm^-2)简化、高产和高效施肥技术。【方法】2007年和2008年在河南省浚县通过大田试验研究了超高产夏玉米植株氮素吸收、分配和积累特性及具有知识产权的缓/控释氮肥施用效果。【结果】拔节期至大喇叭口期和吐丝期至灌浆中期是超高产夏玉米两个氮素吸收关键时期,从出苗到吐丝期,叶片是氮素的分配中心,吐丝期以后,籽粒/果穗成为氮素的分配中心;吐丝后超高产夏玉米氮素吸收积累量占总积累量的40%—48%,生育后期土壤充足供氮促进夏玉米对氮素的吸收利用保证籽粒灌浆,对实现超高产至关重要。苗期一次性施用缓/控释氮肥的植株氮素积累量比常规2次施氮提高了6%—7%,产量提高了3%—4%,氮肥利用率提高了5个百分点,氮肥农学效率提高了1.26—1.59kg·kg^-1。【结论】施用缓/控释氮肥有利于超高产夏玉米生育后期氮素吸收利用,实现了超高产夏玉米的一次性施肥,增产显著且省工高效。 |
[6] | . , This study was conducted on scale of maize single fertilization, distribution of maize production regions, application amount of fertilizer, economic input and production status of high N compound fertilizer in Jilin, using fertilizer statistics and sampling information from farmers and fertilizer sellers. The results indicate that single fertilization is predominantly used in central and east regions of Jilin maize belt, where soil types are black soil, chernozem, albic soil, meadow soil and dark brown forest soil. In 2005, single fertilization was used in 6 2.5% of the total fertilized fields. Theaverage application amount of fertilizer is 554 kg/hm and the cost of single fertilization is 313yuan/hm higherthan that under farmers’ normal application of fertilizer.Rate of high N compound fertilizer and content of N in fertilizer are increased. Rate of temporary registered high N compound fertilizer and rate of high N compound fertilizer are especially increased,from 45.1% and 50.0% of 2003 to 95.5% and 77.0 % of 2005. ., This study was conducted on scale of maize single fertilization, distribution of maize production regions, application amount of fertilizer, economic input and production status of high N compound fertilizer in Jilin, using fertilizer statistics and sampling information from farmers and fertilizer sellers. The results indicate that single fertilization is predominantly used in central and east regions of Jilin maize belt, where soil types are black soil, chernozem, albic soil, meadow soil and dark brown forest soil. In 2005, single fertilization was used in 6 2.5% of the total fertilized fields. Theaverage application amount of fertilizer is 554 kg/hm and the cost of single fertilization is 313yuan/hm higherthan that under farmers’ normal application of fertilizer.Rate of high N compound fertilizer and content of N in fertilizer are increased. Rate of temporary registered high N compound fertilizer and rate of high N compound fertilizer are especially increased,from 45.1% and 50.0% of 2003 to 95.5% and 77.0 % of 2005. |
[7] | . , 从控释和缓释肥料提高肥料利用率的基本原理出发,对国际肥料工业协会(IFA)提出的和国际上公认的肥料养分释放、缓释、控释、控释肥、缓释肥和稳定性肥料的概念和定义进行了讨论和认定。介绍了山东农业大学主持承担的国家“948”项目、农业部跨越计划项目和山东省优秀中青年科学家科研奖励基金项目———包膜控释肥研究与开发的进展情况,包括包膜控释肥的包膜材料与工艺流程的选择、研制的包膜控释肥生产设备、开发出的控释肥系列品种、控释肥的质量检测标准、控释肥在多种作物上的应用效果,并分析了控释肥的经济、社会、生态效益及推广应用前景。 ., 从控释和缓释肥料提高肥料利用率的基本原理出发,对国际肥料工业协会(IFA)提出的和国际上公认的肥料养分释放、缓释、控释、控释肥、缓释肥和稳定性肥料的概念和定义进行了讨论和认定。介绍了山东农业大学主持承担的国家“948”项目、农业部跨越计划项目和山东省优秀中青年科学家科研奖励基金项目———包膜控释肥研究与开发的进展情况,包括包膜控释肥的包膜材料与工艺流程的选择、研制的包膜控释肥生产设备、开发出的控释肥系列品种、控释肥的质量检测标准、控释肥在多种作物上的应用效果,并分析了控释肥的经济、社会、生态效益及推广应用前景。 |
[8] | . , 采用包膜控释氮肥在玉米上进行肥效试验研究。结果表明,与普通氮肥(尿素)相比,控释氮肥由于其本身控制释放和缓慢释放的特点,能使耕作层土壤速效氮含量在玉米生育期内维持较高的水平,满足玉米生长对氮素的吸收需求,尤其能满足玉米中后期对养分高强度吸收的需求;显著提高玉米生长中后期植株体内氮素含量,加速氮磷钾向籽粒的转移,从而提高生物产量、经济产量和玉米品质。同等和减半施氮量条件下,玉米产量和氮素利用率都有显著提高。 ., 采用包膜控释氮肥在玉米上进行肥效试验研究。结果表明,与普通氮肥(尿素)相比,控释氮肥由于其本身控制释放和缓慢释放的特点,能使耕作层土壤速效氮含量在玉米生育期内维持较高的水平,满足玉米生长对氮素的吸收需求,尤其能满足玉米中后期对养分高强度吸收的需求;显著提高玉米生长中后期植株体内氮素含量,加速氮磷钾向籽粒的转移,从而提高生物产量、经济产量和玉米品质。同等和减半施氮量条件下,玉米产量和氮素利用率都有显著提高。 |
[9] | . , 【目的】研究不同灌水条件下,控释尿素与常规尿素用量对玉米氮利用及产量和品质的影响。【方法】采用随机区组设计5个施氮水平和2个水分水平,研究不同类型尿素与水耦合对玉米干物质量、叶面积指数、籽粒产量、生物产量、地上部氮素吸收和籽粒蛋白质产量的影响。【结果】相同灌水条件下,施氮处理玉米干物质量、叶面积指数均大于对照,控释尿素处理玉米的干物质量、叶面积指数大口期前低于常规尿素,开花后却显著高于常规尿素;增加施氮量可显著提高玉米吸氮量及花后籽粒吸氮量,营养器官虽可获得较大的氮素累积,但降低了向籽粒转移氮量。同一氮水平下,灌浆水提高了玉米地上部干物质量、叶面积指数和籽粒产量,降低了玉米地上部吸氮量、花后籽粒吸氮量和花前转移氮量,籽粒蛋白质含量和产量也显著降低。与常规尿素相比,控释尿素与水分对玉米氮素吸收、籽粒产量和籽粒蛋白质产量的耦合效应更显著。【结论】与常规尿素相比,不论有无灌浆水,控释尿素均能较好地协调玉米的地上部生长,具有明显的"前控后保"效果,利于获得高产与优质的同步,而灌浆水可以显著提高这种效果。 ., 【目的】研究不同灌水条件下,控释尿素与常规尿素用量对玉米氮利用及产量和品质的影响。【方法】采用随机区组设计5个施氮水平和2个水分水平,研究不同类型尿素与水耦合对玉米干物质量、叶面积指数、籽粒产量、生物产量、地上部氮素吸收和籽粒蛋白质产量的影响。【结果】相同灌水条件下,施氮处理玉米干物质量、叶面积指数均大于对照,控释尿素处理玉米的干物质量、叶面积指数大口期前低于常规尿素,开花后却显著高于常规尿素;增加施氮量可显著提高玉米吸氮量及花后籽粒吸氮量,营养器官虽可获得较大的氮素累积,但降低了向籽粒转移氮量。同一氮水平下,灌浆水提高了玉米地上部干物质量、叶面积指数和籽粒产量,降低了玉米地上部吸氮量、花后籽粒吸氮量和花前转移氮量,籽粒蛋白质含量和产量也显著降低。与常规尿素相比,控释尿素与水分对玉米氮素吸收、籽粒产量和籽粒蛋白质产量的耦合效应更显著。【结论】与常规尿素相比,不论有无灌浆水,控释尿素均能较好地协调玉米的地上部生长,具有明显的"前控后保"效果,利于获得高产与优质的同步,而灌浆水可以显著提高这种效果。 |
[10] | . , 以郑单958为材料,比较研究了复合肥(CF)与包膜复合肥(CCF)对华北平原夏玉米产量、氮肥利用率及土壤速效氮与土壤氮素表观盈亏的影响。结果表明,1)玉米产量随施氮量增大而增大,施N 180 kg/hm2时,CCF处理高于CF处理,施N 90 kg/hm2时表现相反;2)与CF处理比较,CCF处理施N 180 kg/hm2时,氮肥利用率高5.3个百分点,施N 90 kg/hm2时低2.4个百分点;3)土壤速效氮含量一般随施氮量增大而提高,各时期表土层CCF处理较CF处理高,中、下土层表现相反。大喇叭口期之前,CF处理中、下土层土壤速效氮含量高于上土层(0—20 cm或0—40cm),而CCF180处理0—60 cm土层高于60—120 cm土层;4)不施氮,各生育阶段均出现土壤氮素表观亏缺,且吐丝后亏缺量占总亏缺量近80%;土壤氮素表观亏缺量随施氮量增大而降低,两种肥料表现一致;同等施氮量下CCF处理亏缺量较CF处理低。包膜复合肥氮素释放较平稳,对土壤速效氮向下运移的控制较好,有利于减少氮素潜在的淋洗损失。综合考虑产量、氮肥利用与氮素损失等因素,包膜复合肥用量N 180 kg/hm2是吴桥试区夏玉米季较为理想的选择。 ., 以郑单958为材料,比较研究了复合肥(CF)与包膜复合肥(CCF)对华北平原夏玉米产量、氮肥利用率及土壤速效氮与土壤氮素表观盈亏的影响。结果表明,1)玉米产量随施氮量增大而增大,施N 180 kg/hm2时,CCF处理高于CF处理,施N 90 kg/hm2时表现相反;2)与CF处理比较,CCF处理施N 180 kg/hm2时,氮肥利用率高5.3个百分点,施N 90 kg/hm2时低2.4个百分点;3)土壤速效氮含量一般随施氮量增大而提高,各时期表土层CCF处理较CF处理高,中、下土层表现相反。大喇叭口期之前,CF处理中、下土层土壤速效氮含量高于上土层(0—20 cm或0—40cm),而CCF180处理0—60 cm土层高于60—120 cm土层;4)不施氮,各生育阶段均出现土壤氮素表观亏缺,且吐丝后亏缺量占总亏缺量近80%;土壤氮素表观亏缺量随施氮量增大而降低,两种肥料表现一致;同等施氮量下CCF处理亏缺量较CF处理低。包膜复合肥氮素释放较平稳,对土壤速效氮向下运移的控制较好,有利于减少氮素潜在的淋洗损失。综合考虑产量、氮肥利用与氮素损失等因素,包膜复合肥用量N 180 kg/hm2是吴桥试区夏玉米季较为理想的选择。 |
[11] | ., |
[12] | ., Maize varieties with improved nitrogen(N)-use efficiency under low soil N conditions can contribute to sustainable agriculture. Tests were carried to see whether selection of European elite lines at low and high N supply would result in hybrids with differential adaptation to these contrasting N conditions. The objective was to analyze whether genotypic differences in N uptake and N-utilization efficiency existed in this material and to what extent these factors contributed to adaptation to low N supply. Twenty-four hybrids developed at low N supply (L × L) were compared with 25 hybrids developed at high N supply (H × H). The N uptake was determined as total above-ground N in whole plants, and N-utilization efficiency as the ratio between grain yield and N uptake in yield trials at four locations and at three N levels each. Highly significant variations as a result of hybrids and hybrids × N-level interaction were observed for grain yield as well as for N uptake and N-utilization efficiency in both hybrid types. Average yields of the L × L hybrids were higher than those of the H × H hybrids by 11.5% at low N supply and 5.4% at medium N level. There was no significant yield difference between the two hybrid types at high N supply. The L × L hybrids showed significantly higher N uptake at the low (12%) and medium (6%) N levels than the H × H hybrids. In contrast, no differences in N-utilization efficiency were observed between the hybrid types. These results indicate that adaptation of hybrids from European elite breeding material to conditions with reduced nitrogen input was possible and was mainly the result of an increase in N-uptake efficiency. |
[13] | ., Identifying soil attributes which are most determinant to crop yield is still a matter of debate. The main objective of the present study is to relate the variations in corn (Zea mays) yield and N uptake to 16 soil attributes. Samples were collected in 2005 and 2006 from a long-term experiment at the IRDA Experiment Station of Saint Lambert de Lauzon in Quebec, Canada. Soil organic C (SOC), tot... |
[14] | . , A field experiment was conducted to study soil nutrient restrictive factors and plant nutrient uptake and accumulation of super-high-yield summer maize in 2007 and 2008. The results show that the maize yields are highest under the OPT treatment (By ASI), 12051.2 kg/ha and 13246.3 kg/ha in 2007 and 2008 respectively. The nitrogen and potassium fertilization could evidently increase the yields by 8.92% and 7.14%, which indicates N and K are main nutrient restrictive factors. The accumulations of nitrogen, phosphorus and potassium of super-high-yield summer maize plants are increased with the extension of the bearing period, and the nutrient accumulation amounts are maximum at the maturity stage. The order of nutrient accumulations is K>N>P, and the absorbed nutrient ratio with 100 kilogram maize of N, P and K are 2.40∶1∶2.73. The key period of nutrient absorption is from the jointing stage to silking stage, and the absorbed nutrient rates are the highest. After the silking stage, maize plant absorbs more nitrogen and phosphorus. Leaf is distribution center of nitrogen and phosphorus from the seeding stage to silking stage, and the transfer efficiency of nitrogen and phosphorus are higher in stems and leaves at the late stages, while the transfer proportion of potassium is small. Nutrients are absorbed continuously at the whole growth period of super-high-yield summer maize, it is essential to super-high-yield topdressing after the silking stage that ensure adequate nutrients at the grain filling stage. ., A field experiment was conducted to study soil nutrient restrictive factors and plant nutrient uptake and accumulation of super-high-yield summer maize in 2007 and 2008. The results show that the maize yields are highest under the OPT treatment (By ASI), 12051.2 kg/ha and 13246.3 kg/ha in 2007 and 2008 respectively. The nitrogen and potassium fertilization could evidently increase the yields by 8.92% and 7.14%, which indicates N and K are main nutrient restrictive factors. The accumulations of nitrogen, phosphorus and potassium of super-high-yield summer maize plants are increased with the extension of the bearing period, and the nutrient accumulation amounts are maximum at the maturity stage. The order of nutrient accumulations is K>N>P, and the absorbed nutrient ratio with 100 kilogram maize of N, P and K are 2.40∶1∶2.73. The key period of nutrient absorption is from the jointing stage to silking stage, and the absorbed nutrient rates are the highest. After the silking stage, maize plant absorbs more nitrogen and phosphorus. Leaf is distribution center of nitrogen and phosphorus from the seeding stage to silking stage, and the transfer efficiency of nitrogen and phosphorus are higher in stems and leaves at the late stages, while the transfer proportion of potassium is small. Nutrients are absorbed continuously at the whole growth period of super-high-yield summer maize, it is essential to super-high-yield topdressing after the silking stage that ensure adequate nutrients at the grain filling stage. |
[15] | . , . , |
[16] | . , ., |
[17] | |
[18] | . , . , |
[19] | . , ., |
[20] | . , ., |
[21] | . , . , |
[22] | ., Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand. |
[23] | . , ., |
[24] | ., Overapplication of N and P and insufficient supply of K are considered primary reasons for restriction of yield improvement in the North China Plain. Optimized nutrient management practices based on soil testing and yield targets have been developed. Other large scale field experiments have indicated that additional improvement for yield and nutrient use benefits is needed. The objective of this study was to evaluate the effects of the optimized nutrient management system on yield, nutrient uptake, nutrient utilization, and profit in the North China provinces of Shanxi, Hebei, Shandong, and Henan. Treatments consisted of a check without fertilizer use (CK); a balanced, optimum nutrient application (OPT); the farmers' practice (FP); and a series of nutrient omission treatments (minus N, P, and K, respectively). The results indicated that the OPT optimized grain yield, nutrient use efficiency, and profitability. Maize (Zea mays L.) yield increased by 12.2% at Shanxi and 18.5% at Hebei, respectively. Inputs ofN and P across the wheat (Triticum aestivum L.) and maize system at the four sites was reduced by 13% (266 kg N ha |
[25] | ., Excessive N fertilization in intensive agricultural areas of China has resulted in serious environmental problems because of atmospheric, soil, and water enrichment with reactive N of agricultural origin. This study examines grain yields and N loss pathways using a synthetic approach in 2 of the most intensive double-cropping systems in China: waterlogged rice/upland wheat in the Taihu region of east China versus irrigated wheat/rainfed maize on the North China Plain. When compared with knowledge-based optimum N fertilization with 30-60% N savings, we found that current agricultural N practices with 550-600 kg of N per hectare fertilizer annually do not significantly increase crop yields but do lead to about 2 times larger N losses to the environment. The higher N loss rates and lower N retention rates indicate little utilization of residual N by the succeeding crop in rice/wheat systems in comparison with wheat/ maize systems. Periodic waterlogging of upland systems caused large N losses by denitrification in the Taihu region. Calcareous soils and concentrated summer rainfall resulted in ammonia volatilization (19% for wheat and 24% for maize) and nitrate leaching being the main N loss pathways in wheat/maize systems. More than 2-fold increases in atmospheric deposition and irrigation water N reflect heavy air and water pollution and these have become important N sources to agricultural ecosystems. A better N balance can be achieved without sacrificing crop yields but significantly reducing environmental risk by adopting optimum N fertilization techniques, controlling the primary N loss pathways, and improving the performance of the agricultural Extension Service. |
[26] | . , ., |
[27] | . , Based on N isotope tracer and a pot experiment, the dynamics of soil microbial biomass N during different rice growing stages under different fertilizer treatments was investigated, and the microbial mechanism on the enhancement of inorganic fertilizer-N use efficiency was discussed. Treatments included (NH)SO (F) and (NH)SO plus either chicken manure (FC), pig manure (FP), or vinasse (FV). The results showed that in the early growth stage of rice, the combined use of (NH)SO and chicken manure, pig manure, or vinasse increased the microbial immobilization rate of the applied (NH)SO-N and reduced soil mineralN content. However, releasing rates of immobilizedN during high N demand period of rice were 87%銆81%,and 81%,corresponding to treatment FC, FP, and FV, respectively. Values of use efficiency of the applied (NH)SO-N under FC, FP, and FV management were all over 60% except (NH)SO alone treatment which was only 39%. Thus, combined applying mineral and organic N fertilizer is a promising practice to enhance N use efficiency in agricultural systems due to the reduction in N loss and synchronizing N assimilation with crop requirement. . , Based on N isotope tracer and a pot experiment, the dynamics of soil microbial biomass N during different rice growing stages under different fertilizer treatments was investigated, and the microbial mechanism on the enhancement of inorganic fertilizer-N use efficiency was discussed. Treatments included (NH)SO (F) and (NH)SO plus either chicken manure (FC), pig manure (FP), or vinasse (FV). The results showed that in the early growth stage of rice, the combined use of (NH)SO and chicken manure, pig manure, or vinasse increased the microbial immobilization rate of the applied (NH)SO-N and reduced soil mineralN content. However, releasing rates of immobilizedN during high N demand period of rice were 87%銆81%,and 81%,corresponding to treatment FC, FP, and FV, respectively. Values of use efficiency of the applied (NH)SO-N under FC, FP, and FV management were all over 60% except (NH)SO alone treatment which was only 39%. Thus, combined applying mineral and organic N fertilizer is a promising practice to enhance N use efficiency in agricultural systems due to the reduction in N loss and synchronizing N assimilation with crop requirement. |
[28] | ., |
[29] | . , |
[30] | ., The overestimation of nitrogen (N) uptake requirement under a high-yield cropping system with maize (Zea mays L.) has been a driving force in the overuse of N fertilization and environmental pollution in China. A database comprising 1246 measurements collected between 2005 and 2009 from 105 on-farm and station experiments conducted in the spring maize domains of the Northeast, Northwest of China and the North China Plain, was used to evaluate N uptake requirement in relation to grain yield. Field experiments with different maize cultivars and N management forms were also carried out to assess this relationship. Across all the sites, maize yield averaged 11.1Mgha611 which was more than twice that of the national maize grain yield average of China of 5.3Mgha611 and the world average of 4.5Mgha611. Nitrogen uptake requirement per Mg grain yield averaged 17.4kg. Considering 6 ranges of grain yield (<7.5Mgha611, 7.5–9Mgha611, 9–10.5Mgha611, 10.5–12Mgha611, 12–13.5Mgha611 and >13.5Mgha611), N uptake requirements per Mg grain yield were 19.8, 18.1, 17.4, 17.1, 17.0 and 16.9kg respectively. This decreasing N uptake requirement per Mg grain yield with increasing grain yield was attributed to increasing harvest index (HI) and the diluting effects of declining grain and straw N concentrations. Grain yield increased with year of cultivar release from the 1950s to the 2000s, with N uptake requirement per Mg grain yield decreasing because of declining grain and straw N concentrations. Compared with the current commercial hybrid (ZD958), the lower N uptake requirement per Mg grain yield of the N-efficient hybrid of XY335 was attributed to a lower straw N concentration while maintaining a similarly high grain yield and grain N concentration. In neither of the years was there any evidence of leaf senescence in either optimal N rate (Nopt) or excessive N rate (Nover) and there was no significant difference between N uptake of these two treatments. This indicated that excessive N application could not delay leaf senescence to sustain further grain yield increase. |
[31] | ., Changes in post-anthesis physiological attributes related to genetic improvement for grain-yield were studied for six Chinese maize ( Zea mays L.) hybrids widely grown in North China during the past 50 years. The characteristics assessed included light-saturated photosynthetic rate ( P sat), chlorophyll content, soluble protein content, maximal efficiency of PS2 photochemistry ( F v/ F m), PS2 efficiency ( 桅 PS2), ribulose-1,5-bisphosphate carboxylase (RuBPCase) activity and phosphoenolpyruvate carboxylase (PEPCase) activity. We found that P sat of the newer hybrids was not always higher than the older ones. However, P sat of the 1950s hybrids was the highest among all at flowering stage, which was associated with their high PEPCase activity and soluble protein content. Post-anthesis changes in P sat of the older hybrids can be divided into two phases. During the first phase, which was the decisive phase of grain filling, P sat of the older hybrids declined gradually whereas the new hybrids remained relatively constant. P sat of 1950s hybrids was not the highest among all maize hybrids any longer although their PEPCase activities were also the highest. The reduction in P sat of the older hybrids during this phase was associated with a reduction in the chlorophyll content and the soluble protein content but was not influenced by the specific activity of RuBPCase and PEPCase. Adapting to the lowered CO 2 assimilation capacity, a down-regulation of 桅 PS2 occurred in the older hybrids to protect the photosynthetic apparatus from photo-damage by strong light, while F v/ F m only decreased slightly during this phase, suggesting a functional PS2 apparatus in senescent flag leaves. During the second phase, the older hybrids underwent an irreversible leaf senescence that certain photosynthetic traits declined substantially with P sat, whereas the photosynthetic components of the newer hybrids remained functional. Newer maize hybrids produced higher grain yield compared to the old ones mainly because they could remain photosynthetically active when the older hybrids aged during the grain-filling period. The decline in photosynthetic rate of older hybrids during senescence is generally attributed to the degradation of both structural and functional components of chloroplasts. |
[32] | . , 【Objective】It is very important to study photosynthesis of super high-yielding maize hybrids, so a field trail was conducted to research the relation to photosynthetic traits and yield of over-15000 kg ha-1 summer maize hybrids during grain filling period. 【Method】Three summer maize hybrids (XY335, DH3632 and DH3806) were planted at 78000 plants ha-1 in National Corn Project Technology Research Center (Shandong) randomly. Above-ground biomass partitioning and photosynthetic characteristics of ear leaves were investigated to evaluate yield formation of three super high-yielding maize hybrids during grain filling period.【Result】Yields of three-type maize hybrids were over 15000 kg ha-1, and yield of XY335 was higher than that of DH3632 and DH3806 significantly (P<0.05). Characteristic of grain filling analyzed by Richards equation showed XY335 had the higher grain-filling rate, the longer active growing period, and it reached the maximum grain-filling rate earlier than DH3632 and DH3806. The result indicated grain-filling traits like XY335 was favorable to high yield in the experiment. The leaves’ photosynthetic physiology quantity of XY335 was highest of the three-type hybrids. XY335 had high net photosynthetic rate (Pn), PEPCase activity, RuBPCase activity and chlorophyll a/b value after anthesis, and the leaf area index (LAI) and soluble protein content decreased slowly from 20d and 30d after flowering, respectively. 【Conclusion】To obtain 15000 kg ha-1 of super high-yielding breeding and cultivation in practice, we need to improve the leaves photosynthetic physiology quantity to maintain high grain-filling rate and long active growing period after anthesis, enhance the solar energy use efficiency. ., 【Objective】It is very important to study photosynthesis of super high-yielding maize hybrids, so a field trail was conducted to research the relation to photosynthetic traits and yield of over-15000 kg ha-1 summer maize hybrids during grain filling period. 【Method】Three summer maize hybrids (XY335, DH3632 and DH3806) were planted at 78000 plants ha-1 in National Corn Project Technology Research Center (Shandong) randomly. Above-ground biomass partitioning and photosynthetic characteristics of ear leaves were investigated to evaluate yield formation of three super high-yielding maize hybrids during grain filling period.【Result】Yields of three-type maize hybrids were over 15000 kg ha-1, and yield of XY335 was higher than that of DH3632 and DH3806 significantly (P<0.05). Characteristic of grain filling analyzed by Richards equation showed XY335 had the higher grain-filling rate, the longer active growing period, and it reached the maximum grain-filling rate earlier than DH3632 and DH3806. The result indicated grain-filling traits like XY335 was favorable to high yield in the experiment. The leaves’ photosynthetic physiology quantity of XY335 was highest of the three-type hybrids. XY335 had high net photosynthetic rate (Pn), PEPCase activity, RuBPCase activity and chlorophyll a/b value after anthesis, and the leaf area index (LAI) and soluble protein content decreased slowly from 20d and 30d after flowering, respectively. 【Conclusion】To obtain 15000 kg ha-1 of super high-yielding breeding and cultivation in practice, we need to improve the leaves photosynthetic physiology quantity to maintain high grain-filling rate and long active growing period after anthesis, enhance the solar energy use efficiency. |
[33] | . , ., |
[34] | . , ., |
[35] | ., Abstract Nitrogen use effi ciency is higher in newer than in older maize (Zea mays L.) hybrids, but the physi- ological mechanisms underlying differences in N-use effi ciency are unknown. The objective of this study was to quantify differences between an older and a newer maize hybrid in their response to N availability throughout the life cycle at both the leaf and the whole-plant level. An older and a newer maize hybrid were grown in a fi eld hydro- ponic system located near Guelph, ON, in 2005 at a high and a low N level. Leaf carbon exchange rate (CER), chlorophyll index, and the thylakoid electron transport rate (ETR) were measured weekly from 2 wk presilking to 8 wk postsilking. Plant-component dry matter and N content were determined from 1 wk presilking to maturity. At the leaf level, leaf CER declined during the grain- fi lling period, and the decline was greater under low than high N availability. The decline in leaf CER during the grain-fi lling period was less in the newer than in the older hybrid under both high and low N availability, and differences in leaf CER were associated most strongly with a reduction in leaf CER per unit absorbed photosynthetic photon fl ux density. At the whole-plant level, reduction in grain yield in low vs. high N was greater in the older than in the newer hybrid. The hybrid 脳 N interaction for grain yield was attributable predominantly to a greater decline in the proportion of dry matter allocated to the grain in the older hybrid. |
[36] | . , ., |
[37] | ., |
[38] | . , 【目的】研究不同缓释化处理氮肥对夏玉米的产量、氮肥去向及氮素平衡的影响,为提高夏玉米一次性施肥的氮肥利用率并降低氮肥的环境影响提供理论依据。【方法】试验于2014—2015年以郑单958为供试品种,在华北地区中低产田连续两年进行大田试验,共设置6个处理,分别为:不施氮(CK)、尿素(CU)、树脂包膜尿素(CRF)、控失尿素(LCU)、凝胶尿素(CLP)和脲甲醛(UF)。在玉米成熟期采集植物和土壤样品,用于测定植物含氮量和土壤无机氮含量,并计算作物吸氮量、氮肥利用率、土壤无机氮积累量、氮肥损失量等。【结果】(1)氮肥缓释化处理能够明显提高夏玉米的产量,促进氮素吸收。与尿素相比,脲甲醛、凝胶尿素、树脂包膜尿素和控失尿素可分别提高夏玉米产量18.9%、16.8%、13.7%和13.6%,同时氮肥农学利用效率分别提高6.5、4.8、4.0和3.7 kg·kg-1。(2)不同氮肥处理的作物吸收肥料氮以及肥料氮在0—100 cm土层残留量之间存在显著性差异。脲甲醛、凝胶尿素、树脂包膜尿素、控失尿素和尿素的氮肥表观回收率分别为54.9%、42.4%、38.3%、38.3%和22.0%,肥料氮在0—100 cm土层残留量分别占施氮量的28.3%、43.8%、39.2%、46.2%和46.6%。此外,与尿素相比,氮肥缓释化处理能够显著降低肥料氮的损失,凝胶尿素、控失尿素、脲甲醛和树脂包膜尿素分别降低了47.6%、43.1%、40.8%和26.7%。(3)综合分析不同氮肥处理的农田氮素平衡,脲甲醛处理的夏玉米吸氮量最高,为245.0 kg·hm~(-2),其次是凝胶尿素,为222.5 kg·hm~(-2)。脲甲醛的0—100 cm土层残留量在缓释化氮肥中最低,为153.4 kg·hm~(-2),树脂包膜尿素、凝胶尿素和控失尿素分别为173.1、181.5和185.7 kg·hm~(-2)。凝胶尿素处理的氮表观损失量最低,为35.6 kg·hm~(-2),控失尿素、脲甲醛和树脂包膜尿素的氮表观损失量分别为38.8、41.2和51.3 kg·hm~(-2)。【结论】在华北地区中低产田土壤上,氮肥缓释化处理能够显著促进夏玉米对氮素的吸收、减少氮素损失。脲甲醛和凝胶尿素的效果相对较好。 ., 【目的】研究不同缓释化处理氮肥对夏玉米的产量、氮肥去向及氮素平衡的影响,为提高夏玉米一次性施肥的氮肥利用率并降低氮肥的环境影响提供理论依据。【方法】试验于2014—2015年以郑单958为供试品种,在华北地区中低产田连续两年进行大田试验,共设置6个处理,分别为:不施氮(CK)、尿素(CU)、树脂包膜尿素(CRF)、控失尿素(LCU)、凝胶尿素(CLP)和脲甲醛(UF)。在玉米成熟期采集植物和土壤样品,用于测定植物含氮量和土壤无机氮含量,并计算作物吸氮量、氮肥利用率、土壤无机氮积累量、氮肥损失量等。【结果】(1)氮肥缓释化处理能够明显提高夏玉米的产量,促进氮素吸收。与尿素相比,脲甲醛、凝胶尿素、树脂包膜尿素和控失尿素可分别提高夏玉米产量18.9%、16.8%、13.7%和13.6%,同时氮肥农学利用效率分别提高6.5、4.8、4.0和3.7 kg·kg-1。(2)不同氮肥处理的作物吸收肥料氮以及肥料氮在0—100 cm土层残留量之间存在显著性差异。脲甲醛、凝胶尿素、树脂包膜尿素、控失尿素和尿素的氮肥表观回收率分别为54.9%、42.4%、38.3%、38.3%和22.0%,肥料氮在0—100 cm土层残留量分别占施氮量的28.3%、43.8%、39.2%、46.2%和46.6%。此外,与尿素相比,氮肥缓释化处理能够显著降低肥料氮的损失,凝胶尿素、控失尿素、脲甲醛和树脂包膜尿素分别降低了47.6%、43.1%、40.8%和26.7%。(3)综合分析不同氮肥处理的农田氮素平衡,脲甲醛处理的夏玉米吸氮量最高,为245.0 kg·hm~(-2),其次是凝胶尿素,为222.5 kg·hm~(-2)。脲甲醛的0—100 cm土层残留量在缓释化氮肥中最低,为153.4 kg·hm~(-2),树脂包膜尿素、凝胶尿素和控失尿素分别为173.1、181.5和185.7 kg·hm~(-2)。凝胶尿素处理的氮表观损失量最低,为35.6 kg·hm~(-2),控失尿素、脲甲醛和树脂包膜尿素的氮表观损失量分别为38.8、41.2和51.3 kg·hm~(-2)。【结论】在华北地区中低产田土壤上,氮肥缓释化处理能够显著促进夏玉米对氮素的吸收、减少氮素损失。脲甲醛和凝胶尿素的效果相对较好。 |