删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

棉花内生细菌YUPP-10及其分泌蛋白CGTase对棉花枯萎病的防治作用及机理

本站小编 Free考研考试/2021-12-26

周京龙,1,2, 冯自力2, 魏锋2, 赵丽红2, 张亚林2, 周燚,1, 冯鸿杰2, 朱荷琴,21长江大学农学院,湖北荆州 434025
2中国农业科学院棉花研究所/棉花生物学国家重点实验室,河南安阳 455000

Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton

ZHOU JingLong,1,2, FENG ZiLi2, WEI Feng2, ZHAO LiHong2, ZHANG YaLin2, ZHOU Yi,1, FENG HongJie2, ZHU HeQin,21College of Agriculture, Yangtze University, Jingzhou 434025, Hubei
2Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan

通讯作者: 朱荷琴,E-mail: heqinanyang@163.com 周燚,E-mail: zhouyi@yangtzeu.edu.cn

责任编辑: 岳梅
收稿日期:2020-11-14接受日期:2020-12-3
基金资助:国家自然科学基金(31901938)
中央级公益性科研院所基本科研业务费专项(1610162021031)
中国农业科学院科技创新工程


Received:2020-11-14Accepted:2020-12-3
作者简介 About authors
周京龙,E-mail: zhoujl510@163.com










摘要
【目的】棉花枯萎病(Fusarium wilt)是棉花种植中较为严重的土传病害之一,主要采用化学方法进行防治,但对环境和人畜安全造成一定影响。生物防治因其专一性强、安全性高的特点,成为防治棉花枯萎病的重要途径。本研究旨在获得一株高效拮抗细菌,并明确其防治机理,为棉花枯萎病生物防治提供技术支持。【方法】前期获得一株能够破坏β-1,4糖苷键的棉花内生蜡状芽孢杆菌(Bacillus cereus)YUPP-10,通过平板对峙培养、共培养法和悬滴法分别测试其对棉花枯萎病菌(尖镰孢,Fusarium oxysporum)菌丝生长、产孢和孢子萌发的影响;利用YUPP-10菌液浸种处理,研究其对棉花生物量的影响;以尖镰孢菌土为基质种植棉花,生长1周后,用LB液体培养基培养的YUPP-10制成不同浓度(分别为1×108、1×107和1×106 cfu/mL)的生防菌剂灌根处理棉苗,于温室中进行棉花枯萎病的防治效果研究;通过Fosmid文库筛选到了YUPP-10关键抑菌物质为环糊精糖基转移酶(CGTase,EC 2.4.1.19),研究其对尖镰孢菌丝生长、产孢和孢子萌发的影响;利用拟南芥花序侵染法将其转化拟南芥,获得能够稳定表达CGTase的转基因株系,研究转基因拟南芥对枯萎病的抗性,以及在病原胁迫下部分防御基因的转录。【结果】YUPP-10菌株发酵液对尖镰孢菌丝生长、产孢和孢子萌发具有显著的抑制作用,随着发酵液浓度的升高,对尖镰孢产孢量和孢子萌发的抑制率越高,最高抑制率分别为98.41%和51.65%。低浓度的YUPP-10菌液能促进棉花种子发芽、出苗和地上部分的生长。YUPP-10发酵液灌根处理后,棉苗的病情指数和病株率显著降低,其中,1×107 cfu/mL的YUPP-10发酵液对棉花枯萎病的防治效果最高,达到45.11%。YUPP-10菌株的关键抑菌物质CGTase能够水解羧甲基纤维素和葡甘聚糖,表明其具有破坏β-1,4糖苷键的能力,进而检测了其对尖镰孢的抑制效果,结果表明CGTase对尖镰孢的菌丝生长、产孢和孢子萌发具有显著的抑制作用,对产孢和孢子萌发的最高抑制率分别达到62.63%和30.83%。转CGTase的拟南芥提高了对枯萎病的抗性,过表达CGTase的拟南芥在病原胁迫下部分防御基因的转录水平升高。【结论】蜡状芽孢杆菌YUPP-10菌株能抑制尖镰孢的生长、促进棉花部分生物量指标的增长并控制枯萎病的危害,CGTase能够抑制尖镰孢的生长,转CGTase拟南芥对枯萎病的抗性增强。
关键词: 蜡状芽孢杆菌;棉花枯萎病;尖镰孢萎蔫专化型病菌;环糊精糖基转移酶;防治效果

Abstract
【Objective】 Fusarium wilt is one of the most important soil-borne diseases in cotton planting. Chemical methods are mainly used to control this disease, however, it has certain impact on the environment, human and animal safety. Biological control has become an important way to control cotton Fusarium wilt because of its high specificity and safety. The objective of this study is to screen an efficient antagonistic bacteria, and characterize the biocontrol mechanism of bacteria against Fusarium wilt, thus providing a technical basis for cotton Fusarium wilt control with biocontrol bacteria. 【Method】 In a previous study, an endophytic bacterium Bacillus cereus YUPP-10 was isolated from vascular of cotton, which can hydrolyze polysaccharides with β-1,4 linkage. The effects of YUPP-10 on hyphal growth, sporulation, and spore germination of F. oxysporum were tested using the confront culture method, enclosed chamber test and hanging drop method, respectively. The seeds were soaked by YUPP-10, and then, the seeding germination and the biomass of cotton were detected. The cotton were cultivated in substrate with F. oxysporum, and after a week of growth, YUPP-10 cultured with LB liquid medium was treated at different concentrations (1×10 8, 1×107and 1×106 cfu/mL, respectively), and the control efficacy against Fusarium wilt was studied in the greenhouse. The key antibacterial substances of YUPP-10 were obtained by Fosmid library, and the direct effects of recombinant cyclodextrin glycosyltransferase (CGTase) on F. oxysporum hyphal growth, sporulation, and spore germination were studied. The overexpression vector was transformed into Arabidopsis thaliana Col-0 via the floral dip method. The resistance of CGTase-overexpressing transgenic plants against Fusarium wilt was assessed with an in vitro technique. The transcriptional levels of some defense genes were analyzed under pathogen challenge. 【Result】 YUPP-10 significantly inhibited the hyphal growth, sporulation, and spore germination of F. oxysporum, the most inhibition rate of spore yield and germination was 98.41% and 51.65%, respectively. Low concentration of YUPP-10 could promote the germination rate, emergence rate and stem length of cotton seeds. After the treatment of YUPP-10, the diseased plant rate and disease index were significantly lower than those of the control group. The control efficacy was 45.11% at the concentration of 1×10 7 cfu/mL. CGTase was the key antimicrobial substance of YUPP-10, the effects of added CGTase on the transparent circles of carboxymethyl cellulose and glucomannan were measured, the results showed that CGTase could hydrolyze polysaccharides with β-1,4 linkage. CGTase also had significant inhibitory effects on the growth, sporulation and spore germination of the pathogen, the most inhibition rate of spore yield and germination was 62.63% and 30.83%, respectively. The CGTase-overexpressing A. thaliana enhanced disease resistance by enhancing the expression of defense genes. 【Conclusion】 YUPP-10 is an efficient biocontrol agent that inhibits the F. oxysporum growth, promots germination rate, emergence rate and stem length of cotton seeds, and protects cotton plant from F. oxysporum infection. CGTase can inhibit the growth of F. oxysporum, and its transgenic A. thaliana enhances the resistance to Fusarium wilt.
Keywords:Bacillus cereus;cotton Fusarium wilt;Fusarium oxysporum f. sp. vasinfectum;cyclodextrin glycosyltransferase (CGTase);control efficacy


PDF (2644KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
周京龙, 冯自力, 魏锋, 赵丽红, 张亚林, 周燚, 冯鸿杰, 朱荷琴. 棉花内生细菌YUPP-10及其分泌蛋白CGTase对棉花枯萎病的防治作用及机理. 中国农业科学, 2021, 54(17): 3691-3701 doi:10.3864/j.issn.0578-1752.2021.17.011
ZHOU JingLong, FENG ZiLi, WEI Feng, ZHAO LiHong, ZHANG YaLin, ZHOU Yi, FENG HongJie, ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton. Scientia Acricultura Sinica, 2021, 54(17): 3691-3701 doi:10.3864/j.issn.0578-1752.2021.17.011


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】纤维是全球重要的经济产品,棉花纤维占据了纤维产量的35%,中国作为世界纤维产量及消费大国,棉花产业对国民经济具有重要意义[1]。然而,在棉花的整个生育期受到各种生物和非生物胁迫。由尖镰孢萎蔫专化型病菌(Fusarium oxysporum f. sp. vasinfectum)引起的土传维管束枯萎病(Fusarium wilt)能造成棉花毁灭性损失。棉花枯萎病的常规防控措施包括选育抗性品种、耕作管理以及化学杀真菌剂的应用。但是,棉花新品种的培育较为费时,而且由于病原体的变异性和适应寄主抗性的能力,常会导致丧失抗性[2]。化学药剂重复使用,会使病原体产生抗药性,且对某些有益生物产生负面影响[3]。应用有益微生物作为生物防治剂是控制植物病害的重要方法,也是减少化学农药影响环境的有效手段。【前人研究进展】生物防治被认为是控制植物病害的一种可持续的防治方法。关于棉花枯萎病的生物防治,主要通过真菌和细菌对病原菌的拮抗作用或(和)诱导植株产生系统抗病性实现。张海军等[4]研究表明,拮抗真菌绿色木霉(Trichoderma viride)GY20能够使尖镰孢原生质体浓缩和菌丝断裂,盆栽试验证明GY20对棉花枯萎病具有防治效果。内生细菌作为拮抗菌的重要来源,在植物病害的防治上已有诸多成功案例,其中,芽孢杆菌是研究最多的拮抗细菌,如枯草芽孢杆菌(Bacillus subtilis[5]、解淀粉芽孢杆菌(B. amyloliquefaciens[6]和蜡状芽孢杆菌(B. cereus[7]等。关于拮抗细菌防治棉花枯萎病也有较多报道,从健康海岛棉植株分离的短小芽孢杆菌(B. pumilus)KX-33能够促进棉苗生长,抑制枯萎病菌,可作为种衣剂防治棉花枯萎病[8,9];解淀粉芽孢杆菌SN06能够显著降低棉花枯萎病的病情指数,防治效果高达65.2%;壮观链霉菌(Streptomyces spectabilis)SC11可在棉花根际土壤和根部长期定殖,在大田中对棉花枯萎病的防治效果达到40%左右[10]。蜡状芽孢杆菌作为生防菌可用于棉花立枯病、茄子黄萎病、鹰嘴豆灰霉病和番茄灰霉病等的防治[11,12,13,14],但用于棉花枯萎病防治的研究较少。【本研究切入点】前期,利用葡甘聚糖作为培养基定向筛选出一株降解β-1,4糖苷键的棉花内生蜡状芽孢杆菌YUPP-10,其对棉花黄萎病具有较好的防治效果[15],鉴于YUPP-10菌株具有降解β-1,4糖苷键的能力,推测其对真菌病害具有广谱防治效果。【拟解决的关键问题】研究YUPP-10发酵产物对尖镰孢菌丝生长、产孢量、孢子萌发以及浸种处理对棉花生物量的影响,制成的生防菌剂对棉花枯萎病的防治效果。进一步鉴定其关键抑菌物质环糊精糖基转移酶(cyclodextrin glycosyltransferase,CGTase,EC 2.4.1.19)对尖镰孢的抑制作用,为棉花枯萎病的生物防治提供新资源。

1 材料与方法

试验于2016—2019年在中国农业科学院棉花研究所完成。

1.1 供试菌株及植物材料

棉花枯萎病病原菌分离自中国农业科学院棉花研究所大田(河南省安阳市),保存于中国农业科学院棉花研究所棉花病害实验室(以下简称本实验室);棉花内生细菌蜡状芽孢杆菌YUPP-10、CGTase原核表达菌株pET28a-CGTaseCGTase转化拟南芥(Arabidopsis thaliana)菌株pBI121-CGTase均来自本实验室;试验选用感病棉花品种冀棉11号和耐病品种鲁棉研21号。

1.2 培养基

Luria-Bertani(LB)培养基:蛋白胨10 g·L-1,酵母提取物5g·L-1,NaCl 10 g·L-1,琼脂14 g·L-1。加蒸馏水溶解,最后定容至1 L,调pH 7.0—7.2,分装后高压灭菌,液体培养基不加琼脂。

Czapek培养基:NaNO3 2 g·L-1,KCl 0.5 g·L-1,FeSO4·7H2O 0.02 g·L-1,MgSO4·7H2O 0.5 g·L-1,蔗糖30 g·L-1,K2HPO4 1.31 g·L-1。加蒸馏水溶解,最后定容至1 L,调pH 7.0,分装后高压灭菌。

PDA培养基:200 g去皮马铃薯煮沸过滤液,葡萄糖20 g·L-1,琼脂14 g·L-1。加入蒸馏水溶解,最后定容至1 L,调pH 7.0—7.2,分装后高压灭菌。

玉米蛭石培养基:玉米糁﹕蛭石=1﹕1(质量比),适量开水搅拌,分装于克氏瓶中高压灭菌。

1.3 YUPP-10对尖镰孢的拮抗作用

1.3.1 对峙培养法测定YUPP-10对尖镰孢的影响 将YUPP-10菌株在LB固体平板上活化,选取单菌落接种到LB液体培养基中,置于37℃,200 r/min振荡培养箱中培养24 h作为菌种,以1%接种量接种到200 mL LB液体培养基中,37℃,200 r/min振荡培养24 h,获得YUPP-10培养液备用。在PDA平板培养基中心接种已经活化的直径为5 mm的尖镰孢菌饼,呈三角状对称在PDA平板中打孔,每孔距离中心20 mm,在其中两孔接入100 μL YUPP-10培养液,剩余一个孔加入100 μL LB液体培养基作为对照,每个处理重复3次,25℃恒温培养观察抑菌情况,7 d后测量抑菌带宽。

1.3.2 悬滴法[16]测定YUPP-10代谢产物对尖镰孢孢子萌发的影响 将YUPP-10培养液(制备方法同1.3.1)在4℃,5 000 r/min离心10 min,用0.22 μm的滤芯过滤获得无菌上清液,备用。在Czapek培养基中接种已经活化的直径为5 mm的尖镰孢菌饼,在25℃,180 r/min的恒温振荡培养箱中培养7 d后,用4层医用无菌纱布过滤,滤液即为尖镰孢孢子悬浮液,利用血球计数板计算孢子浓度。取无菌滤液原液、1/2稀释液和1/4稀释液100 μL,与等量的尖镰孢孢子悬浮液(2×103 cfu/mL,Czapek培养液)均匀混合,取20 μL悬滴于载玻片上,在25℃下保湿培养,5 h后镜检孢子萌发情况,以LB培养液与尖镰孢孢子悬浮液的等体积混合液为对照,每处理重复3次。

1.3.3 混合培养法测定YUPP-10代谢产物对尖镰孢产孢量的影响 取YUPP-10无菌滤液原液、1/2稀释液和1/4稀释液(制备方法同1.3.2)500 μL,与等体积的尖镰孢孢子悬浮液(制备方法同1.3.2)均匀混合,在25℃的恒温振荡培养箱中培养24 h,镜检,计算孢子浓度。

1.4 YUPP-10浸种处理对棉花种子发芽的影响

YUPP-10培养液的制备方法同1.3.1。50 mL培养液置于50 mL离心管中,4℃,5 000 r/min离心收集菌体,用30 mL无菌水重悬菌体,4℃,5 000 r/min离心,重复洗涤3次,去除LB培养基。为了避免菌体沉淀,将洗涤后收集的菌体悬浮在等体积5%的羧甲基纤维素钠溶液中,备用。取脱绒饱满的鲁棉研21号种子,75%酒精消毒30 s,无菌水洗涤3次,4%次氯酸钠消毒4 min,无菌水洗涤3次。取50粒消毒后的种子在3种浓度(原液、1/2稀释液和1/4稀释液)的YUPP-10羧甲基纤维素钠中浸种12 h,无菌水多次洗涤种子后置于培养皿中25℃保湿培养,2 d后检测发芽率及芽长,以5%的羧甲基纤维素钠溶液浸种处理为对照,每处理重复3次。

1.5 YUPP-10浸种处理对棉花出苗及生长的影响

种子消毒处理同1.4,取适量粒消毒后的种子在YUPP-10羧甲基纤维素钠悬浮液(制备方法同1.4,OD600=0.2)浸种处理12 h,无菌水多次洗涤种子后,播种在灭菌的蛭石中,在温度为23—30℃,相对湿度在60%以上的日光温室中培养7 d后检测出苗情况,15 d后检测根长、茎长和棉苗鲜重,以羧甲基纤维素钠浸种处理为对照,每处理重复3次。

1.6 YUPP-10对棉花枯萎病的防治效果

将PDA平板活化的尖镰孢接种在Czapek培养基中,在25℃、160 r/min的恒温摇床中振荡培养4 d,将尖镰孢接种在灭菌的蛭石玉米培养基中,25℃下培养,直至菌丝长满克氏瓶,取出培养物,在阴凉处风干,备用。取脱绒饱满的冀棉11号种子,75%酒精消毒30 s,无菌水洗涤3次,4%次氯酸钠消毒4 min,无菌水洗涤3次,在室温下无菌水浸种处理24 h,棉苗培育方法参照朱荷琴等[17]使用的蛭石沙子无底纸钵定量蘸菌液法,其中将制备好的尖镰孢蛭石玉米培养物以0.6%(质量比)的接种量混到蛭石沙土基质中。播种后7 d,用200 mL不同浓度的YUPP-10培养液(分别为1×108、1×107和1×106 cfu/mL)进行灌根处理,每6个营养钵为一个处理,每处理重复4次,以LB液体培养基处理为对照。棉苗在日光温室中培养,环境温度控制在20—30℃,土壤相对湿度在60%以上,光照良好。在棉苗生长25 d左右观察发病情况,调查病情指数,统计防治效果。棉花苗期枯萎病的分级按国际标准进行。

病情指数=[ Σ(病害级数×各病级株数)/(调查的总株数×4)] ×100;防治效果(%)=[(对照病情指数-处理病情指数/对照病情指数)] ×100。

1.7 CGTase的水解活性

制作羧甲基纤维素(1.2 g·L-1)和葡甘聚糖(1.2 g·L-1)固体平板,对称放置4个牛津杯,其中两孔加0.48 mg·mL-1的CGTase蛋白溶液100 μL,剩余两孔加100 μL蛋白缓冲液(50 mmol·L-1 Tris HCl,150 mmol·L-1 NaCl,pH 7.5)作为对照,置于37℃暗培养12 h,移除牛津杯,在培养皿中添加10 mL碘-碘化钾(0.2%﹕2%)染液,5 min后弃掉染液,透明圈即表示蛋白对两种物质的水解能力。

1.8 CGTase的抑菌活性

在PDA平板培养基中心接种已经活化的直径为5 mm的尖镰孢菌饼,对称在PDA平板上打两孔,25℃恒温培养3 d后,在其中一孔接入0.48 mg·mL-1 CGTase蛋白溶液50 μL,另一孔加入50 μL蛋白缓冲液作为对照,继续培养观察抑菌情况,2 d后测量抑菌带宽。取0.12、0.24和0.48 mg·mL-1 CGTase作为处理,蛋白缓冲液作为对照进行产孢和孢子萌发试验,其他处理同方法1.3.2和1.3.3。

1.9 转CGTase拟南芥的抗病能力

为明确CGTase是否可作为利用基因工程进行抗病育种的资源,利用Floral dip法[18]进行拟南芥的转化,使拟南芥能够表达CGTase,用含有pBI121- CGTase的农杆菌(Agrobacterium tumefaciens)GV3101侵染拟南芥花序,获得过表达植株,通过卡那霉素抗性筛选3代,获得纯合株系,将转CGTase拟南芥和野生型拟南芥(WT)种植在含有尖镰孢的土中,进行抗枯萎病能力研究,菌土为尖镰孢蛭石玉米培养物以0.6%(质量比)的接种量混到营养土基质中。

1.10 转CGTase拟南芥防御基因的表达

种植野生型和转CGTase拟南芥, 14 d后接种尖镰孢孢子液, 通过qPCR分析接菌后6、12、24、48和72 h防御基因CHI(F: AAACCGTGTCATACGAACCA; R: ATCAATGGTGGTGAATGCAA)、 PDF1.2(F: ACCCTTATCTTCGCTGCTCTTG; R: ATGTCCCACT TGGCTTCTCG)、 PR1(F: GTATGGCTTCTCGTTCAC AT; R: CTAAGAGGCAACTGCAGACT)和PR2(F: GCTTCCTTCTTCAACCACACAGC; R: CGTTGATG TACCGGAATCTGAC)的表达量, 以UBQ10(F: AACTTTGGTTTGTGTTTTGG; R: TCGACTTGTCAT TAGAAAGAAAGAGATAA)作为内参基因。

1.11 数据处理及分析

试验数据采用SPSS 22.0软件进行统计分析。

2 结果

2.1 YUPP-10对尖镰孢的抑制作用

2.1.1 对菌丝生长的抑制作用 将YUPP-10菌株与尖镰孢对峙培养7 d时测量抑菌带宽,发现在接种细菌的处理中,菌丝生长受到抑制(图1),平均抑菌带宽为0.56 cm。结果表明YUPP-10菌株对尖镰孢菌丝生长具有显著的抑制作用。

图1

新窗口打开|下载原图ZIP|生成PPT
图1YUPP-10对尖镰孢菌丝生长的影响

A、B:YUPP-10处理 Treated by YUPP-10;C:LB培养基处理 Treated by LB medium
Fig. 1Effect of YUPP-10 on hyphal growth of F. oxysporum



2.1.2 对产孢的抑制作用 混合培养尖镰孢孢子液与YUPP-10发酵产物的无菌滤液,暗培养24 h,利用光学显微镜和血球计数板观察孢子数量。结果表明对照的孢子数为33.40 cfu/mL,无菌滤液原液、1/2稀释液和1/4稀释液对孢子萌发的抑制率分别98.41%、54.49%和56.49%,处理与对照之间存在显著差异(表1)。

Table 1
表1
表1YUPP-10处理后对产孢和孢子萌发的影响
Table 1Effect of YUPP-10 on sporulation and spore germination of F. oxysporum
处理
Treatment
产孢 Sporulation孢子萌发Spore germination
产孢量Spore yield (cfu/mL)抑制率Inhibition rate (%)萌发率Germination rate (%)抑制率Inhibition rate (%)
CK33.40±1.61a-52.87±4.33a-
1×YUPP-100.53±0.19c98.4125.56±4.45d51.65
1/2×YUPP-1015.20±1.79b54.4934.20±3.49c35.30
1/4×YUPP-1014.53±0.80b56.4939.78±3.42b27.75
数据后不同字母表示差异显著(P<0.05)。下同
Data with different letters indicate significant difference at P<0.05 level. The same as below

新窗口打开|下载CSV

2.1.3 对孢子萌发的抑制作用 利用悬滴法培养尖镰孢孢子液与YUPP-10发酵产物的混合液,5 h后通过光学显微镜观察孢子萌发情况,芽管长度超过孢子长度的一半,视为萌发,通过数据分析结果表明,对照组的孢子萌发率为52.87%,无菌滤液原液、1/2稀释液和1/4稀释液对孢子萌发的抑制率分别为51.65%、35.30%和27.75%,在供试浓度范围内均表现出显著差异(表1)。

2.2 YUPP-10对棉花生长的影响

2.2.1 菌体悬浮液浸种处理对棉花种子发芽的影响 高浓度的YUPP-10羧甲基纤维素钠菌体悬浮液对种子发芽具有抑制作用,而1/2和1/4稀释液对种子发芽具有显著的促进作用。同样,高浓度YUPP-10处理后,种子的芽长低于对照,用稀释的YUPP-10菌体悬浮液处理后,芽长大于对照,但差异不显著(表2)。

Table 2
表2
表2YUPP-10浸种对种子发芽的影响
Table 2Effect of YUPP-10 on seeding germination of cotton
处理
Treatment
发芽率
Germination rate (%)
芽长
Shoot length (cm)
1×YUPP-1039.08±0.34d0.23±0.01b
1/2×YUPP-1081.91±0.88a0.84±0.32a
1/4×YUPP-1075.84±0.98b0.89±0.25a
CK72.60±1.01c0.49±0.10ab

新窗口打开|下载CSV

2.2.2 菌体悬浮液浸种处理对棉花出苗及生长的影响 鉴于高浓度的YUPP-10抑制种子萌发,采用低浓度的YUPP-10羧甲基纤维素钠悬浮液(OD600=0.2)浸种处理后播种,统计出苗情况、根长、茎长和植株鲜重等指标,结果表明使用YUPP-10浸种后,能显著促进棉花种子的出苗率,棉花的茎长显著高于对照,对根长和总鲜重无显著影响(表3)。

Table 3
表3
表3YUPP-10浸种处理对棉花生长的影响
Table 3Effect of YUPP-10 on seeding biomass of cotton
处理
Treatment
检测指标 Detection index
出苗率Emergence rate (%)根长Root length (cm)茎长Stem length (cm)总鲜重Fresh weight (g)
CK84.36±0.04b8.76±0.71a13.09±0.38b0.66±0.46a
YUPP-1094.87±0.04a10.26±0.66a14.26±0.39a0.76±0.49a

新窗口打开|下载CSV

2.3 YUPP-10发酵液对棉花枯萎病的防治效果

YUPP-10发酵液浓度为1×107 cfu/mL时对棉花枯萎病的防治效果最好,防治效果达到45.11%,供试的3个浓度中,1×108和1×107 cfu/mL处理后的病情指数和病株率显著低于对照(表4图2)。

Table 4
表4
表4YUPP-10菌剂处理对棉花枯萎病病株率、病情指数的影响及防治效果
Table 4Effects of YUPP-10 bacterial fertilizer on diseased plant rate, disease index and its efficacy in control Fusarium wilt
处理Treatment病情指数Disease index病株率Diseased plant rate (%)防治效果Control efficacy (%)
1×10828.23±4.95b43.04±14.80b42.79
1×10727.08±9.54b42.92±13.54b45.11
1×10632.53±3.65ab56.25±6.05ab34.06
CK49.34±9.08a71.14±13.98a

新窗口打开|下载CSV

图2

新窗口打开|下载原图ZIP|生成PPT
图2YUPP-10处理棉花对枯萎病的防治效果

Fig. 2The control efficacy on cotton against Fusarium wilt treated with YUPP-10 bacterial fertilizer



2.4 CGTase的水解活性

通过分析YUPP-10菌株的Fosmid文库,发现能够水解β-1,4糖苷键的物质为YUPP-10菌株的分泌蛋白环糊精糖基转移酶(CGTase),为验证CGTase具有降解β-1,4糖苷键的能力,检测了其对羧甲基纤维素和葡甘聚糖的降解活性,经I-KI染色后,出现了透明圈(图3),表明CGTase具有水解活性。

图3

新窗口打开|下载原图ZIP|生成PPT
图3CGTase的水解活性

A:羧甲基纤维素 Carboxymethyl cellulose;B:葡甘聚糖Glucomannan
Fig. 3Hydrolysis activity of CGTase



2.5 CGTase的抑菌活性

在长有尖镰孢的平板上添加CGTase后,抑制了菌丝的生长(图4),通过共培养和悬滴法测定CGTase对尖镰孢产孢和孢子萌发的影响,结果表明CGTase对两者均具有显著的抑制作用(表5)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4CGTase的抑菌活性

Fig. 4Antibacterial activity of CGTase



Table 5
表5
表5CGTase处理后对产孢和孢子萌发的影响
Table 5Effect of CGTase on sporulation and spore germination of F. oxysporum
蛋白浓度
Protein concentration (mg·mL-1)
产孢 Sporulation孢子萌发Spore germination
产孢量
Spore yield (cfu/mL)
抑制率
Inhibition rate (%)
萌发率
Germination rate (%)
抑制率
Inhibition rate (%)
035.40±1.51a-42.62±2.13a-
0.1222.30±0.17b37.0138.06±3.35b10.70
0.2414.32±1.09c59.5532.25±2.19c24.33
0.4813.23±0.83c62.6329.48±1.62d30.83

新窗口打开|下载CSV

2.6 转CGTase拟南芥对枯萎病的抗性评价

在模式植物拟南芥中过表达CGTase,并获得纯合植株。在含有尖镰孢的基质中生长,野生型幼苗表现出叶片黄化,甚至整株坏死,而过表达植株抗病能力显著高于野生型(图5)。

图5

新窗口打开|下载原图ZIP|生成PPT
图5CGTase过表达拟南芥的抗病能力

Fig. 5Enhanced disease resistance of CGTase-overexpressing A. thaliana



2.7 病原胁迫下拟南芥防御基因的表达

CHIPDF1.2PR1PR2在植物抗病性中起重要作用,利用qPCR方法检测拟南芥在尖镰孢胁迫下防御相关基因的表达。在抗病关键时期,转基因拟南芥防御基因在病原胁迫下的表达量显著高于野生型(图6)。

图6

新窗口打开|下载原图ZIP|生成PPT
图6病原胁迫下拟南芥防御基因的表达

Fig. 6Expression of A. thaliana defense genes under pathogenic stress



3 讨论

植物与细菌的协同作用已有较多研究,由于细菌种类和数量巨大,对植物的微生态环境具有调节作用,从而影响植物的健康和生长。在长期的进化中,植物也会“选择”对自己有利的细菌定殖,包括在植物组织内部的定殖[19,20,21]。内生细菌能促进寄主植物生长并防止病原物入侵,且在不同的环境条件下,内生细菌比根际细菌更能有效地与寄主植物互作[22,23]。分离自健康棉花组织中的内生蜡状芽孢杆菌YUPP-10能够利用葡甘聚糖作为碳源[15],表明其能够水解β-1,4糖苷键[24,25,26],真菌细胞壁主要成分几丁质是通过β-1,4糖苷键聚合N-乙酰葡糖胺形成的线性聚合物[27],能够利用葡甘聚糖作为碳源的细菌也具有水解几丁质β-1,4糖苷键的活性,从而破坏病原真菌的细胞壁,起到抑制病菌生长的作用。本研究表明,YUPP-10发酵产物对枯萎病病原菌尖镰孢的菌丝生长、产孢和孢子萌发均具有显著的抑制作用。孢子是已知的抗逆性较强的真菌生命形式之一,可以承受高温、强酸、高压等环境胁迫[28],能够直接发育成新个体,因此有效抑制孢子的萌发和产孢对抑制病原菌的繁殖力和侵染最有重要作用。

NEJAD等报道了内生细菌能够显著改善油菜和番茄的生长发育[29],本研究也发现在适宜的浓度下,YUPP-10菌体悬浮液能够有效促进种子发芽和幼胚生长,因此YUPP-10菌株具有用作种子包衣剂的潜力。促植物生长是增强植物自身抵抗病虫害侵染的有效措施,在本研究中,低浓度的YUPP-10浸种处理的棉花种子,其出苗率有显著的提高,地上部分的生长也有明显的加强,这也进一步证明YUPP-10作为种子包衣剂是合适的选择。

使用YUPP-10液体菌剂灌根处理,在使用的3个浓度中,1×107 cfu/mL对棉花枯萎病的防治效果最好,为大田的应用提供了施用参考浓度。蜡状芽孢杆菌作为枯萎病的防治剂也有相关报道,如用于番茄枯萎病[30,31]、西瓜枯萎病[32]和香蕉枯萎病[33]的防治。

通过Fosmid文库,获得了YUPP-10中能够降解β-1,4糖苷键的物质为环糊精糖基转移酶(CGTase)[34]。CGTase能够抑制尖镰孢菌丝生长、产孢和孢子萌发。在拟南芥中过表达CGTase,能够增强植株对枯萎病的抗性。相较于野生型拟南芥,转基因植株CHIPDF1.2PR1PR2等防御基因的表达量显著升高。PDF1.2是JA/ET信号通路的标志基因[35],PR1/2是SA信号通路的标志基因[36],qPCR结果显示,CGTase可能通过激发植物SA和JA信号通路抵抗病原菌的侵染。

4 结论

蜡状芽孢杆菌菌株YUPP-10能够有效防治棉花枯萎病,且具有促生长能力。从YUPP-10中筛选到的关键抑菌物质CGTase也能够抑制棉花枯萎病病原菌尖镰孢生长,转CGTase拟南芥部分防御基因在病原胁迫下的表达量显著高于野生型,从而增强了植株对病害的耐受性。YUPP-10菌株和CGTase分别具有作为棉花枯萎病生防制剂和转基因育种候选基因防治枯萎病资源的前景。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

SANOGO S, ZHANG J. Resistance sources, resistance screening techniques and disease management for Fusarium wilt in cotton
Euphytica, 2016, 207(2): 255-271.

DOI:10.1007/s10681-015-1532-yURL [本文引用: 1]

ZHANG Z, DIAO H, WANG H, WANG K, ZHAO M. Use of Ganoderma lucidum polysaccharide to control cotton fusarium wilt, and the mechanism involved
Pesticide Biochemistry and Physiology, 2019, 158: 149-155.

DOI:10.1016/j.pestbp.2019.05.003URL [本文引用: 1]

LANG J, HU J, RAN W, XU Y, SHEN Q. Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer
Biology and Fertility of Soils, 2012, 48(2): 191-203.

DOI:10.1007/s00374-011-0617-6URL [本文引用: 1]

张海军, 李泽方. 绿色木霉GY20对棉花枯萎病菌的抑菌作用
西北农业学报, 2012, 21(3): 193-197.

[本文引用: 1]

ZHANG H J, LI Z F. Biocontrol mechanism of Trichoderma viride GY20 against Fusarium oxysporum f. sp. vasinfectum F12
Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(3): 193-197. (in Chinese)

[本文引用: 1]

李社增, 鹿秀云, 马平, 高胜国, 刘杏忠, 刘干. 防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定
植物病理学报, 2005, 35(5): 451-455.

[本文引用: 1]

LI S Z, LU X Y, MA P, GAO S G, LIU X Z, LIU G. Evaluation of biocontrol potential of a bacterial strain NCD-2 against cotton Verticillium wilt in field trials
Acta Phytopathologica Sinica, 2005, 35(5): 451-455. (in Chinese)

[本文引用: 1]

LI B, LI Q, XU Z, ZHANG N, SHEN Q, ZHANG R. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production
Frontiers in Microbiology, 2014, 5: 636.

[本文引用: 1]

PEREG L, MCMILLAN M. Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems
Soil Biology and Biochemistry, 2015, 80: 349-358.

DOI:10.1016/j.soilbio.2014.10.020URL [本文引用: 1]

李海薇, 韩万里, 王梦瑶, 罗明, 韩剑, 顾爱星. 棉花枯萎病拮抗短小芽胞杆菌筛选鉴定及生防研究
中国生物防治学报, 2018, 34(3): 440-448.

[本文引用: 1]

LI H W, HAN W L, WANG M Y, LUO M, HAN J, GU A X. Screening and identification of antagonistic bacteria Bacillus pumilus against cotton Fusarium wilt and biocontrol research
Chinese Journal of Biological Control, 2018, 34(3): 440-448. (in Chinese)

[本文引用: 1]

柳自清, 张博然, 刘叶, 郭楠楠, 顾爱星. 短小芽孢杆菌KX-33做种衣剂对棉花枯萎病的盆栽防效
新疆农业大学学报, 2020, 43(5): 323-329.

[本文引用: 1]

LIU Z Q, ZHANG B R, LIU Y, GUO N N, GU A X. Effect of Bacillus pumilus KX-33 seed coating agent on Verticillium wilt of cotton
Journal of Xinjiang Agricultural University, 2020, 43(5): 323-329. (in Chinese)

[本文引用: 1]

戴蓬博, 蓝星杰, 张伟卫, 甘良, 王阳, 宗兆锋. 生防菌株SC11的鉴定、定殖及对棉花枯萎病防治效果研究
植物病理学报, 2016, 46(2): 273-279.

[本文引用: 1]

DAI P B, LAN X J, ZHANG W W, GAN L, WANG Y, ZONG Z F. Identification, colonization and disease suppressive effect of strain SC11 against cotton Fusarium wilt
Acta Phytopathologica Sinica, 2016, 46(2): 273-279. (in Chinese)

[本文引用: 1]

PLEBAN S, CHERNIN L, CHET I. Chitinolytic activity of an endophytic strain of Bacillus cereus
Letters in Applied Microbiology, 1997, 25(4): 284-288.

DOI:10.1046/j.1472-765X.1997.00224.xURL [本文引用: 1]

LI J G, JIANG Z Q, XU L P, SUN F F, GUO J H. Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant
BioControl, 2008, 53(6): 931-944.

DOI:10.1007/s10526-007-9144-7URL [本文引用: 1]

KISHORE G K, PANDE S. Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions
Letters in Applied Microbiology, 2007, 44(1): 98-105.

DOI:10.1111/lam.2007.44.issue-1URL [本文引用: 1]

HAMMAMI I, SIALA R, JRIDI M, KTARI N, NASRI M, TRIKI M A. Partial purification and characterization of chiIO8, a novel antifungal chitinase produced by Bacillus cereus IO8
Journal of Applied Microbiology, 2013, 115(2): 358-366.

DOI:10.1111/jam.12242URL [本文引用: 1]

周京龙, 冯自力, 冯鸿杰, 李云卿, 袁媛, 李志芳, 魏锋, 师勇强, 赵丽红, 孙正祥, 朱荷琴, 周燚. 棉花内生蜡状芽孢杆菌YUPP-10对棉花黄萎病的防治作用及机制
中国农业科学, 2017, 50(14): 2717-2727.

[本文引用: 2]

ZHOU J L, FENG Z L, FENG H J, LI Y Q, YUAN Y, LI Z F, WEI F, SHI Y Q, ZHAO L H, SUN Z X, ZHU H Q, ZHOU Y. Biocontrol effect and mechanism of cotton endophytic bacterium Bacillus cereus YUPP-10 against Verticillium wilt in Gossypium hirsutum
Scientia Agricultura Sinica, 2017, 50(14): 2717-2727. (in Chinese)

[本文引用: 2]

LI S K, JI Z Q, ZHANG J W, GUO Z Y, WU W J. Synthesis of 1-acyl-3-isopropenylbenzimidazolone derivatives and their activity against Botrytis cinerea
Journal of Agricultural and Food Chemistry, 2010, 58(5): 2668-2672.

DOI:10.1021/jf903855yURL [本文引用: 1]

朱荷琴, 冯自力, 李志芳, 赵丽红, 师勇强. 蛭石沙土无底纸钵定量蘸菌液法鉴定棉花品种(系)的抗黄萎病性
中国棉花, 2010, 37(12): 15-17.

[本文引用: 1]

ZHU H Q, FENG Z L, LI Z F, ZHAO L H, SHI Y Q. Dip quantitative fungal solution method by using vermiculite sand without bottom paper bowl to identify cotton varieties (lines) of resistance to Verticillium wilt
China Cotton, 2010, 37(12): 15-17. (in Chinese)

[本文引用: 1]

CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
The Plant Journal, 1998, 16(6): 735-743.

DOI:10.1046/j.1365-313x.1998.00343.xURL [本文引用: 1]

MARASCO R, ROLLI E, ETTOUMI B, VIGANI G, MAPELLI F, BORIN S, ABOU-HADID A F, EL-BEHAIRY U A, SORLINI C, CHERIF A, ZOCCHI G, DAFFONCHIO D. A drought resistance- promoting microbiome is selected by root system under desert farming
PLoS ONE, 2012, 7(10): e48479.

DOI:10.1371/journal.pone.0048479URL [本文引用: 1]

RASHID S, CHARLES T C, GLICK B R. Isolation and characterization of new plant growth-promoting bacterial endophytes
Applied Soil Ecology, 2011, 61(5): 217-224.

DOI:10.1016/j.apsoil.2011.09.011URL [本文引用: 1]

HARDOIM P R, VAN OVERBEEK L S, VAN ELSAS J D. Properties of bacterial endophytes and their proposed role in plant growth
Trends in Microbiology, 2008, 16(10): 463-471.

DOI:10.1016/j.tim.2008.07.008URL [本文引用: 1]

ALI S, CHARLES T C, GLICK B R. Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase
Journal of Applied Microbiology, 2012, 113(5): 1139-1144.

DOI:10.1111/jam.2012.113.issue-5URL [本文引用: 1]

COUTINHO B G, LICASTRO D, MENDONÇA-PREVIATO L, CÁMARA M, VENTURI V. Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130
Molecular Plant- Microbe Interactions, 2015, 28(1): 10-21.

DOI:10.1094/MPMI-07-14-0225-RURL [本文引用: 1]

KATSURAYA K, OKUYAMA K, HATANAKA K, OSHIMA R, SATO T, MATSUZAKI K. Constitution of konjac glucomannan: Chemical analysis and 13C NMR spectroscopy
Carbohydrate Polymers, 2003, 53(2): 183-189.

DOI:10.1016/S0144-8617(03)00039-0URL [本文引用: 1]

FANG W, WU P. Variations of konjac glucomannan (KGM) from Amorphophallus konjac and its refined powder in China
Food Hydrocolloids, 2004, 18(1): 167-170.

DOI:10.1016/S0268-005X(03)00044-4URL [本文引用: 1]

LAFARGE C, CAYOT N, HORY C, GONCALVES L, CHASSEMONT C, LE BAIL P. Effect of konjac glucomannan addition on aroma release in gels containing potato starch
Food Research International, 2014, 64: 412-419.

DOI:10.1016/j.foodres.2014.07.008URL [本文引用: 1]

PANGBURN S H, TRESCONY P V, HELLER J. Lysozyme degradation of partially deacetylated chitin, its films and hydrogels
Biomaterials, 1982, 3(2): 105-108.

DOI:10.1016/0142-9612(82)90043-6URL [本文引用: 1]

CHEN J, PENG H, WANG X, SHAO F, YUAN Z, HAN H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation
Nanoscale, 2014, 6(3): 1879-1889.

DOI:10.1039/C3NR04941HURL [本文引用: 1]

NEJAD P, JOHNSON P A. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato
Biological Control, 2000, 18(3): 208-215.

DOI:10.1006/bcon.2000.0837URL [本文引用: 1]

ABDALLAH R A B, MOKNI-TLILI S, NEFZI A, JABNOUN- KHIAREDDINE H, DAAMI- REMADI M. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs
Biological Control, 2016, 97(10): 80-88.

DOI:10.1016/j.biocontrol.2016.03.005URL [本文引用: 1]

AJILOGBA C F. RAPD delineation of native Bacillus spp. and analyses of their biocontrol effect on tomato Fusarium wilt
[D]. Mafikeng Campus of the North-West University, 2013.

[本文引用: 1]

ABDALLAH R A, NE U O, JABNOUN-KHIAREDDINE H, MOKNI-TLILI S, NEFZI A, MEDIMAGH-SAIDANA S, DAAMI- REMADI M. Endophytic Bacillus spp. from wild Solanaceae and their antifungal potential against Fusarium oxysporum f. sp. lycopersici elucidated using whole cells, filtrate cultures and organic extracts
Journal of Plant Pathology and Microbiology, 2015, 6: 11.

[本文引用: 1]

傅莹, 黄益燕, 肖爱萍, 游春平. 蜡状芽孢杆菌菌株255诱导香蕉产生抗性相关酶初步研究
广东农业科学, 2011, 38(9): 75-77.

[本文引用: 1]

FU Y, HUANG Y Y, XIAO A Q, YOU C P. Preliminary study on the resistant-related enzymes from banana by the induction of Bacillus cereus strain 255
Guangdong Agricultural Sciences, 2011, 38(9): 75-77. (in Chinese)

[本文引用: 1]

ZHOU J, FENG Z, LIU S, WEI F, SHI Y, ZHAO L, HUANG W, ZHOU Y, FENG H, ZHU H. CGTase, a novel antimicrobial protein from Bacillus cereus YUPP-10, suppresses Verticillium dahliae and mediates plant defence responses
Molecular Plant Pathology, 2021, 22(1): 130-144.

DOI:10.1111/mpp.13014URL [本文引用: 1]

GUO X, STOTZ H U. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling
Molecular Plant-Microbe Interactions, 2007, 20(11): 1384-1395.

DOI:10.1094/MPMI-20-11-1384URL [本文引用: 1]

GLAZEBROOK J, CHEN W, ESTES B, CHANG H S, NAWRATH C, MÉTRAUX J P, ZHU T, KATAGIRI F. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping
The Plant Journal, 2003, 34(2): 217-228.

DOI:10.1046/j.1365-313X.2003.01717.xURL [本文引用: 1]

相关话题/棉花 培养 种子 植物 基因