,, 吕小康, 庄一民, 崔凯, 王世琴, 刁其玉, 张乃锋
,中国农业科学院饲料研究所/农业农村部饲料生物技术重点开放实验室,北京 100081The Effects of Early Weaning and NDF Levels of Finishing Diets on Growth Performance, Nutrient Digestion and Metabolism of Hu Lambs
HUANG WenQin
,, Lü XiaoKang, ZHUANG YiMin, CUI Kai, WANG ShiQing, DIAO QiYu, ZHANG NaiFeng
,Institute of Feed Research of Chinese Academy of Agricultural Sciences/Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Beijing 100081通讯作者:
责任编辑: 林鉴非
收稿日期:2020-07-26接受日期:2020-12-18网络出版日期:2021-05-16
| 基金资助: |
Received:2020-07-26Accepted:2020-12-18Online:2021-05-16
作者简介 About authors
黄文琴,E-mail:

摘要
关键词:
Abstract
Keywords:
PDF (486KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
黄文琴, 吕小康, 庄一民, 崔凯, 王世琴, 刁其玉, 张乃锋. 早期断奶和育肥期饲粮NDF水平对湖羊生长性能和消化代谢的影响[J]. 中国农业科学, 2021, 54(10): 2217-2228 doi:10.3864/j.issn.0578-1752.2021.10.017
HUANG WenQin, Lü XiaoKang, ZHUANG YiMin, CUI Kai, WANG ShiQing, DIAO QiYu, ZHANG NaiFeng.
开放科学(资源服务)标识码(OSID):

0 引言
【研究意义】舍饲养殖是当前我国肉羊产业的主要生产模式,舍饲育肥可显著提高养殖企业经济效益。多数研究都是针对养羊生产过程中某一阶段的某一项技术独立进行,未能有机集成多种养殖技术,形成系统高效的羔羊生产模式。【前人研究进展】肉羊养殖主要包括羔羊阶段和育肥阶段。羔羊阶段是肉羊营养调控的窗口期,决定了其健康和生长性能[1];解彪等[2]研究发现饲粮NDF水平不低于20%,能够促进21—60日龄羔羊生长性能。羔羊早期断奶可缩短哺乳期,促进固体饲料采食和瘤胃发育[3],逐渐成为现代化、集约化羔羊培育的关键技术之一。在育肥阶段,合理的日粮配方,尤其是适宜的NDF水平,是保障羔羊健康和快速育肥的关键[4]。本课题组研究发现15—25 kg羔羊饲粮适宜NDF含量为20%—30%(未发表);张立涛等[4]试验得出25—35 kg肉羊饲粮最适NDF水平为33.35%。值得关注的是,早期断奶羔羊的消化器官发育及其功能(如瘤胃上皮发育[7]及养分消化率[8]等)与随母哺乳羔羊相比存在巨大差异,因此,羔羊阶段的营养与管理势必对育肥阶段生长和健康产生不同程度的影响[5]。解彪等[2]给21—90日龄羔羊饲喂不同NDF水平的饲粮,在91—150日龄阶段所有羔羊饲喂NDF水平均为30%的饲粮,发现20—90日龄羔羊饲料NDF水平对90—150日龄羔羊育肥阶段的生长形成产生了显著影响。张乃锋等[8]也发现断奶体重、断奶前日增重、采食量与断奶后体重、日增重、采食量存在显著正相关关系。【本研究切入点】羔羊营养研究的目的在于发挥肉羊整个生长周期的潜力,最大化养殖效益。关于早期断奶对羔羊哺乳阶段生理影响的研究较多,但其如何影响羔羊断奶后生长和消化代谢尚不清楚。随着早期断奶技术的推广,研究早期断奶羔羊育肥期适宜NDF水平可最大限度发挥羔羊生长潜力,降低饲养成本。【拟解决的关键问题】本试验以湖羊羔羊为试验动物,以羔羊早期断奶技术,育肥前、后期饲粮NDF水平为试验因素,通过技术集成,形成多种培育方案,进而探究养殖技术集成对羔羊生长性能和消化代谢性能的影响,以期探究各阶段处理间对羔羊的长期影响,找出适宜的羔羊全期饲养方案。1 材料与方法
1.1 试验时间与地点
本试验于2018年7月至2019年1月在山东临清润林牧业有限公司开展。1.2 试验设计
选取体重(8.26±2.14)kg、日龄(20±2)d相近的健康湖羊公羔120只,随机分为4组,每组6个重复,每重复5只;4组处理分别为:ER-HH:随母哺乳+育肥前期高NDF饲粮+育肥后期高NDF饲粮,以ER-HH作为试验对照组;EW-HH:早期断奶+育肥前期高NDF饲粮+育肥后期高NDF饲粮;EW-LH:早期断奶+育肥前期低NDF饲粮+育肥后期高NDF饲粮;EW-LL:早期断奶+育肥前期低NDF饲粮+育肥后期低NDF饲粮(图1)。试验期为160 d。图1
图1试验设计与分组
EW-LL:早期断奶+育肥前期低NDF饲粮+育肥后期低NDF饲粮;EW-LH:早期断奶+育肥前期低NDF饲粮+育肥后期高NDF饲粮;EW-HH:早期断奶+育肥前期高NDF饲粮+育肥后期高NDF饲粮;ER-HH:随母哺乳+育肥前期高NDF饲粮+育肥后期高NDF饲粮。下同
Fig. 1Trial design and treatments
EW-LL group, early weaning + feeding low NDF diet in early and late finishing stage; EW-LH group, early weaning + feeding low NDF diet in early finishing stage +feeding high NDF diet in late finishing stage; EW-HH group, early weaning + feeding high NDF diet in early and late finishing stage; ER-HH group, ewe reared + feeding high NDF diet in early and late finishing stage. The same as below
试验饲喂程序为:哺乳期(21—60日龄)对照组(ER-HH)羔羊随母哺乳,其他3组(EW-HH、EW-LH、EW-LL)羔羊于20日龄断母乳,饲喂代乳粉加开食料;育肥前期(61—120 d)ER-HH、EW-HH组饲粮NDF为38%,EW-LH、EW-LL组饲粮NDF为33%;育肥后期(121—180 d)ER-HH、EW-HH、EW-LH组饲粮NDF为33%,EW-LL组饲粮NDF为28%。育肥期颗粒料过渡期均为8 d。
1.3 试验饲粮
以葵花籽壳和大豆皮等为主要NDF来源(葵花籽壳纤维长度3—5 mm),配制育肥期的4种等能等氮饲粮。试验饲粮饲喂形式是颗粒状,哺乳期颗粒直径为5 mm,长度4—6 cm;育肥期直径为7 mm,长度4—6 cm。羔羊代乳粉(配方见ZL201210365927.6内容)由北京精准动物研究中心提供。开食料由羊场提供,育肥期颗粒料由北京三元禾丰牧业有限公司加工制作。饲粮组成及营养水平见表1。Table 1
表1
表1试验饲粮组成及营养水平(干物质基础,%)
Table 1
| 项目 Items | 开食料 Starter | 育肥前期Early fattening | 育肥后期Late fattening | ||
|---|---|---|---|---|---|
| 低NDF Low NDF | 高NDF High NDF | 低NDF Low NDF | 高NDF High NDF | ||
| 原料Ingredients | |||||
| 葵花壳 Sunflower seed hull | - | 10 | 16 | 10 | 10 |
| 大豆皮 Soybean hull | - | 20 | 25 | 11 | 20 |
| 棕榈仁粕 Palm kernel meal | - | 0 | 5 | 0 | 5 |
| 苜蓿Alfalfa hay | - | 5 | 0 | 7.5 | 0 |
| 玉米Corn | 50 | 35 | 25 | 45 | 35 |
| 豆粕Soybean meal | 23.5 | - | - | - | - |
| 麸皮Wheat bran | 10 | 0 | 5 | 5 | 5 |
| 膨化大豆 Extruded soybean | - | 8 | 8 | 6 | 5 |
| 玉米干酒糟 DDGS | - | 4.5 | 8 | 6 | 8 |
| 玉米胚芽粕 Corn germ meal | 11.8 | 10 | 0 | 0 | 5 |
| 脂肪粉 Fat power | - | 1.5 | 2 | 1.5 | 0.8 |
| 糖蜜 Molasses | - | 2 | 2 | 2 | 2 |
| 小苏打NaHCO3 | 0.5 | - | - | - | - |
| 食盐 Salt | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| 石粉Limestone | 2.0 | 0.5 | 0.5 | 0.5 | 0.7 |
| 磷酸氢钙 Dicalcium phosphate | 0.5 | 1 | 1 | 1 | 1 |
| 膨润土 Bentonite | 0.2 | 1 | 1 | 1 | 1 |
| 预混料Premix1) | 1.0 | 1 | 1 | 1 | 1 |
| 合计Total | 100 | 100 | 100 | 100 | 100 |
| 营养水平 Nutrient levels | |||||
| 代谢能2) ME(MJ·kg-1) | 12.24 | 12.05 | 11.93 | 12.25 | 12.00 |
| 干物质 DM | 90.66 | 91.70 | 91.68 | 89.48 | 90.18 |
| 粗蛋白质 CP | 15.27 | 13.75 | 12.76 | 13.00 | 12.86 |
| 粗脂肪 EE | 8.31 | 5.64 | 6.28 | 6.02 | 5.94 |
| 粗灰分 Ash | 2.76 | 7.09 | 6.55 | 7.34 | 7.13 |
| 中性洗涤纤维 NDF | 12.30 | 33.00 | 37.50 | 28.18 | 33.42 |
| 酸性洗涤纤维 ADF | 4.01 | 18.13 | 21.37 | 13.99 | 19.98 |
| 钙 Ca | 1.06 | 1.03 | 1.18 | 1.23 | 1.03 |
| 总磷 P | 0.59 | 0.56 | 0.51 | 0.46 | 0.52 |
育肥前后期预混料为每千克饲粮提供 The premix for finishing period provided the followings per kg of diet:VA 4000 IU,VD 1200 IU,VE 20 IU,Cu 8 mg,Fe 48 mg,Mn 36 mg,Zn 32mg,I 0.2 mg,Se 0.12 mg,Co 0.4 mg,Ca 0.32 g,NaCl 6.4 g
2)营养水平除代谢能外均为实测值 Nutrient levels were measured values except ME
新窗口打开|下载CSV
1.4 饲养管理
试验中的所有羔羊均打耳标,免疫程序按羊场正规程序实施,每隔半个月对羊舍全面消毒1次(5%聚维酮碘、2%稀戊二醛)。每重复试验羔羊一个栏位饲养,每圈5只羊,自由采食及饮水。断奶日龄参照柴建民[9]试验结果,过渡代乳粉的方式有所不同。羔羊在20日龄时开始由随母哺乳逐渐过渡到饲喂代乳粉,同时补饲开食料,于羔羊25日龄正式开始试验,试验全期160 d。代乳粉饲喂量为羔羊体重的1%,具体饲喂方法参照文献[10]方法进行。当羔羊颗粒料采食量达300 g·d-1时停止饲喂代乳粉[11]。随母哺乳羔羊55日龄开始减少母乳摄入,具体为减少羔羊与母羊相处的时间,由整天减少至一天两次,每次15 min,到最后一天一次,每次15 min,至60日龄完全断奶,自由采食开食料。羔羊25—35日龄代乳粉每天7:00、13:00、17:00饲喂3次,35日龄后代乳粉每天8:00、16:00饲喂两次;开食料每天8:00和16:00 饲喂两次,自由采食。羔羊60日龄后停止饲喂开食料,完全饲喂育肥前期颗粒料至120日龄,之后过渡至完全饲喂育肥后期颗粒料至180日龄,颗粒料过渡期均为8 d。
1.5 测定指标与方法
1.5.1 试验饲粮常规营养成分测定 开食料和颗粒料常规营养成分测定方法:使用氧弹量热仪(Parr- 6400)测定总能;采用全自动凯氏定氮仪(KDY-9830)测定粗蛋白;除代乳粉粗脂肪采用国标法(GB5009.6-216)测定外,饲粮干物质、粗脂肪、粗灰分、NDF、ADF、钙和磷则参考文献[12]测定。1.5.2 生长性能 体重:羔羊25、45、65、90、120、150、180日龄晨饲前记录体重,根据各阶段的始末体重值计算平均日增重。采食量:每天准确称量并记录每圈羔羊开食料和育肥颗粒料的投料量及前1d的剩料量,计算羔羊开食料采食量,根据各阶段始末体重计算料重比。
1.5.3 消化代谢 分别于羔羊55—65日龄、115—125日龄及170—180日龄采用全收粪尿法进行消化代谢试验,每期试验每重复选取1只公羔羊(体重接近重复组羊平均体重,健康无病)进行,试验期10 d,预试期5 d,正试期5 d。正试期准确地记录每只羔羊每日采食量、排粪量和排尿量,收集全部粪样,然后再按照100 g鲜粪加入10%的稀硫酸10 mL对样品进行固氮,-20℃保存,试验结束后,将每只试验羊的所有粪样全部均匀混合,并取适量于65 ℃烘箱烘干测定初水分,粉碎后过0.45 mm筛。常规营养成分分析参照张丽英[12]的方法进行。每天收尿液前,往尿盆中加入10% 稀硫酸50 mL,尿液按总尿量5%取样,置于尿样瓶中,-20℃冷冻保存待测。
1.6 统计分析
采用Excel 2010进行试验数据整理,采用SPSS 19.4进行数据分析,数据进行正态分布和方差齐性检验,生长性能数据采用一般线性模型中协方差分析,哺乳期体重和日增重以25日龄体重作为协变量,育肥期体重和日增重以65日龄体重作为协变量。消化代谢数据采用one-way ANOVA模型,差异显著时以Duncan法进行多重比较。以P<0.05 作为差异显著的判断标准。2 结果
2.1 早期断奶和育肥期饲粮NDF水平对湖羊生长性能的影响
由表2可知,4组试验羊初始体重接近,与试验设计一致。4组羔羊整个生长阶段未出现显著的体重差异。羔羊46—65日龄平均日增重随母哺乳组均高于早期断奶饲喂代乳粉组(P<0.05),4组羔羊整个育肥期平均日增重差异不显著(P>0.05)。Table 2
表2
表2早期断奶和育肥期饲粮NDF水平对湖羊体重和日增重的影响
Table 2
| 项目 Items | 日龄 Days of age | 组别 Groups | SEM | P | |||
|---|---|---|---|---|---|---|---|
| EW-LL | EW-LH | EW-HH | ER-HH | ||||
| 体重 BW (kg) | 25 | 8.13 | 8.12 | 8.12 | 8.71 | 0.20 | 0.678 |
| 45 | 12.91 | 12.53 | 12.67 | 12.29 | 0.20 | 0.196 | |
| 65 | 18.49 | 17.71 | 18.22 | 19.25 | 0.71 | 0.531 | |
| 90 | 22.37 | 22.47 | 23.03 | 24.40 | 0.42 | 0.695 | |
| 120 | 28.93 | 28.68 | 29.46 | 27.31 | 0.79 | 0.339 | |
| 150 | 36.28 | 34.30 | 35.76 | 33.00 | 1.32 | 0.352 | |
| 180 | 41.85 | 39.52 | 41.24 | 37.06 | 1.60 | 0.199 | |
| 平均日增重 ADG (g·d-1) | 25-45 | 234.62 | 206.14 | 211.63 | 202.41 | 10.10 | 0.154 |
| 46-65 | 256.01b | 265.28b | 281.38b | 311.42a | 13.05 | 0.043 | |
| 25-65 | 252.68 | 233.02 | 227.41 | 258.16 | 7.49 | 0.086 | |
| 66-120 | 200.42 | 194.56 | 219.70 | 173.81 | 12.44 | 0.129 | |
| 121-180 | 227.29 | 236.37 | 200.25 | 166.92 | 19.47 | 0.093 | |
新窗口打开|下载CSV
由表3可知,21—45日龄早期断奶的3组羔羊代乳粉日采食量接近,21—45和21—65日龄开食料采食量均显著高于随母哺乳ER组(P<0.05)。121—180日龄随母哺乳组中EW-LL组颗粒料采食量显著高于其他两组(P<0.05)。随母哺乳羔羊66—120日龄EW-HH组NDF采食量最高(P<0.05)。4组羔羊育肥期料重比无显著差异(P>0.05)。
Table 3
表3
表3早期断奶和育肥期饲粮NDF水平对湖羊采食量(干物质基础)和饲粮转化率的影响
Table 3
| 项目 Items | 日龄 Days of age | 组别 Groups | SEM | P | |||
|---|---|---|---|---|---|---|---|
| EW-LL | EW-LH | EW-HH | ER-HH | ||||
| 代乳粉采食量 Milk replacer intakes (g·d-1) | 21-45 | 109.74 | 108.17 | 108.88 | - | - | - |
| 开食料采食量 Starter intakes (g·d-1) | 21-45 | 283.90a | 271.37a | 298.76a | 153.43b | 14.37 | 0.000 |
| 46-65 | 665.78 | 662.52 | 712.13 | 605.20 | 19.19 | 0.283 | |
| 21-65 | 474.84a | 466.95a | 505.45a | 379.31b | 15.60 | 0.017 | |
| 干物质采食量DMI (g·d-1) | 66-120 | 823.43 | 801.96 | 918.77 | 824.83 | 20.27 | 0.174 |
| 121-180 | 1417.02a | 1119.32b | 1168.14b | 1124.56b | 43.28 | 0.048 | |
| 66-180 | 1054.16 | 956.11 | 1039.89 | 970.41 | 29.66 | 0.590 | |
| NDF采食量 NDF intakes (g·d-1) | 66-120 | 271.74b | 264.65b | 333.75a | 293.61ab | 7.59 | 0.001 |
| 121-180 | 399.49 | 374.07 | 390.39 | 375.83 | 11.79 | 0.876 | |
| 饲粮转化率 FCR | 66-120 | 3.63 | 4.18 | 3.66 | 3.37 | 0.19 | 0.534 |
| 121-180 | 4.39 | 4.18 | 5.07 | 5.19 | 0.23 | 0.350 | |
新窗口打开|下载CSV
2.2 早期断奶和育肥期饲粮NDF水平对湖羊消化代谢性能的影响
由表4可知,50—60日龄阶段,ER-HH、EW-HH组羔羊DM、OM、GE消化率极显著高于EW-LL、EW-LH组(P<0.05),EW-LH组羔羊NDF消化率最低(P<0.05)。115—125日龄阶段,EW-LL、EW-LH组羔羊DM、OM消化率均极显著高于EW-HH、ER-HH组(P<0.05),EW-LH组羔羊GE表观消化率最高,其次是EW-LL组(P<0.05)。170—180日龄阶段,EW-LL组羔羊DM、OM和N表观消化率高于其他3组,ADF消化率最低(P<0.05)。Table 4
表4
表4早期断奶技术和育肥期饲粮NDF水平对湖羊营养表观消化率的影响
Table 4
| 项目 Items | 组别 Groups | SEM | P | |||
|---|---|---|---|---|---|---|
| EW-LL | EW-LH | EW-HH | ER-HH | |||
| 55-65日龄 55-65 days of age | ||||||
| 干物质 DM | 77.23b | 75.61b | 80.28a | 80.57a | 0.62 | 0.004 |
| 有机物 OM | 80.66b | 79.32b | 83.25a | 83.50a | 0.54 | 0.006 |
| 中性洗涤纤维 NDF | 61.43 | 55.79 | 62.13 | 64.58 | 1.17 | 0.059 |
| 酸性洗涤纤维 ADF | 49.55bc | 42.02c | 55.63ab | 59.43a | 2.17 | 0.001 |
| 总能 GE | 74.24b | 72.42b | 78.09a | 78.20a | 0.71 | 0.001 |
| 氮 N | 76.22a | 70.45b | 77.47a | 79.86a | 1.03 | 0.002 |
| 粗脂肪 EE | 72.87ab | 68.02b | 76.03a | 77.45a | 1.26 | 0.045 |
| 115-125日龄 115-125 days of age | ||||||
| 干物质 DM | 70.73ab | 71.80a | 67.37bc | 65.89c | 0.82 | 0.017 |
| 有机物 OM | 73.64a | 74.22a | 69.55b | 69.09b | 0.75 | 0.010 |
| 中性洗涤纤维 NDF | 54.56 | 52.53 | 53.93 | 49.66 | 4.34 | 0.222 |
| 酸性洗涤纤维 ADF | 49.94 | 47.67 | 46.43 | 44.82 | 1.08 | 0.478 |
| 总能 GE | 69.81ab | 70.75a | 67.27b | 67.48b | 0.51 | 0.022 |
| 氮 N | 72.73 | 74.21 | 71.14 | 70.37 | 0.63 | 0.135 |
| 粗脂肪 EE | 89.71 | 91.07 | 88.59 | 89.25 | 0.60 | 0.553 |
| 170-180日龄 170-180 days of age | ||||||
| 干物质 DM | 76.19a | 72.84b | 73.79ab | 71.45b | 0.61 | 0.035 |
| 有机物 OM | 79.73a | 76.65b | 77.70ab | 75.89b | 0.51 | 0.047 |
| 中性洗涤纤维 NDF | 54.99 | 57.88 | 62.10 | 59.91 | 1.26 | 0.232 |
| 酸性洗涤纤维 ADF | 52.87b | 60.37a | 60.93a | 58.97a | 1.09 | 0.035 |
| 总能 GE | 71.23 | 71.57 | 73.12 | 71.79 | 0.69 | 0.807 |
| 氮 N | 78.65a | 73.53b | 74.24b | 73.29b | 0.70 | 0.019 |
| 粗脂肪 EE | 71.71 | 85.97 | 87.43 | 90.34 | 2.89 | 0.072 |
新窗口打开|下载CSV
由表5可知,50—60日龄四组羔羊代谢能采食量、氮采食量、氮沉积率EW-LH组最低,EW-LL其次(P<0.05),总能代谢率和氮沉积率四组均无显著差异(P>0.05)。EW-LH组氮沉积率显著低于其他3组(P<0.05);115—125日龄各组能量和蛋白代谢指标均不显著(P>0.05),但从整体能氮代谢情况来看,EW-L两组的能氮采食和利用率均高于EW-HH、ER-HH组4%—17%。170—180日龄4组羔羊能量利用和氮代谢能力均无显著差异(P>0.05)。
Table 5
表5
表5早期断奶和育肥期饲粮NDF水平对湖羊能量利用和氮代谢的影响
Table 5
| 项目 Items | 组别 Groups | SEM | P | |||
|---|---|---|---|---|---|---|
| EW-LL | EW-LH | EW-HH | ER-HH | |||
| 50-60日龄 50-60 days of age | ||||||
| 代谢能采食量ME intake (MJ·d-1) | 8.71ab | 8.13b | 9.40a | 9.48a | 0.19 | 0.041 |
| 总能代谢率Metabolic rate of GE (%) | 61.13 | 62.99 | 62.49 | 62.87 | 1.35 | 0.968 |
| 总能沉积率Retained GE (%) | 32.49 | 30.53 | 36.45 | 37.07 | 1.11 | 0.139 |
| 氮采食量N intake (g·d-1) | 24.54ab | 22.89b | 27.11a | 26.69a | 0.58 | 0.023 |
| 氮沉积率Retained N (%) | 48.87ab | 44.19b | 54.79a | 53.92a | 1.36 | 0.010 |
| 115-125日龄 115-125 days of age | ||||||
| 代谢能采食量ME intake (MJ·d-1) | 9.34 | 7.74 | 8.15 | 7.35 | 0.29 | 0.059 |
| 总能代谢率Metabolic rate of GE (%) | 55.71 | 48.22 | 47.84 | 47.86 | 1.56 | 0.158 |
| 总能沉积率Retained GE (%) | 45.57 | 40.10 | 35.22 | 34.92 | 2.19 | 0.237 |
| 氮采食量N intake (g·d-1) | 25.73 | 22.45 | 23.18 | 21.16 | 0.87 | 0.311 |
| 氮沉积率Retained N (%) | 37.42 | 43.72 | 41.19 | 41.75 | 1.13 | 0.266 |
| 170-180日龄 170-180 days of age | ||||||
| 代谢能采食量ME intake (MJ·d-1) | 9.85 | 8.78 | 9.58 | 9.18 | 0.27 | 0.567 |
| 总能代谢率Metabolic rate of GE (%) | 32.45 | 38.62 | 45.25 | 43.31 | 1.10 | 0.230 |
| 总能沉积率Retained GE (%) | 22.39 | 31.42 | 40.05 | 39.90 | 2.94 | 0.066 |
| 氮采食量N intake (g·d-1) | 24.35 | 23.28 | 25.40 | 24.33 | 0.70 | 0.793 |
| 氮沉积率Retained N (%) | 35.48 | 31.53 | 29.47 | 33.55 | 2.00 | 0.757 |
新窗口打开|下载CSV
3 讨论
3.1 早期断奶技术和育肥期饲粮NDF水平对湖羊生长性能的叠加影响
对多种行之有效的单项技术进行科学的组合优化,是技术集成的实施模式[13],已被各行各业广泛采用。CURTIS等[14]通过不同代乳粉饲喂方式调控犊牛哺乳期营养水平及不同分栏情况组合成两种饲养模式对比两组犊牛生长性能,发现两组犊牛在体增重和体况评分等都存在显著差异,说明每个饲养模式中不同处理发挥着不同程度的促生长作用。研究表明,各种单项措施之间对动植物的生长发育存在一定程度的互补促进或消减拮抗作用,对动植物的某些性状尺度增幅表现出叠加效应[15,16]。叠加效应是指集成多项技术产生的生产增益大于单项技术效应的总和。叠加效应是多项技术以不同组合形式应用于生产后,得到不同程度的产出,通过计算不同组合之间生产指标的数值差,得出技术的作用效果及技术间的相互作用[17]。叠加效应应用广泛,在农业方面多集中在农作物生产试验上[15, 17],动物试验鲜有报道,本试验引入叠加效应对羔羊25—180日龄ADG进行分析,以期量化不同处理间的相互作用(表6)。表中因素对ADG的增幅具体计算方法为:
$ \text { 某个(些)因素 } A D G \text { 增幅 }(\%)=\frac{\text { 因素作用的 } A D G \text { 值 }-\text { 无因素作用的 } A D G \text { 值 }}{\text { 无因素作用的 } A D G \text { 值 }} \times 100 \%$
$ \text { 双因素旦加效应 }(\%)=\frac{\text { 双因素作用的ADG值-单因素作用的ADG值 } \times 2}{\text { 单因素作用的ADG值 } \times 2} \times 100 \%$
$ \text { 三因叠加效应 }(\%)=\frac{\text { 三因素作用的ADG值-单因素作用的ADG值 } \times 3}{\text { 单因素作用的ADG值\times3 }} \times 100 \%$
单因素的增幅效应等于所有单因素ADG增幅的平均值,同理,双因素的增幅效应等于所有双因素ADG增幅的平均值。
Table 6
表6
表6湖羊早期断奶和两阶段育肥纤维水平措施对ADG增幅效应汇总分析表
Table 6
| 处理 Items | 180 d体重 Weight (kg) | 121-180 d 采食量 DMI (g·d-1) | 121-180 d 饲料转化率 F/G | 25-180 d 日增重 ADG (g·d-1) | 日增重增幅 ADG increase (%) | 效应 Effect (%) | |||
|---|---|---|---|---|---|---|---|---|---|
| 单因素 One factor | 双因素 Two factors | 三因素 Three factors | ±% | ||||||
| ER-HH | 39.17 | 1124.05 | 5.19 | 191.29 | |||||
| EW-HH | 40.50 | 1216.09 | 5.07 | 206.38 | |||||
| EW-LH | 37.95 | 1119.31 | 4.18 | 198.49 | |||||
| EW-LL | 42.14 | 1281.79 | 4.39 | 216.47 | |||||
| 单因素 One factor | 早期断奶 vs 随母哺乳 EW vs ER | 206.38 | 7.89 | 4.37 | |||||
| 育肥前低NDF vs 育肥前高NDF Low NDF vs High NDF in early fattening stage | 198.49 | -3.82 | |||||||
| 育肥后低NDF vs 育肥后高NDF Low NDF vs High NDF in late fattening stage | 216.47 | 9.05 | |||||||
| 双因素 Two factors | 早期断奶+育肥前低NDF EW + Low NDF in early fattening stage | 198.49 | 3.76 | 4.32 | |||||
| 育肥前低NDF+育肥后低NDF Low NDF in early and late fattening stages | 216.47 | 4.89 | -50.57 | ||||||
| 三因素 Three factors | 早期断奶+育肥前低NDF+育肥后低NDF EW + low NDF in early and late fattening stages | 216.47 | 13.16 | 13.16 | 0.38 | ||||
新窗口打开|下载CSV
本试验4组羔羊25—180日龄ADG增幅效应表现为三项技术13.16%>单项技术4.37%>两项技术4.32%,其中育肥后期NDF水平增幅为9.05%>早期断奶技术作用ADG增幅7.89%>育肥前NDF水平增幅为-3.82%,可预测育肥前期设计的理论适宜NDF水平在生产上作用效果相较对照水平的差。三种技术组合与对照组相比ADG增幅13.16%。在技术效应上,三技术组合略高于三种单项技术相加值的0.38%(均以百分数换算相对值计)说明,三种技术组合产生累加效应。两项技术叠加效果为-50.57%,表明两种技术应用于羔羊饲养,有近一半的效果被重叠而不能被表达,说明不同技术间存在交互作用[17],且主要体现在育肥前期低NDF饲粮的应用对早期断奶促生长效果产生消减拮抗作用。
3.2 早期断奶作用羔羊对生长性能和消化代谢性能的长期影响
羔羊早期断奶补饲代乳粉加开食料促进瘤胃等消化器官的发育,提高了开食料采食量[18]。本试验中,21—45日龄早期断奶EW 3组羔羊开食料采食量接近ER组采食量的1.5倍,46—65日龄四组羔羊采食量没有出现差异,可能是因为ER组羔羊53日龄开始由母乳过渡至完全采食开食料,此时羔羊瘤胃发育完善,能够采食较多的开食料。柴建民等[18]在羔羊最适断奶日龄研究发现,20日龄羔羊断奶后10 d采食量是60日龄断奶羔羊2倍,断奶后30 d两组采食量相近。断奶后整个哺乳阶段早期断奶羔羊开食料采食量仍高于ER组,与本试验结果一致。ADG差异主要体现在46—65日龄阶段,随母哺乳组增重比早期断奶组高16.39%,本试验EW 3组羔羊45日龄断代乳粉,可能对羔羊产生应激影响增重,这与AKSAKAL等[19]研究结果一致。前人通过试验证明早期断奶技术的可行性[20],早期断奶补饲对羔羊培育后期存在代谢印记[6],其促生长作用会产生长效影响,从表2可以看出,EW-HH组羔羊相比ER-HH组育肥期间有较为明显的生长优势,180日龄体重高出4.18 kg。营养物质利用率能够反映动物胃肠道发育情况,是影响动物生长的一个重要指标。本消化代谢试验羔羊60日龄完全断母乳,61—65日龄仅饲喂开食料,本试验中EW 3组羔羊55—65日龄的干物质、有机物、NDF和粗脂肪的消化率出现差异,MICHAEL等[21]试验发现犊牛的采食代乳粉行为会对其生长性能和行为产生一定影响,饲养过程中发现EW-HH组羔羊喜食代乳粉,营养性吮吸行为多,EW-LH组羔羊非营养性吮吸行为居多(舔墙、围栏),可能代乳粉采食行为造成了3组羔羊营养物质消化率出现差异,但综合来看,EW组羔羊消化率仍低于ER组,可能是EW组羔羊提早断奶造成断奶应激且持续影响营养物质消化,柴建民等[18]研究发现,羔羊50日龄前,断奶应激随日龄增大对营养物质消化率影响越大,45日龄断代乳粉也对羔羊消化机制造成一定应激。营养物质消化率降低也是造成46—65日龄EW 3组羔羊ADG低于ER组的重要原因。EW-HH和ER-HH氮沉积率在55—65日龄较高,而45—65日龄ADG却出现显著差异,对ADG进行阶段分析,发现羔羊45—55日龄EW-HH组ADG显著低于ER-HH,可能存在断代乳粉应激,56—65日龄ADG没有显著差异,应激减弱,EW-HH氮沉积能力提高。
综合以上结果来看,早期断奶技术在生产上是可行的,其对羔羊的促生长作用在育肥期更为明显。
3.3 早期断奶作用组合育肥前期低NDF饲粮对羔羊生长性能和消化代谢的长期影响
多数研究早期断奶羔羊的试验表明:羔羊早期断奶补饲与随母哺乳相比瘤网胃重量、容积增加,瘤胃代谢增强[22]。说明早期断奶羔羊的消化系统与随母哺乳羔羊存在较大的差异,据此推测,进入育肥期适宜饲粮NDF水平理论上应存在差异。本试验中,66—120日龄四组羔羊颗粒料采食量没有差异,EW-L两组羔羊NDF采食量显著低于EW-HH、ER-HH组。育肥前期EW-L两组羔羊ADG平均比EW-H组低11.73% 。可见相对高NDF饲粮,低NDF饲粮在育肥前期饲喂效果欠佳,可能本试验羔羊哺乳期开食料未添加草粉,NDF水平(12.30%)低,虽早期断奶羔羊开食料采食量高于随母哺乳羔羊,但其刺激瘤胃发育的程度不够,进入育肥期仍需要较高水平NDF刺激瘤胃发育,YANG等[23]试验表明开食料未添加苜蓿组羔羊瘤胃乳头长度及内脏器官重量显著低于添加组。本试验同时观察了育肥前期饲粮NDF水平的持续影响,结果可知,育肥后期两组羔羊即使饲喂相同的饲粮,EW-LH组羔羊ADG比EW-HH组高18.18%,虽然统计上差异不显著,但可以看出育肥前后期两组增重优势的转移,可能是育肥前期高NDF的促生长作用不能持续整个育肥周期,EW-LH组早期被限制的生长潜力在育肥后期发挥。解彪等[2]对早期断奶羔羊饲喂不同NDF水平饲粮发现,早期断奶羔羊哺乳期饲喂较高NDF水平饲粮生长性能优于其他水平组,育肥期饲喂同一饲粮,早期的促生长作用只持续了一个月,在育肥后期生长性能反而降低。EW-L两组羔羊115—125日龄DM、OM、GE消化率均高于EW-H,代谢能采食量平均高16.35%。VALDES等[24]设计4组肉羊分别自由采食4种精粗比的饲粮,结果与本试验类似,DM、OM消化率随精粗比增加呈线性增加,且通过瘤胃和结肠的颗粒状物通过率线性降低。可能是因为摄入的NDF促使瘤胃蠕动加快,降低饲粮在瘤胃滞留的时间,加速胃肠饲粮流通,导致干物质和有机物降解率下降。从整个育肥期来看,本试验设计的两种育肥前期NDF水平饲粮对最终羔羊的育肥效果相似。
3.4 集成早期断奶、育肥前期低NDF饲粮和育肥后期低NDF饲粮营养技术对羔羊育肥后期生长性能和消化代谢的影响
本试验发现,集成早期断奶、育肥前后期饲粮NDF营养调控3种技术的EW-LL组羔羊121—180日龄干物质采食量最高,比其他组合组高近300g·d-1,与张立涛等[25]试验肉羊干物质采食量随NDF水平升高而升高结论相反,但与ARELOVICH等[26]试验结果一致,可能是饲喂的日粮不同,同时肉羊品种及试验环境也是造成结果出现差异的原因。由于育肥后期饲喂低NDF水平饲粮,导致NDF采食量4组间没有差异,但其他营养物质采食量随干物质采食量的增加而增加。EW-LL组羔羊全期体增重较ER-HH组高3.55kg。EW-LL组羔羊DM、OM和N的消化率显著高于其他组,说明170—180日龄随着饲粮NDF水平的下降,可提供的非纤维性碳水化合物(NFC)增加,为瘤胃微生物提供足够的碳源,微生物新陈代谢活跃,DM、OM和N的消化率增强。EW-LL组羔羊NDF、ADF消化率低于其他3组,饲粮NDF水平降低,瘤胃内饲粮外流速度下降,增加了NFC被瘤胃微生物降解的机会,与NDF、ADF降解形成竞争[26,27,28],周汉林等[29]认为饲粮精料比例增加通过降低瘤胃pH从而抑制纤维分解菌活性也是NDF、ADF消化率降低的原因之一。
综上所述,育肥后期低NDF水平饲粮可提高羔羊采食量,增加营养物质摄入,提高营养物质消化率。
4 结论
早期断奶补饲代乳粉对羔羊生长性能有长期的促进作用,育肥前期低NDF水平饲粮育肥效果相比高NDF水平效果较差,但在育肥后期羔羊饲粮相同情况下,育肥前期饲喂低NDF饲粮的羔羊增重效果高于饲喂高NDF饲粮的羔羊。因此确定羔羊某阶段饲粮适宜营养素水平应着眼于长期的生长性能更科学。育肥前期饲喂33%和38%NDF水平饲粮,两者最终育肥效果相似,因此育肥前期建议采用38% NDF水平饲粮。在本试验条件下,通过对羔羊整个生长阶段生长性能和消化代谢情况分析,对四种饲养模式进行排序EW-LL>EW-LH=EW-HH>ER-HH。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[本文引用: 1]
[本文引用: 1]
[本文引用: 3]
[本文引用: 3]
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOI:10.1371/journal.pone.0191687URL [本文引用: 1]
[本文引用: 2]
[本文引用: 2]
[D].
[本文引用: 1]
[D].
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
[本文引用: 1]
[本文引用: 1]
DOI:10.1371/journal.pone.0191687URL [本文引用: 1]
[本文引用: 2]
[本文引用: 2]
[本文引用: 1]
[本文引用: 1]
[本文引用: 3]
[本文引用: 3]
[本文引用: 3]
[本文引用: 3]
[本文引用: 1]
[本文引用: 1]
DOI:10.1016/S0168-1591(01)00171-XURL [本文引用: 1]
[本文引用: 1]
DOI:10.2527/jas.2015-9266URL [本文引用: 1]
DOI:10.1017/S1357729800051651URL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOI:10.15232/S1080-7446(15)30882-2URL [本文引用: 2]
DOI:10.3168/jds.S0022-0302(00)75001-6URL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
