删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于体表温度的肉鸡温湿指数模型研究

本站小编 Free考研考试/2021-12-26

杨语嫣,, 李耀文, 邢爽, 张敏红, 冯京海,中国农业科学院北京畜牧兽医研究所/动物营养学国家重点实验室,北京 100193

The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages

YANG YuYan,, LI YaoWen, XING Shuang, ZHANG MinHong, FENG JingHai,State Key Laboratory of Animal Nutrition/Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193

通讯作者: 冯京海,E-mail:fjh6289@126.com

责任编辑: 林鉴非
收稿日期:2020-01-17接受日期:2021-01-11网络出版日期:2021-03-16
基金资助:国家重点研究发展计划.2016YFD0500509
中国农业科学院科技创新工程.ASTIP-IAS07
现代农业产业技术研究体系.CARS-41


Received:2020-01-17Accepted:2021-01-11Online:2021-03-16
作者简介 About authors
杨语嫣,E-mail:279894273@qq.com







摘要
【目的】通过分析不同温度、湿度环境下肉鸡体表温度的变化,构建不同日龄肉鸡温湿指数(THI)模型。【方法】分别在28、35、42和49日龄时,选择30只AA肉公鸡,饲养于2个人工环境控制舱内。舱内相对温度分别设定为50%和80%,舱内温度均由18℃开始,每0.5h升高1℃,至33℃并维持0.5h。一共设定2个湿度和16个温度梯度。利用微型温度记录仪连续监测肉鸡体表温度、体核温度和环境温度,每2 min记录1次,同时每10 min检测一次环境湿度。【结果】在24—33℃的范围内,肉鸡体表温度随环境温度升高而线性升高,且受到环境湿度的影响,因此选择环境温度≥24℃后的数据进行分析。通过计算THI与肉鸡体表温度最大相关时干球和湿球温度的权重值,得到不同日龄肉鸡的THI模型,分别为THI28日龄=0.82×T干球+0.18×T湿球;THI35日龄=0.69×T干球+0.31×T湿球;THI42日龄=0.67×T干球+0.33×T湿球;THI49日龄=0.61×T干球+0.39×T湿球。根据干湿球温度的权重值计算出的THI与体表温度之间的线性相关系数达到0.96以上。经2个独立试验验证,THI计算值与体表温度仍存在较强的线性关系,线性相关系数达到0.94以上,且THI模型预测的体表温度与实际测定结果基本一致。【结论】本研究得出的THI模型与体表温度存在良好的线性关系,适用24—33℃范围内温热环境的评价;不同日龄肉鸡THI模型存在差异,随肉鸡日龄增加,湿球温度的权重逐渐增大。
关键词: 连续升温;肉鸡;体表温度;温湿指数模型

Abstract
【Objective】The present study was conducted to estimate the temperature-humidity index (THI) based on the variations of surface temperature (ST) of broilers raised at different relative humidity (RH) levels and increasing ambient temperature (AT). 【Method】At day of 28, 35, 42 and 49, thirty AA broilers were raised in two controlled climate chambers. The RH of two chambers was set at 50% and 80%, respectively, and the AT in two chambers was set at a same procedure with increasing gradually by one degree per 0.5 h from 18 ℃ to 33 ℃. The ST of broilers, as well as the AT in two chambers was recorded at 2 min intervals using mini temperature data loggers. The wet-bulb temperature of two chambers was recorded at 10 min intervals. The THI model as as follow: THI = a*Tdry-bulb + (1-a)* Twet-bulb, the ‘a’ was weighting coefficient of Tdry-bulb, which was calculated when the coefficient of correlation between THI and ST reach to the maximum. 【Result】When the AT exceeded 24 ℃, the ST of broilers increased linearly with the AT and was affected by the RH. The present study estimated the THI for broilers at different ages by using the data when AT exceeded 24 ℃. The THI models for broilers at different age were as follow: THId28=0.82Tdb+0.18Twb; THId35=0.69Tdb+0.31Twb; THId42=0.67Tdb+0.33Twb; THId49=0.61 Tdb+0.39Twb. The linear correlation coefficients between THI and ST reached more than 0.96. In two independent experiments, it was verified again that there was a linear relationship between THI and ST, and the predicted ST by THI model was basically consistent with the actual measured results. 【Conclusion】The present results indicated that THI model had a good linear relationship with ST and was suitable for the evaluation of warm environment when the AT exceeded 24℃. The THI models for broilers at different ages were different, and the weighting coefficient of wet bulb temperature in THI models were increasing with the increase of broiler age.
Keywords:increasing ambient temperature;broilers chicken;surface temperature;temperature-humidity index


PDF (556KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
杨语嫣, 李耀文, 邢爽, 张敏红, 冯京海. 基于体表温度的肉鸡温湿指数模型研究[J]. 中国农业科学, 2021, 54(6): 1270-1279 doi:10.3864/j.issn.0578-1752.2021.06.016
YANG YuYan, LI YaoWen, XING Shuang, ZHANG MinHong, FENG JingHai. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages[J]. Scientia Acricultura Sinica, 2021, 54(6): 1270-1279 doi:10.3864/j.issn.0578-1752.2021.06.016


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】温热环境是影响肉鸡生产的主要环境因素之一。环境温度影响肉鸡的产热和散热平衡,过高时影响肉鸡的内分泌、免疫以及代谢等,导致肉鸡生长性能下降,死亡率升高,造成巨大的经济损失[1,2,3,4]。环境湿度同样影响肉鸡的产热和散热平衡,过高时加剧高温对肉鸡生产性能和健康的不利影响[5,6,7]。因此在实际生产中需要综合考虑环境温度和湿度的共同影响。温湿指数(temperature-humidity index, THI)是通过研究环境温度和湿度对家禽某一生理指标的共同影响规律,合理分配干球温度和湿球温度的权重,使THI与该指标的线性相关系数最大。因此THI指数综合反映了环境温度和湿度对肉鸡的影响。【前人研究进展】。EGBUNIKE[8]通过测定不同温度和湿度下蛋鸡直肠温度和呼吸频率的变化,建立了首个蛋鸡THI模型(以2个指标建立的THI模型基本一致):THI蛋鸡=0.64×T干球+0.36×T湿球,其中THI与蛋鸡直肠温度和呼吸频率的线性相关系数为0.74和0.73。随后研究人员根据产热量[9] 、直肠温度和蒸发散热量[10]的变化建立了火鸡的温湿指数模型。有关肉鸡温湿指数模型研究较少,TAO等[11]针对46日龄肉鸡,以体核温度升高值为指标建立了肉鸡THI模型。【本研究切入点】上述研究一般采用体核温度或产热量为观测指标,计算与观测指标最大相关时干球和湿球温度的权重值。在热中性区内家禽的体核温度和产热量基本保持不变,只有当环境温度超过家禽的热中性区后,体核温度和产热量才可能随环境温度的变化而线性变化。因此利用体核温度或产热量构建的温湿指数模型适用于较高的环境温度,如果扩大适用范围可能会导致THI与观测指标线性关系下降。家禽体表温度的变化反映了可感散热的变化,当环境温度超过家禽的热舒适区(仍处于热中性区内)时,体表温度就开始随环境温度的升高而线性升高[12,13],因此利用体表温度构建温湿指数模型的适用范围更宽。另外,不同日龄肉鸡热舒适区的范围变化较大,雏鸡时需要维持33℃以上的高温,而生长后期的肉鸡,当环境温度超过27℃时就会出现明显的热应激反应[14,15,16,17]。因此需要针对不同日龄肉鸡,研究相应的且适用范围更广的温湿指数模型。【拟解决的关键问题】以肉鸡体表温度的变化为指标构建不同日龄肉鸡的温湿指数(THI)模型。

1 材料与方法

1.1 试验动物及管理

选择21日龄健康AA肉公鸡120只,饲养于动物营养学国家重点实验室环控舱内,使用单层平养笼具。日常饲养管理参照《AA肉鸡饲养管理手册,2009》进行。试验期间自由采食与饮水,采用玉米-豆粕型饲粮,参照NRC(1994)[18] 营养需要配制。分别在26、33、40和47日龄时,各选择30只体重接近的肉公鸡饲养于2个环控舱内,适应2d后开始正式试验。

1.2 环控舱温度设置

适应期间(2d)2个环控舱内的温度设定为20℃,相对湿度设定为60%。试验当天将2个舱内的湿度分别设定为50%和80%。2个环控舱内的温度控制相同,均由18℃开始,每0.5 h升温1℃,直到33℃并维持0.5 h。一共设定2个湿度点和16个温度点。杨语嫣等[12]等研究发现,在18—33℃的范围内,可以观察到肉鸡体表温度和体核温度的恒定区和升高区,温湿指数模型采用体表温度开始升高后的数据进行分析建立。

1.3 环境温度、湿度及体表和体核温度的测定

使用微型温度记录仪(DS1 922L,Maxim,San Jose, CA, U.S.)测定环境、体表和体核温度。微型温度记录仪可以根据设定的时间间隔自动记录接触面的温度,待试验结束后,使用相应数据读取设备,读取温度记录仪内的温度数据。将温度记录仪放置于肉鸡相同高度,每2 min测定1次环控舱内的温度;将肉鸡背部局部羽毛剪出,将微型温度记录仪紧缚于肉鸡背部,使温度记录仪与肉鸡背部皮肤紧密接触,每2 min测定1次肉鸡体表温度;将微型温度记录仪经口腔投入到肉鸡的肌胃内,仔细捻揉肉鸡嗉囊,保证每个记录仪能够通过食道进入肌胃,记录仪的大小正好可以通过食道,却无法通过肌胃与腺胃的连接口,从而保证记录仪停留在肌胃内部,每2 min测定1次肉鸡的体核温度。将所有微型温度记录仪设定相同的起始时间和间隔时间,保证每隔2 min同时测定环境温度、体表和体核温度。具体测定参考杨语嫣等[12] 的方法。将温湿度记录仪(174H,Testo,Germany)放置于肉鸡相同高度,每10 min测定1次,实时记录环控舱内湿度变化。

1.4 THI模型的建立

将0.5 h内的15个干球温度(每2 min测定1次,0.5 h共测定15次)和3个湿球温度值(每10 min测定1次,0.5 h共测定3次)分别进行平均,为该设定环境下的实测值;将0.5 h内的15个肉鸡体表温度值(每2 min测定1次,0.5 h共测定了15次)进行平均,然后再将同一日龄相同环境下的15只肉鸡的体表温度进行平均,为该环境下肉鸡体表温度测定值。使用干球温度≥24℃的数据进行分析。

参考TAO等[11]的方法构建肉鸡THI模型。肉鸡THI模型为:

THI = a×T干球 +(1-a) ×T湿球;

其中干球温度(T干球)权重值(a)从0到1变化,湿球温度(T湿球)的权重值(1-a)随之从1到0变化,每次权重变化0.1。计算出不同权重值下的预期THI值,并与肉鸡体表温度进行线性相关分析,得到不同权重值下的预期THI值与体表温度的线性相关系数,建立权重值与相关系数之间的回归方程,计算出相关系数最大时的权重值,构建出不同日龄肉鸡的THI模型。

1.5 THI模型的验证试验

验证试验1选择10只23日龄健康AA肉公鸡,饲养于一个环控舱内,环控舱内的湿度设定为50%,温度设定同上,环境温度、湿度以及肉鸡体表温度的测定同上;验证试验2选择20只28日龄健康AA肉公鸡,分别饲养于2个环控舱内,相对湿度分别设置为50%RH和80%RH,温度设置同上。环境温度、湿度及肉鸡体表温度的测定同上。

1.6 肉鸡体表和体核温度拐点温度的估测及THI值的分区

参考杨语嫣等[12] 的方法,采用spss 17.0统计软件中非线性分段回归分析(Nonliner regression),对连续升温下肉鸡体表和体核温度的数据进行分段回归分析。分段回归模型为:

当 T≥IPT 时:Y = C + Z × (AT- IPT)

当 T<IPT 时:Y = C

其中Y是指肉鸡体表或体核温度;C为肉鸡的基础体表温度或体核温度;Z是指肉鸡体温升高的斜率;AT是指环境温度;IPT是指肉鸡体表温度或体核温度开始升高时的环境温度,即拐点温度。

通过非线性回归分析,可得出每只肉鸡的基础体温、拐点温度和升高时的斜率。将同一日龄、同一湿度下所测肉鸡的拐点温度进行平均,将所测肉鸡体核温度升高1.0℃时的环境温度进行平均,以体表温度、体核温度开始升高时的环境温度(拐点温度)和体核温度升高1.0℃时的环境温度为节点,计算3个节点对应的THI值,对不同日龄肉鸡的THI进行分区。

2 结果

2.1 连续升温环境下肉鸡体表和体核温度的变化

虽然设定了2个湿度和16个温度点,但舱内实际湿度和温度呈现一定的波动性(图1-a)。随着环境温度由18℃逐渐升高至33℃,肉鸡的体表温度和体核温度均呈现出明显的折线关系(图1-b、c)。通过非线性回归分析,可以得出肉鸡体表温度和体核温度开始升高时的环境温度,即体表和体核温度的拐点温度。在50%的相对湿度下,28日龄肉鸡体表温度的平均拐点温度为23.6℃(表1),也就是说,当环境温度低于23.6℃时,肉鸡体表温度基本维持恒定;当环境温度超过23.6℃时,肉鸡体表温度开始随环境温度升高呈线性升高。本研究以肉鸡体表温度的线性变化为依据建立肉鸡THI模型,因此选用干球温度超过肉鸡体表拐点温度的数据进行分析。高湿(80%)环境下,肉鸡体表温度的拐点温度进一步降低;随日龄增加,肉鸡的拐点温度也进一步降低(表1)。为了描述简便,我们统一使用24℃之后的数据建立THI模型,但该模型适用于拐点温度之上的环境温度范围。

图1

新窗口打开|下载原图ZIP|生成PPT
图1环控舱内的温度和湿度(a)以及单只肉鸡体表温度(b)和体核温度(c)的实测值(28日龄)

Fig. 1The temperature and RH of controlled climate chambers (a) and the measured values of the surface temperature (b) and core temperature (c) of a single broiler (at 28 days old)



Table 1
表1
表1肉鸡体表、体核温度的拐点温度以及体核温度升高1.0℃时的环境温度和THI值
Table 1The inflection point temperature of the surface and core temperature of broiler chickens, the ambient temperature when the core temperature rises by 1.0℃ and the THI value
体表温度开始升高时
When the ST starts to rise
体核温度开始升高时
When the CT starts to rise
体核温度增加1.0℃时
When the CT increases by 1.0℃
干球温度
Dry bulb temperature
THI平均值
Average
value
干球温度
Dry bulb temperature
THI平均值
Average
value
干球温度
Dry bulb temperature
THI平均值
Average
value
28日龄 28 days
50%23.622.322.426.925.525.633.632.031.4
80%23.122.526.225.631.630.8
35日龄 35 days
50%23.020.821.225.022.823.231.528.929.5
80%22.421.624.623.731.430.1
42日龄 42 days
50%22.720.220.724.321.822.230.928.027.9
80%22.121.223.522.628.827.9
49日龄 49 days
50%22.019.319.923.820.921.630.627.727.9
80%21.720.523.322.229.128.1

新窗口打开|下载CSV

图2可见,当环境温度超过24℃后,肉鸡体表温度开始随环境温度升高呈线性升高。28日龄时,环境湿度对肉鸡体表温度的影响较小;35日龄之后,环境湿度对肉鸡体表温度影响明显。当环境温度超过肉鸡体核温度的拐点温度后,体核温度也随环境温度升高而线性升高。随日龄增加,肉鸡体核温度的拐点温度降低。28日龄时,环境湿度对肉鸡体核温度的影响较小;35日龄之后影响较大,但与体表温度相比,环境湿度对肉鸡体核温度的影响较小。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同湿度条件下环境温度对肉鸡体表和体核温度的影响

环境湿度为设定值,非实测值;每个数据点对应的环境温度为30 min内15次测定的平均值;每个数据点对应的体表或体核温度为15只肉鸡30 min内15次测定的平均值
Fig. 2Effects of dry bulb temperature on body temperature of broilers under different RH

The RH is the set value, not the actual value; the ambient temperature corresponding to each data point is the average value of 15 measurements within 30 minutes; the surface or core temperature corresponding to each data point is the average value of 15 measurements within 30 minutes of 15 broilers


2.2 THI模型的建立

图3可见,随干球温度权重值由0逐渐增加至1,预期THI与肉鸡体表温度之间的线性相关系数呈二次曲线性变化,由此可以建立干球温度权重值与线性相关系数之间的回归方程。28日龄肉鸡的回归方程为:y=-0.49x2+0.80x+0.63,回归决定系数为0.994,其中x为干球温度的权重值,y为预期THI与肉鸡体表温度之间的线性相关系数。各日龄的回归方程见图3。通过计算回归方程中线性相关系数最大时的干球温度权重,可以得出不同日龄肉鸡THI指数模型中最佳干、湿球温度权重值,最终得到不同日龄肉鸡的THI模型:

THI28日龄肉鸡=0.82×T干球+0.18×T湿球;

THI35日龄肉鸡=0.69×T干球+0.31×T湿球;

THI42日龄肉鸡=0.67×T干球+0.33×T湿球;

THI49日龄肉鸡=0.61×T干球+0.39×T湿球

图3

新窗口打开|下载原图ZIP|生成PPT
图3干球温度权重值影响预期THI与体表温度之间相关系数

Fig. 3Effects of weight value of dry bulb temperature on the correlation coefficient between expected THI and surface temperature



2.3 肉鸡THI模型的验证

根据肉鸡THI模型公式,计算出的THI与肉鸡体表温度之间存在良好的线性相关,相关系数均在0.96以上。为了验证模型的可靠性,又开展了2次验证试验,测定了不同温度和湿度下肉鸡的体表温度。根据28日龄肉鸡的THI模型公式,计算出的THI值与2次验证试验测定的体表温度之间存在良好的线性相关性,相关系数分别为0.97和0.94(图4)。根据THI与体表温度之间的线性相关方程,计算出的肉鸡体表温度预测值与验证试验实测值基本一致,验证试验1的实测值和预测值之间最大偏差为-0.81—0.89℃,验证试验2的实测值与预测值之间最大偏差为-0.51—0.08℃。验证试验1的偏差较大,可能是由于选用的是23日龄肉公鸡,与预测方程所用的28日龄存在差别。

图4

新窗口打开|下载原图ZIP|生成PPT
图4肉鸡THI模型的验证

Fig. 4Validation of broiler THI model



2.4 肉鸡THI值的分区

在24—33℃的范围内,THI与肉鸡体表温度之间存在良好的线性相关关系,使用THI可以预测肉鸡的体表温度。当环境温度超过肉鸡体核温度的拐点温度后,肉鸡体表温度与体核温度之间存在显著的线性相关关系(图5)。但由于体表温度与肉鸡热应激指标和生产性能之间的相关性研究较少,仅仅根据肉鸡体表温度的变化很难进行THI值的分区。

图5

新窗口打开|下载原图ZIP|生成PPT
图5肉鸡体表温度与体核温度的相关性

Fig. 5The correlation between surface temperature and core temperature of broilers



随环境温度逐渐升高,肉鸡体表温度和体核温度呈现明显的折线关系(图1-b、c)。利用非线性回归分析,可以计算出肉鸡体表温度、体核温度开始升高时的环境温度(即拐点温度,表1)。根据肉鸡体表和体核温度的拐点温度以及体核温度升高1.0℃时的干球温度,结合相对应的湿球温度,可以计算出相应的THI值(表1),即肉鸡体表温度开始升高时的THI、肉鸡体核温度开始升高时的THI和肉鸡体核温度升高1.0℃时的THI。根据这3个节点THI值,将肉鸡的THI分为热舒适区、体温恒定区、警戒区和热应激区(图6)。以28日龄为例,当THI≤22.4℃时,肉鸡不需要调节可感散热即可维持体温恒定,因此处于热舒适区(下限值未测);当THI在22.4—25.6℃之间时,肉鸡通过调节产热和散热,可以维持体温的恒定,因此处于体温恒定区;当THI超过25.6℃时,肉鸡体核温度开始升高,此时应引起生产人员的重视;当THI≥31.4℃时,肉鸡体核温度升高1.0℃以上,此时肉鸡表现出明显的热应激反应,对生产性能和健康危害很大,因此称为热应激区。其他日龄THI值的划分见图6

图6

新窗口打开|下载原图ZIP|生成PPT
图6不同周龄肉鸡THI值的分区(热舒适区下限和热应激区的上限未测定)

Fig. 6Division of THI values of broilers at different ages (The lower limit of the thermal comfort zone and the upper limit of the heat stress zone have not been determined)



3 讨论

温湿指数综合反映了环境温度和湿度对动物的共同影响。通过研究不同环境温度和湿度组合对动物某些生理指标的影响规律,计算当THI与该指标的线性相关系数最大时,干球温度和湿球温度的权重值,研究人员建立了猪[19]、牛[20,21,22]和家禽[8,9,10,11]的THI模型。研究人员一般选用体核温度(直肠温度)、产热量、呼吸频率或蒸发散热量等为观测指标建立THI模型。这些指标首先是动物应对不同温湿环境的生理反应,而非受到环境温度的直接影响或干扰,其次在某一环境温度范围内应与环境温度存在线性关系,这是选择观测指标的基础。本研究以体表温度为指标建立了肉鸡THI模型。肉鸡体表温度一般高于鸡舍内的环境温度,可以通过辐射、对流、传导的方式向环境散热,这种散热方式称为可感散热。当环境温度升高时,体表与环境之间的温度差减小,导致可感散热减少,为维持正常的散热量,肉鸡通过增加皮肤血液流量的方式增加体表温度[23,24],因此体表温度的变化代表了肉鸡可感散热的变化,是家禽根据环境温度变化进行自主调节的一种生理反应,而不是受到环境温度的直接影响。本研究将微型测温芯片紧缚在肉鸡背部,实时测定肉鸡的皮肤温度,避免环境设施和人为的干扰,因此与体核温度、产热量、呼吸频率等指标一样,可以作为建立THI模型的观测指标。

国际生理学联合会热委员会(IUPS)将热中性定义为:动物仅通过可感散热的调节,无需改变代谢产热或蒸发散热即可维持体温正常的环境温度范围[25]。根据这一定义,即使环境温度处于热中性区的范围内,动物体表温度即开始随环境温度的变化而变化 [26-27] 。研究人员通过比较3个环境温度下肉鸡体表温度的变化,发现在20—35℃范围内,随环境温度升高肉鸡体表温度呈线性升高[28,29]。杨语嫣等[12]利用连续升温模型发现,即使在热中性区内肉鸡体表温度就开始随环境温度升高而线性升高。而根据IUPS关于热中性区的定义,只有当环境温度超过家禽热中性区后,产热量和蒸发散热量才随环境温度升高而线性变化,因此以产热量和蒸发散热量为指标建立的THI适用于家禽热中性区以上的环境温度。如果环境温度进一步升高,家禽无法维持产热和散热的平衡,体核温度才开始随环境温度的升高而逐渐升高,因此以体核温度为指标建立的THI适用于更高的环境温度。如果扩大适用范围将导致构建的THI与体核温度之间的相关性降低。EGBUNIKE[8] 以直肠温度为指标在22—33℃范围内建立了蛋鸡THI模型,结果THI与直肠温度之间的线性相关系数仅为0.74。而TAO 等 [11] 在35—41℃范围内,以体核温度增加值为指标建立的肉鸡THI模型,THI与体核温度增加值之间的线性相关系数高达0.90。由此可见,以体核温度(直肠温度)为指标建立的THI模型适用于高温范围,可以作为反映肉鸡热应激程度的监控指数,而以体表温度为指标建立的THI模型适用的环境温度范围更宽,可以用于反映肉鸡热舒适以及热应激的程度。本研究发现,在24—33℃的范围内,THI与体表温度的相关系数可达到0.96以上。验证试验也表明,THI与体表温度之间具有较高的线性相关性。由于本研究设定的最高温度为33℃,对于上市前肉鸡在急性高温环境(35℃以上)时还应参考TAO 等[11]的THI模型。

本研究发现,不同日龄肉鸡的THI模型存在差异,其中湿球温度权重值随日龄增加逐渐增大。BROWN-BRANDL等[10]建立了不同周龄火鸡的THI模型,从10周龄开始,随周龄增加,THI模型中湿球温度的权重值显著增加。林海等[30]根据肉鸡平均体温的变化建立了肉鸡的实感温度模型,同样发现,6—7周龄肉鸡模型中相对湿度的权重显著高于3—4周龄。快大型肉鸡孵化后,在短短的40多天内体重增加近100倍。随着体重的迅速增加,肉鸡自身的代谢产热也迅速增加。高温环境下肉鸡主要通过热喘息增加蒸发散热[31],当环境湿度过高时显著影响肉鸡蒸发散热的效率,因此随肉鸡体重增加,对于环境湿度的敏感性也越高。本研究发现,当肉鸡超过35日龄以后,湿球温度的权重值大于0.3,而TAO等[11] 针对46日龄肉鸡建立的THI模型中湿球权重仅为0.18。导致这种差异的原因可能在于研究的温度范围以及选用的观测指标不同。

本研究基于体表温度的变化,在24—33℃范围内建立了肉鸡的THI模型,并根据肉鸡体表温度、体核温度开始升高时的THI,以及体核温度升高1.0℃时的THI,将肉鸡的THI分为热舒适区、体温恒定区、警戒区和热应激区,这一模型适用于肉鸡正常生产中温热环境的评价和预警。TAO 等 [11] 在35—41℃范围内,以体核温度增加值为指标建立了肉鸡THI模型,并将体核温度升高1.0—2.5℃、2.5—4.0℃和超过4.0℃时的THI定为警戒区、危险区和紧急情况区,该模型更适用于上市前肉鸡在急性高温环境(35℃以上)下危险程度的评价。

4 结论

本研究根据肉鸡体表温度的变化建立了不同日龄肉鸡温湿指数模型,其中28、35、42和49日龄肉鸡温湿指数模型中干球温度的权重分别为0.82、0.69、0.67和0.61,湿球温度权重分别为0.18、0.31、0.33和0.39。在24—33℃范围内,温湿指数与体表温度之间的相关系数大于0.96,验证试验也表明,在该温湿指数模型与体表温度之间具有较高的线性相关性。根据肉鸡体表温度、体核温度开始升高时的温湿指数,以及体核温度升高1.0℃时的温湿指数,将肉鸡的温湿指数划分为热舒适区、体温恒定区、警戒区和热应激区。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

LARA L, ROSTAGNO M. Impact of heat stress on poultry production
Animals, 2013,3(2):356-369.

URLPMID:26487407 [本文引用: 1]

FARAG M R, ALAGAWANY M. Physiological alterations of poultry to the high environmental temperature
Journal of Thermal Biology, 2018,76:101-106.

URLPMID:30143284 [本文引用: 1]

NAWAB A, IBTISHAM F, LI G, KIESER B, WU J, LIU W, ZHAO Y, NAWAB Y, LI K, XIAO M, AN L. Heat stress in poultry production: mitigation strategies to overcome the future challenges facing the global poultry industry
Journal of Thermal Biology, 2018,78:131-139.

URLPMID:30509629 [本文引用: 1]

SUGIHARTO S, YUDIARTI T, ISROLI I, WIDIASTUTI E, KUSUMANTI E. Dietary supplementation of probiotics in poultry exposed to heat stress - a review
Annals of Animal Science, 2017,17(3):591-604.

DOI:10.1515/aoas-2016-0062URL [本文引用: 1]

LIN H, ZHAMG H, DU R. Thermoregulation responses of broiler chickens to humidity at different ambient temperatures. Four weeks of age
Poultry Science, 2005,84(8):1173-1178.

DOI:10.1093/ps/84.8.1173URLPMID:16156199 [本文引用: 1]
Two experiments were conducted to investigate the effect of RH (35, 60, and 85%) on thermoregulation of broiler chickens at high (35 degrees C) and mild (30 degrees C) temperatures at the age of 4 wk. The effects of humidity on rectal temperature (RT) and plumage temperature at back (PBAT) and skin temperature at breast (SBRT) were determined at 1, 4, 8, 16, and 24 h after exposure. The RT, PBAT, and SBRT were all significantly increased by high temperature (35 degrees C). Humidity had a significant influence on RT at 35 degrees C but not at 30 degrees C. The peripheral temperatures (PBAT and SBRT) were significantly affected by humidity but responded differently at high (35 degrees C) compared with mild temperature (30 degrees C). In conclusion, high humidity above 60% impaired the heat transmission from body core to the periphery at 35 degrees C but facilitated it at 30 degrees C in 4-wk-old broiler chickens. The effect of humidity on nonevaporative heat loss was depended on air temperature, as nonevaporative heat loss was suppressed by high humidity (>60% RH) at high temperature but enhanced at the mild temperature. The effect of humidity on the relationship between peripheral and core temperature depends on ambient temperature as well as on the age of the broiler chicken. The disturbance of thermal balance could not be determined only by changes in RT or peripheral temperature at a single time point but could be determined by mean body temperature within a certain time frame.

YAHAV S, GOLDFELD S, PLAVNIK I. Physiological responses of chickens and turkeys to relative humidity during exposure to high ambient temperature
Journal of Thermal Biology, 1995,20(3):245-253.

DOI:10.1016/0306-4565(94)00046-LURL [本文引用: 1]

YAHAV S. Relative humidity at moderate ambient temperatures: its effect on male broiler chickens and turkeys
British Poultry Science, 2000,41(1):94-100.

DOI:10.1080/00071660086475URLPMID:10821530 [本文引用: 1]
1. The effect of relative humidity (RH, 40% to 75%) at moderate ambient temperatures (Ta, 28 degrees and 30 degrees C) on the performance and thermoregulation of male broiler chickens and turkeys was studied at the age of 4 to 8 weeks. 2. Weight gain and food intake of male broiler chickens were significantly higher at 60% to 65% RH but food conversion efficiency was not affected by RH. In male turkeys, no effect of RH on performance was recorded. 3. Both chickens and turkeys controlled body temperature at normothermic levels during exposure to the experimental environmental conditions. 4. The rate of panting estimated from blood pH and pCO2 was lower in chickens exposed to 28 degrees C than to 30 degrees C. In turkeys, the rate was lower than that recorded in chickens at both Ta(s). 5. Plasma T3 was positively and significantly correlated with food intake. 6. It may be concluded that RH plays a role in the performance of chickens exposed to 30 degrees and 28 degrees C. whereas male turkeys must respond to RH at Ta >30 degrees C.

EGBUNIKE G. The Relative importance of dry- and wet-bulb temperatures in the thermorespiratory function in the chicken
Zentralblatt für Veterin?rmedizin Reihe A, 1979,26(7):573-579.

DOI:10.1111/tbed.1979.26.issue-7URL [本文引用: 3]

XIN H, DESHAZER J A, BECK M M. Responses of pre-fasted growing turkeys to acute heat exposure
Transactions of the ASAE, 1992,35(1):315-318.

DOI:10.13031/2013.28605URL [本文引用: 2]

BROWN-BRANDL T M, BECK M M, SCHULTE D D, PARKHURST A M, DESHAZER J A. Temperature humidity index for growing tom turkeys
Transactions of the ASAE, 1997,40(1):203-209.

DOI:10.13031/2013.21246URL [本文引用: 3]

TAO X P, XIN H W. Temperature-humidity-velocity index for market- size broilers
ASAE Meeting Paper, 2003, No. 034037.

[本文引用: 7]

杨语嫣, 王雪洁, 张敏红, 冯京海. 升温环境下肉鸡体温和呼吸频率对热中性区上限温度估测
中国农业科学, 2019,52(3):550-557.

DOI:10.3864/j.issn.0578-1752.2019.03.015URL [本文引用: 5]
目的 通过非线性分段回归模型,分析随环境温度逐渐升高,肉鸡体表、体核温度和呼吸频率开始升高时的环境温度,即拐点温度(IPT),估测肉鸡热中性区、热舒适区的上限温度。方法 试验选择21日龄AA肉鸡10只,饲养于人工环境控制舱内。舱内温度由18℃开始,每0.5 h升高1℃,至33℃维持0.5 h后,逐渐降至20℃,循环3 d。利用微型温度记录仪连续监测肉鸡体表和体核温度(每10min记录1次)。结果 经非线性分段回归分析,3次(天)估测出的肉鸡体表温度的拐点温度(IPTST)分别为21.18、21.09、21.13℃,平均21.13℃。肉鸡IPTST个体之间的变异较大,3次测定的变异系数分别为6.31、6.15、5.64;而同一只肉鸡3次估测的IPTST差别较小,10只鸡的变异系数平均为0.52,表明这种估测IPTST的方法重复性较好。肉鸡体核温度的拐点温度(IPTCT)3次测定的结果分别为27.80、27.98、27.67℃,平均27.82℃。个体之间IPTCT的变异系数为2.82、2.75、2.78,而同只肉鸡3次估测的IPTCT变异较小,平均变异系数为0.90,表明这种估测IPTCT的方法重复性较好。肉鸡呼吸频率的拐点温度(IPTRR)3次测定的结果分别为28.42、29.52、29.25℃,平均29.06℃。由于肉鸡在高温环境下喘息并非持续发生,本试验呼吸频率的测定时间过短(每个温度下每只鸡测定了1 min),造成部分肉鸡测定的呼吸频率过低,导致估测的IPTRR偏高。结论 根据热中性区的定义,3—4周龄肉鸡热舒适区上限温度即为IPTST(21.13℃),而热中性区上限温度应低于IPTCT(27.82℃)。
YANG Y Y, WANG Y J, ZHANG M H, FENG J H. The upper limit temperature of thermoneutral zone estimated by the changes of temperature and respiration rate of the broilers
Scientia Agricultura Sinica, 2019,52(3):550-557. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2019.03.015URL [本文引用: 5]
目的 通过非线性分段回归模型,分析随环境温度逐渐升高,肉鸡体表、体核温度和呼吸频率开始升高时的环境温度,即拐点温度(IPT),估测肉鸡热中性区、热舒适区的上限温度。方法 试验选择21日龄AA肉鸡10只,饲养于人工环境控制舱内。舱内温度由18℃开始,每0.5 h升高1℃,至33℃维持0.5 h后,逐渐降至20℃,循环3 d。利用微型温度记录仪连续监测肉鸡体表和体核温度(每10min记录1次)。结果 经非线性分段回归分析,3次(天)估测出的肉鸡体表温度的拐点温度(IPTST)分别为21.18、21.09、21.13℃,平均21.13℃。肉鸡IPTST个体之间的变异较大,3次测定的变异系数分别为6.31、6.15、5.64;而同一只肉鸡3次估测的IPTST差别较小,10只鸡的变异系数平均为0.52,表明这种估测IPTST的方法重复性较好。肉鸡体核温度的拐点温度(IPTCT)3次测定的结果分别为27.80、27.98、27.67℃,平均27.82℃。个体之间IPTCT的变异系数为2.82、2.75、2.78,而同只肉鸡3次估测的IPTCT变异较小,平均变异系数为0.90,表明这种估测IPTCT的方法重复性较好。肉鸡呼吸频率的拐点温度(IPTRR)3次测定的结果分别为28.42、29.52、29.25℃,平均29.06℃。由于肉鸡在高温环境下喘息并非持续发生,本试验呼吸频率的测定时间过短(每个温度下每只鸡测定了1 min),造成部分肉鸡测定的呼吸频率过低,导致估测的IPTRR偏高。结论 根据热中性区的定义,3—4周龄肉鸡热舒适区上限温度即为IPTST(21.13℃),而热中性区上限温度应低于IPTCT(27.82℃)。

CHANG Y, WANG X J, FENG J H, ZHANG M H, DIAO H J, ZHANG S S, PENG Q Q, ZHOU Y, LI M, LI X. Real-time variations in body temperature of laying hens with increasing ambient temperature at different relative humidity levels
Poultry Science, 2018,97(9) 3119-3125.

DOI:10.3382/ps/pey184URLPMID:29771384 [本文引用: 1]
In order to measure the real-time variations in body temperature with increasing ambient temperature (AT) at different relative humidity (RH) levels, 60 Jinghong laying hens (35-wk-old) were raised in 3 controlled climate chambers (10 cages with 2 birds per chamber). The RH was fixed at one of 3 levels comprising 35, 50, or 85%, and the AT was increased gradually by 1 degree per 0.5 h from 18 to 35 degrees C in the 3 chambers. The core temperature (CT) and surface temperature (ST) of the hens, as well as the AT in the 3 chambers were recorded at 3 min intervals using mini temperature data loggers. The data were analyzed with a broken-line model to determine the inflection point temperature (IPT, the certain AT above which the body temperature of the hens started to change). The experiment was repeated 3 times on 3 d. The IPTs of the laying hens were 23.89 and 25.46 degrees C based on ST and CT at 50% RH, respectively, which indicated that the upper critical temperature of the thermoneutral zone of hens may be a specific temperature between 23.89 degrees C and 25.46 degrees C. The IPTs of the laying hens were 24.11 and 25.20 degrees C based on ST and CT at RH 35%, respectively, and 21.93 and 24.45 degrees C at RH 85%. The RH significantly affected the IPT of ST (P < 0.001). The IPTs were higher at 35 and 50% RH than that at 85% RH (P < 0.05). The coefficients of variation for the IPTs between individual hens were 2.96 to 4.51, and coefficients of variation for the IPTs for the same bird measured on 3 d were 0.69 to 1.59, thereby indicating that this method for estimating the IPTs of hens is stable and repeatable, although more samples are needed. In conclusion, our results indicate that analyzing the real-time variation in body temperature with increasing AT is a reliable method for estimating the IPT to provide an important reference for regulating the temperature in poultry houses.

甄龙, 石玉祥, 张敏红, 冯京海, 张少帅, 彭骞骞. 持续偏热环境对肉鸡生长性能, 糖脂代谢及解偶联蛋白 mRNA 表达的影响
动物营养学报, 2015,27(7):2060-2069.

DOI:10.3969/j.issn.1006-267x.2015.07.011URL [本文引用: 1]
本试验研究了持续不同温度处理(21、26和31 ℃)对肉鸡生长性能、血清糖脂代谢相关指标、胸肌和肝脏解偶联蛋白(avUCP)mRNA表达的影响。试验选取22日龄爱拔益加(AA)肉鸡144只转入环境控制舱,随机分成3组,每组6个重复,每个重复8只鸡(公母各4只)。适应期7 d,温度21 ℃,相对湿度60%。29日龄时,试验温度分别调整到21、26和31 ℃,相对湿度60%,直至试验结束,共14 d。结果表明:1)31 ℃组肉鸡平均日增重(ADG)、平均日采食量(ADFI)极显著低于21、26 ℃组(P<0.01),料重比(F/G)显著高于21、26 ℃组(P<0.05);26 ℃组肉鸡ADG、ADFI显著低于21 ℃组(P<0.05),F/G和21 ℃组无显著差异(P>0.05)。2)31 ℃组肉鸡血清葡萄糖(GLU)、总胆固醇(TC)、甘油三酯(TG)、游离脂肪酸(FFA)含量显著高于21 ℃组(P<0.05);26 ℃组血清生化指标与21 ℃组无显著差异(P>0.05)。3)31 ℃组肉鸡血清甲状腺素(T4)、瘦素(LEP)、皮质酮(CORT)含量显著高于21 ℃组(P<0.05);除T4含量外(P<0.05),26 ℃与21 ℃组之间血清激素指标无显著差异(P>0.05)。4)试验第7天,31 ℃组胸肌avUCP mRNA表达显著低于21、26 ℃组(P<0.05);第14天,26、31 ℃组胸肌avUCP mRNA表达极显著低于21 ℃组(P<0.01);试验第7、14天,31 ℃组肉鸡肝脏avUCP mRNA表达极显著高于21、26 ℃组(P<0.01)。综上,与21 ℃相比,持续偏热处理(26、31 ℃)影响肉鸡糖脂代谢及avUCP mRNA的表达,并显著降低生长性能,且不同偏热程度对肉鸡影响程度不同。
ZHEN L, SHI Y X, ZHANG M H, FENG J H, ZHANG S S, PENG Q Q. Effects of constant moderate temperatures on performance, glucose and lipid metabolism, expression of uncoupling protein of broilers
Chinese Journal of Animal Nutrition, 2015,27(7):2060-2069. (in Chinese)

DOI:10.3969/j.issn.1006-267x.2015.07.011URL [本文引用: 1]
本试验研究了持续不同温度处理(21、26和31 ℃)对肉鸡生长性能、血清糖脂代谢相关指标、胸肌和肝脏解偶联蛋白(avUCP)mRNA表达的影响。试验选取22日龄爱拔益加(AA)肉鸡144只转入环境控制舱,随机分成3组,每组6个重复,每个重复8只鸡(公母各4只)。适应期7 d,温度21 ℃,相对湿度60%。29日龄时,试验温度分别调整到21、26和31 ℃,相对湿度60%,直至试验结束,共14 d。结果表明:1)31 ℃组肉鸡平均日增重(ADG)、平均日采食量(ADFI)极显著低于21、26 ℃组(P<0.01),料重比(F/G)显著高于21、26 ℃组(P<0.05);26 ℃组肉鸡ADG、ADFI显著低于21 ℃组(P<0.05),F/G和21 ℃组无显著差异(P>0.05)。2)31 ℃组肉鸡血清葡萄糖(GLU)、总胆固醇(TC)、甘油三酯(TG)、游离脂肪酸(FFA)含量显著高于21 ℃组(P<0.05);26 ℃组血清生化指标与21 ℃组无显著差异(P>0.05)。3)31 ℃组肉鸡血清甲状腺素(T4)、瘦素(LEP)、皮质酮(CORT)含量显著高于21 ℃组(P<0.05);除T4含量外(P<0.05),26 ℃与21 ℃组之间血清激素指标无显著差异(P>0.05)。4)试验第7天,31 ℃组胸肌avUCP mRNA表达显著低于21、26 ℃组(P<0.05);第14天,26、31 ℃组胸肌avUCP mRNA表达极显著低于21 ℃组(P<0.01);试验第7、14天,31 ℃组肉鸡肝脏avUCP mRNA表达极显著高于21、26 ℃组(P<0.01)。综上,与21 ℃相比,持续偏热处理(26、31 ℃)影响肉鸡糖脂代谢及avUCP mRNA的表达,并显著降低生长性能,且不同偏热程度对肉鸡影响程度不同。

苏红光, 张敏红, 冯京海, 吴鑫, 胡春红. 持续冷热环境对肉鸡生产性能、糖代谢和解偶联蛋白mRNA表达的影响
动物营养学报, 2014,26(11):3276-3283.

DOI:10.3969/j.issn.1006-267x.2014.11.013URL [本文引用: 1]
本试验研究了不同环境温度(10~30 ℃)持续14 d对肉鸡生产性能、糖代谢和禽类解偶联蛋白(avUCP)mRNA表达的影响。试验选取21日龄爱拔益加(AA)肉鸡288只,随机分到6个人工环境控制舱中,每个舱饲养6笼,每笼8只鸡作为1个重复。预试期7 d,温度22 ℃,相对湿度60%。28日龄时将各环境控制舱温度分别逐渐(1 h内)调到10、14、18、22、26和30 ℃,相对湿度60%,温湿度均保持恒定直至试验结束。正试期14 d。结果表明:1)试验期内,30 ℃组的体重(BW)显著低于14~26 ℃组(P<0.05);22~30 ℃组平均日采食量(ADFI)随温度升高而显著下降(P<0.05);10~30 ℃组平均日增重(ADG)随温度升高出现先升高后下降的趋势,在22 ℃时最高;料重比(F/G)随温度升高呈现先下降后升高的趋势,22 ℃时最低;平均日饮水量(ADWC)在10 ℃组最低。2)试验第14天,26 ℃组血糖水平显著低于18 ℃组(P<0.05);肝糖原水平在各组之间差异不显著(P>0.05);22 ℃组肌糖原水平显著低于10、26和30 ℃组(P<0.05)。3)试验第14天,18、22 ℃组avUCP mRNA相对表达量显著高于其他组(P<0.05)。结果提示:在本试验条件下,从生产性能和能量利用效率考虑,28~42日龄AA肉鸡的适宜养殖温度为22~26 ℃。
SU H G, ZHANG M H, FENG J H, WU X, HU C H. Effects of Prolonged cold and hot environment on performance, glucose metabolism and uncoupling protein mRNA expression of broilers
Chinese Journal of Animal Nutrition, 2014,26(11):3276-3283. (in Chinese)

DOI:10.3969/j.issn.1006-267x.2014.11.013URL [本文引用: 1]
本试验研究了不同环境温度(10~30 ℃)持续14 d对肉鸡生产性能、糖代谢和禽类解偶联蛋白(avUCP)mRNA表达的影响。试验选取21日龄爱拔益加(AA)肉鸡288只,随机分到6个人工环境控制舱中,每个舱饲养6笼,每笼8只鸡作为1个重复。预试期7 d,温度22 ℃,相对湿度60%。28日龄时将各环境控制舱温度分别逐渐(1 h内)调到10、14、18、22、26和30 ℃,相对湿度60%,温湿度均保持恒定直至试验结束。正试期14 d。结果表明:1)试验期内,30 ℃组的体重(BW)显著低于14~26 ℃组(P<0.05);22~30 ℃组平均日采食量(ADFI)随温度升高而显著下降(P<0.05);10~30 ℃组平均日增重(ADG)随温度升高出现先升高后下降的趋势,在22 ℃时最高;料重比(F/G)随温度升高呈现先下降后升高的趋势,22 ℃时最低;平均日饮水量(ADWC)在10 ℃组最低。2)试验第14天,26 ℃组血糖水平显著低于18 ℃组(P<0.05);肝糖原水平在各组之间差异不显著(P>0.05);22 ℃组肌糖原水平显著低于10、26和30 ℃组(P<0.05)。3)试验第14天,18、22 ℃组avUCP mRNA相对表达量显著高于其他组(P<0.05)。结果提示:在本试验条件下,从生产性能和能量利用效率考虑,28~42日龄AA肉鸡的适宜养殖温度为22~26 ℃。

GONZALEZ-ESQUERRA R, LEESON S. Effects of acute versus chronic heat stress on broiler response to dietary protein
Poultry Science, 2005,84(10):1562-1569.

DOI:10.1093/ps/84.10.1562URLPMID:16335125 [本文引用: 1]
Two experiments were conducted to determine broiler response to dietary protein during short (1 wk) or prolonged (>3 wk) heat stress (HS). In experiment 1, 21-d-old birds were kept at 20.3 degrees C (thermoneutral; TN), 27.3 degrees C (medium temperature; MT), or 31.4 degrees C (high temperature; HT) and fed diets with 18, 20, 23, or 26% CP for 21 d. Each treatment consisted of 2 blocks of 3 replicates of 15 birds. In experiment 2, broilers were fed diets with 18 or 26% CP or fed ad libitum 2 diets with 10 or 30% CP. Birds were kept at TN (23.5 degrees C) or slowly introduced to HS from 7 to 14 d of age and kept at HT thereafter (chronic; CHS; 29.4 degrees C), and a third group was moved to HT at 21 d (acute HS; AHS; 29.4 degrees C). There were 16 replicates of 4 chickens per treatment distributed in 2 blocks. Performance, body composition, and protein deposition were ascertained from 21 to 28 d and from 28 to 42 d (short and prolonged exposures, respectively). Feeding high protein diets in experiment 1 resulted in linear improvements in body weight gain and feed:gain (P < 0.001) for MT and HT birds, whereas TN birds exhibited a linear (P < 0.001) response to protein. Feed intake declined as CP increased for HT birds during the third week of the study (P < 0.05). In trial 2, better performance was always observed in TN birds. HS depressed performance, although feeding high CP partially ameliorated this effect under AHS and CHS. Regardless of temperature, choice-fed birds selected high protein diets (mean 25.6% CP) and performed similarly to those fed 26% CP. CHS birds showed similar performance to those under AHS. Efficiency of protein deposition was unaffected (P > 0.05). Level of HS and duration of hyperthermia may determine the response of birds to dietary protein. Discrepancies between the 2 studies in response of birds to protein found after prolonged exposure to HS are discussed in view of the differences in levels of certain amino acids used within each experiment.

OLANREWAJU H A, PURSWELL J L, COLLIER S D. Effect of ambient temperature and light intensity on physiological reactions of heavy broiler chickens
Poultry Science, 2010,89(12):2668-2677.

DOI:10.3382/ps.2010-00806URLPMID:21076106 [本文引用: 1]
The effects of ambient temperature, light intensity, and their interaction on blood acid-base balance, metabolites, and electrolytes in broiler chickens under environmentally controlled conditions were examined in 2 trials. The experiment consisted of a factorial arrangement of treatments in a randomized complete block design. The 9 treatments consisted of 3 levels of temperatures (low = 15.6 degrees C; moderate = 21.1 degrees C; high = 26.7 degrees C) from 21 to 56 d of age and 3 levels of light intensities (0.5, 3.0, 20 lx) from 8 to 56 d of age at 50% RH. A total of 540 Ross 708 chicks were randomly distributed into 9 environmentally controlled chambers (30 male and 30 female chicks/chamber) at 1 d of age. Feed and water were provided ad libitum. Venous blood samples were collected on d 21 (baseline), 28, 42, and 56. High ambient temperature significantly (P
National Research Council. Nutrition Requirements of Poultry, 9th. Revised. Washington D.C.: National Academy Press, 1994.
[本文引用: 1]

INGRAM D L. The effect of humidity on temperature regulation and cutaneous water loss in the young pig
Research in Veterinary Science, 1965,6(6), 9.

[本文引用: 1]

BIANCA W. Relative importance or dry- and wet-bulb temperature in causing heat stress in cattle
Nature, 1962,195:251.

URLPMID:13868872 [本文引用: 1]

CARGILL B F, STEWART R E. Effect of humidity on total heat and total vapor dissipation of Holstein cows
Transactions of the ASAE, 1966,9(5):702-706, 712.

DOI:10.13031/2013.40077URL [本文引用: 1]

KABUGA J D. The influence of thermal conditions on rectal temperature, respiration rate and pulse rate of lactating Holstein- Friesian cows in the humid tropics
International Journal of Bio-meteorology, 1992,36:146-150.

[本文引用: 1]

WOLFENSON D. The effect of acclimatization on blood flow and its distribution in normothermic and hyperthermic domestic fowl
Comparative Biochemistry & Physiology Part A Physiology, 1986,85(4):739-742.

[本文引用: 1]

WOLFENSON D, FREI Y F, SNAPIR N. Heat stress effects on capillary blood flow and its redistribution in the laying hen
Pflügers Archiv European Journal of Physiology, 1981,390(1):86-93.

DOI:10.1007/BF00582717URL [本文引用: 1]

GOEL N K, STOLEN R H, MORGAN SKIM J K, DAN K, PICKRELL G. Glossary of terms for thermal physiology. Second edition. Revised by The Commission for Thermal Physiology of the International Union of Physiological Sciences (IUPS Thermal Commission)
Pflugers Archiv, 1987,410(4/5):567-587.

DOI:10.1007/BF00586542URL [本文引用: 1]

SAVAGE M V, BRENGELMANN G L. Control of skin blood flow in the neutral zone of human body temperature regulation
Journal of Applied Physiology, 1996,80(4):1249.

DOI:10.1152/jappl.1996.80.4.1249URLPMID:8926253 [本文引用: 1]
In humans, matching of heat loss and heat production in the

BRENGELMANN G L, SAVAGE M V. Temperature regulation in the neutral zone
Annals of the New York Academy of Sciences, 2010,813(1):39-50.

DOI:10.1111/nyas.1997.813.issue-1URL [本文引用: 1]

MALHEIROS R D, MORAES V M B, BRUNO L D G, MALHEIROS E B, FURLAN R L, MACARI M. Environmental temperature and cloacal and surface temperatures of broiler chicks in first week post-hatch
Journal of Applied Poultry Research, 2000,9(1):111-117.

DOI:10.1093/japr/9.1.111URL [本文引用: 1]

NASCIMENTO, G R, NAAS I A, PEREIRA D F, BARACHO M S, GARCIA R. Assessment of broiler surface temperature variation when exposed to different air temperatures
Revista Brasileira De Ciência Avícola, 2011,13(4):259-263.

DOI:10.1590/S1516-635X2011000400007URL [本文引用: 1]

林海. 肉鸡实感温度的系统模型分析及热应激下的营养生理反应
[D]. 北京:中国农业科学院, 1996.

[本文引用: 1]

LIN H. Study on systems model of effective temperature and responses of nutritional physiology to heat stress in broilers
[D]. Beijing: Chinese Academy of Agricultural Sciences, 1996. (in Chinese)

[本文引用: 1]

HILLMAN P E, SCOTT N R, TIENHOVEN A V. Physiological responses and adaptations to hot and cold environments
In: Stress Physiology in Livestock. CRC Press, Inc, M. K. Yousef, ed. Boca Raton, FL. 1985: 27-28.

[本文引用: 1]

相关话题/环境 指标 肉鸡 温度 生产