删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

长江中下游小麦抗赤霉病品种的筛选与部分农艺性状分析

本站小编 Free考研考试/2021-12-26

胡文静,1,2,3, 张春梅1, 吴迪1, 陆成彬1, 董亚超3, 程晓明1, 张勇,1, 高德荣1,21江苏里下河地区农业科学研究所/农业农村部长江中下游小麦生物学与遗传育种重点实验室,江苏扬州 225007
2扬州大学江苏省粮食作物现代产业技术协同创新中心,江苏扬州225009
3中国农业科学院作物科学研究所,北京100081

Screening for Resistance to Fusarium Head Blight and Agronomic Traits of Wheat Germplasms from Yangtze River Region

HU WenJing,1,2,3, ZHANG ChunMei1, WU Di1, LU ChengBin1, DONG YaChao3, CHENG XiaoMing1, ZHANG Yong,1, GAO DeRong1,21Lixiahe Institute of Agriculture Sciences/Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu
2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu
3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081

通讯作者: 张勇,E-mail:zy@wheat.org.cn

责任编辑: 李莉
收稿日期:2020-01-6接受日期:2020-04-20网络出版日期:2020-11-01
基金资助:国家重点研发计划.2017YFD0100801
国家重点研发计划.2016YFD0101802
国家自然科学基金.31901544
国家现代农业产业技术体系建设专项.CARS-03-03B
国家现代农业产业技术体系建设专项.CARS-3-2-11
江苏省现代农业重点项目.BE2017340
江苏省重点研发计划.BE2018350
江苏省自然科学基金.BK20171279


Received:2020-01-6Accepted:2020-04-20Online:2020-11-01
作者简介 About authors
胡文静,E-mail:huren2008@126.com










摘要
【目的】 赤霉病严重危害中国乃至世界小麦的产量和品质,培育和种植抗病品种是控制赤霉病最经济、有效和安全的方法。Fhb1是国内外公认的抗赤霉病主效基因,通过筛选综合农艺性状优良的抗赤霉病品种,探明Fhb1在不同遗传背景下对小麦赤霉病抗性的影响,为小麦抗赤霉病育种提供理论依据和材料来源。【方法】 选取历年来长江中下游广泛种植的75份小麦改良品种和18份地方品种,2016—2018年连续3年采用单花滴注结合弥雾保湿进行供试品种的赤霉病抗扩展鉴定,根据3年平均病小穗率和严重度分级,将供试品种分成抗病(R级)、中抗(MR级)、中感(MS级)和感病(S级),并利用Fhb1的KASP标记检测;2019年调查筛选出的平均赤霉病抗性水平达到中感及以上小麦品种的株高、穗粒数、小穗数、穗长和千粒重。【结果】3年赤霉病鉴定结果表明,供试品种中有2个品种平均赤霉病抗性达到R级,平均病小穗率范围为7.8%—9.7%,65个品种达到中抗至中感,平均病小穗率范围为13.2%—49.5%,26个品种达到S级,平均病小穗率范围为53.6%—78.5%。22个小麦品种在Fhb1位点呈抗病基因型(简称Fhb1+),71个品种在该位点呈感病基因型(简称Fhb1-),Fhb1+品种平均病小穗率显著低于Fhb1-品种(P<0.05)。赤霉病鉴定筛选得到67个抗性达到中感及以上水平的品种,考察这些品种的农艺性状发现宁麦19、扬麦29、扬麦16、扬麦23、扬糯麦1号、扬麦20、宁麦12和扬辐麦4号的株高、穗粒数和千粒重等综合农艺性状优良,可作为小麦抗赤霉病育种的亲本选用。【结论】除苏麦3号和望水白外,供试材料中未发现其他高抗赤霉病的种质资源。筛选得到的赤霉病抗性与综合农艺性状结合较好的小麦品种以扬麦品种为主,其中只有扬辐麦4号携带Fhb1抗病基因。利用Fhb1抗病基因并不是解决小麦赤霉病危害的唯一途径。
关键词: 小麦;赤霉病;抗扩展;Fhb1抗病基因;种质资源;农艺性状

Abstract
【Objective】Fusarium head blight seriously damages the grain yield and quality in China as well as in the world. Breeding and cultivating resistant varieties is the most economical, effective and safe method to combat this disease. A prominent gene Fhb1 conferring stable FHB resistance with the major phenotypic has been the major source of resistance in wheat breeding. The aim of this study was to screen for resistant varieties with excellent agronomic traits and evaluate the effects of Fhb1 on FHB resistance under different genetic backgrounds, so as to provide theoretical basis and material source for wheat FHB resistance breeding. 【Method】75 cultivars and 18 landraces which have been widely planted in Yangtze river region over the years were selected to evaluate their FHB response using point inoculation from 2016 to 2018. The tested varieties were classified into four classes based on the average percentage of scabbed spikelets (PSS) for FHB severity, i.e. resistant (R), moderately resistant (MR), moderately susceptible (MS) and susceptible (S). KASP diagnostic markers for Fhb1 were used to genotype the tested varieties. In 2019 we investigated the agronomical characteristics such as plant height, kernels per spike and spikelet per spike of the varieties with ≤50% of PSS. 【Result】The results showed that there were 2 varieties with PSS of 7.8%-9.7%( R), 65 varieties with PSS of 13.2%-49.5% (MR-MS), and 26 varieties with PSS of 53.6%-78.5% (S). 22 varieties carried Fhb1 resistant allele (Fhb1+), 71 carried the Fhb1 susceptible allele (Fhb1-) and the average PSS of the Fhb1+ was significantly lower than that of the Fhb1-(P<0.05). There were 67 varieties showed an average PSS≤50%, of which Ningmai 19, Yangmai 29, Yangmai 16, Yangmai 23, Yangnuomai 1, Yangmai 20, Ningmai 12 and Yangfumai 4 could be used as FHB resistance donors in breeding, due to the combination of good FHB resistance and agronomic traits.【Conclusion】No variety with R were identified in this study except Sumai 3 and Wangshuibai. Some Yangmai varieties exhibited both good FHB resistance and comprehensive agronomic traits, of which only Yangfumai 4 carried the Fhb1 resistance gene. Utilizing Fhb1 is not the only way to combat FHB, and more FHB-resistant germplasms and new FHB-resistant genes should be studied and applied in breeding programs.
Keywords:wheat;Fusarium head blight;resistance to disease spread;Fhb1 resistance gene;germplasms;agronomic traits


PDF (457KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
胡文静, 张春梅, 吴迪, 陆成彬, 董亚超, 程晓明, 张勇, 高德荣. 长江中下游小麦抗赤霉病品种的筛选与部分农艺性状分析[J]. 中国农业科学, 2020, 53(21): 4313-4321 doi:10.3864/j.issn.0578-1752.2020.21.001
HU WenJing, ZHANG ChunMei, WU Di, LU ChengBin, DONG YaChao, CHENG XiaoMing, ZHANG Yong, GAO DeRong. Screening for Resistance to Fusarium Head Blight and Agronomic Traits of Wheat Germplasms from Yangtze River Region[J]. Scientia Acricultura Sinica, 2020, 53(21): 4313-4321 doi:10.3864/j.issn.0578-1752.2020.21.001


0 引言

【研究意义】小麦是世界上最重要的粮食作物之一,是全世界1/3以上人口的主食[1]。中国是小麦第一大生产国、消费国和贸易国,小麦生产状况对全国社会经济发展、人民生活水平提高、国家粮食安全和社会稳定具有极其重要的影响。目前,中国乃至世界小麦生产面临的主要挑战是各种病害、虫害和非生物胁迫等威胁,其中,小麦赤霉病危害尤为严峻。小麦赤霉病(Fusarium head blight,FHB)主要由禾谷镰刀菌(Fusarium graminearum)等引起,于小麦开花期侵染穗部小花,在小麦籽粒灌浆成熟过程中不断繁殖,产生和积累各种毒素,例如脱氧雪腐镰孢菌烯醇(deoxynivalenol,DON)、雪腐镰孢菌烯醇(nivalenol,NIV)和玉米赤霉烯酮(zearalenol,ZEN),严重影响小麦产量和品质,并对人、畜健康造成巨大伤害,成为粮食安全的主要威胁[1]。黄淮冬麦区和长江中下游冬麦区是中国两大小麦主产区,年种植面积约占全国小麦总面积70%,后者是小麦赤霉病高发区和常发区。据报道,2012—2015年江苏省年均赤霉病发生面积约120万hm2[2]。近年来,随着气候变暖和玉米秸秆还田量的增加,小麦赤霉病正迅速扩展到黄淮麦区南部。据统计,近10年河南省小麦赤霉病年均发生面积约110万hm2,其中2012年达333万hm2[3]。目前,培育和推广种植抗赤霉病品种是小麦生产上有效防控赤霉病的重要途径之一[3],而从遗传背景丰富的地方品种和农艺性状优良的栽培品种中筛选出稳定抗赤霉病种质资源,是提高小麦抗赤霉病育种效率的基础。广泛搜集并鉴定筛选综合农艺性状优良、丰产性好的抗赤霉病新种质资源,拓展抗源的遗传基础,对于小麦抗赤霉病育种和生产具有重要意义。【前人研究进展】国内外科学家一直致力于开展小麦抗赤霉病种质资源的鉴定发掘[4,5,6]。中国的小麦赤霉病抗源主要有两类:一是现在应用较广泛的早期改良品种和地方品种,如中国的苏麦3号、荆州1号、武汉1号、望水白、白三月黄、海盐种[6]和它们的衍生系、巴西的Frontana、Maringa等以及欧洲的Funo等[7];二是从小麦近缘种属中发掘的抗赤霉病新种质,如大赖草属、偃麦草属、鹅观草属、山羊草属中发现的抗赤霉病种质[8,9,10,11,12,13,14]。上述两类抗源的农艺性状欠佳,如苏麦3号、望水白[15,16,17],虽利用它们选育出一批抗性好的品种(宁7840、鄂恩1号[18]等),但因丰产性差未被大面积推广应用。【本研究切入点】长江中下游麦区有很多农艺性状较好的品种对赤霉病抗性表现中抗(moderately resistance,MR)和中感(moderately susceptible,MS),如阿夫、台湾小麦和南大2419等,实践证明,育种中可以选择抗性来源不同的抗源进行聚合杂交,实现抗性基因累加[4]。本研究供试小麦品种来自长江中下游麦区,其中改良品种是通过江苏省、安徽省、湖北省等地审定或者通过国家审定的主栽品种。近年来,绝大多数通过江苏省淮南麦区审定的小麦品种的亲本中包含扬麦158或宁麦9号,说明农艺性状优良的抗赤霉病品种更易被广泛应用于育种实践。之前很多小麦抗赤霉病种质资源筛选研究往往仅注重抗性鉴定,忽视与之关联的农艺性状的分析,不能给育种家提供全面的选择信息,无法解决当前生产上抗赤霉病与产量协调提高的问题。【拟解决的关键问题】本研究选取历年来长江中下游大面积种植的小麦品种,利用国内外公认的抗赤霉病主效基因Fhb1进行分子检测,通过单花滴注接种禾谷镰刀菌鉴定筛选稳定的抗赤霉病品种,调查其株高、小穗数、穗长、穗粒数等性状,筛选农艺性状优良的抗赤霉病品种作为小麦抗赤霉病育种的亲本使用,为小麦抗赤霉病育种提供参考。

1 材料与方法

1.1 试验材料

供试材料来源于江苏省、湖北省、安徽省等地的93个小麦品种,其中,改良品种75个、地方品种18个,抗赤霉病对照品种为苏麦3号,感赤霉病对照品种为扬麦13。所有材料的来源及系谱见电子附表1和电子附表2

Supplemental table 1
附表1
附表1供试材料中小麦地方品种的来源
Supplemental table 1The districts of landrace in this study
序号品种名称来源地
No.Landrace nameDistrict
1白慈麦 Baicimai无锡 Wuxi
2白火麦 Baihuomai不详 Unknown
3白蒲 Baipu金华 Jinhua
4和蒲头 Heputou南陵 Nanling
5和尚头 Heshangtou兰州 Lanzhou
6红和尚头 Hongheshangtou镇江 Zhenjiang
7红卷芒 Hongjuanmang南阳 Nanyang
8红壳酱 Hongkejiang剑河 Jianhe
9红袖子 Hongxiuzi淅川 Xichuan
10胡须麦 Huxumai商县 Shangxian
11鲫鱼麦 Jiyumai东阳 Dongyang
12江东门 Jiangdongmen南京 Nanjing
13六柱头 Liuzhutou上海 Shanghai
14糯麦 Nuomai不详 Unknown
15四方麦 Sifangmai丰城 Fengcheng
16望水白 Wangshuibai溧阳 Liyang
17蚰子头 Youzitou汝南 Runan
18鱼鳅麦 Yuqiumai思南 Sinan

新窗口打开|下载CSV

Supplemental table 2
附表2
附表2供试材料中国内改良品种的系谱和审定年份
Supplemental table 2The pedigree and the released year for the cultivars in this study
序号品种名称系谱审定年份
No.Cultivars namePedigreeReleased year
1扬麦1号 Yangmai 1阿夫 Funo1967
2苏麦3号 Suami 3阿夫/台湾小麦 Funo/Taiwan1970
3宁麦3号 Ningmai 3郑引1号/扬麦1号 (St1472/506)/Yangmai 11973
4扬麦2号 Yangmai 2阿夫 Funo1976
5扬麦3号 Yangmai 3阿夫 Funo1976
6扬麦4号 Yangmai 4南大2419/胜利麦//阿夫 Nada2419/Triumph//Funo1980
7鄂麦9号 Emai 9鄂麦6号 Emai 61982
8鄂麦6号 Emai 6南大2419 Nanda24191983
9鄂恩1号 Een 1(洛夫林10/761)/苏麦3号 (Lovrin 10/761)/Sumai 31985
10扬麦5号 Yangmai 5扬9-16/郑引1号 Yang9-16/(St1472/506)1986
11扬麦6号 Yangmai 6大丰1087/早熟5号 Dafeng1087/Zaoshu 51991
12鄂麦11 Emai 11(760569//襄麦8号)//309 (760569//Xiangmai 8)//3091993
13镇麦1号 Zhenmai 1镇麦7853/苏肯1号 Zhenmai 7853/Suken 11993
14宁麦8号 Ningmai 8扬麦5号/扬麦6号 Yangmai 5/Yangmai 61996
15扬麦9号 Yangmai 9鉴三/扬麦5号 Jian 3/Yangmai 51996
16鄂麦12 Emai 12750025-12/鄂麦6号 750025-12/Emai 61997
17宁麦9号 Ningmai 9扬麦6号/西风 Yangmai 6/Xifeng1997
18苏麦5号 Sumai 5西风/扬麦4号 Xifeng/Yangmai 41997
19扬麦158 Yangmai 158扬麦4号/郑引1号 Yangmai 4/(St1472/506)1997
20扬麦10号 Yangmai 10扬1582///(Yuma/Chancellor8)/扬麦5号//扬85-854 Yangmai 1582///(Yuma/Chancellor8)/Yangmai 5//Yang 85-8541998
21苏麦6号 Sumai 66698/扬麦5号 6698/Yangmai 51999
22鄂麦15 Emai 15882-852//鄂恩1号/NPPP-2///贵农11 882-852//EEN 1/NPPP-2///Guinong 112000
23镇麦3号 Zhenmai 3K2582000
24扬麦11 Yangmai 11扬1583///(Yuma/Chancellor8)/鉴二//扬85-854 Yangmai 1583///(Yuma/Chancellor8)Jian 2//Yang 85-8542001
25扬麦12 Yangmai 12扬1583///TP114/扬麦5号//扬85-854 Yangmai 1583///TP114/Yangmai 5//Yang 85-8542001
26鄂麦16 Emai1670232002
27鄂麦17 Emai 17鄂麦12 Emai 122002
28鄂麦18 Emai 18SKUA/865146//鄂麦11 SKUA/865146//Emai 112002
29鄂麦19 Emai 19荆州12 Jingzhou 122002
30生选3号 Shengxuan 3扬麦158 Yangmai 1582002
31扬麦13 Yangmai 13扬88-84//Maris Dove/扬麦3号 Yang88-84//Maris Dove/Yangmai 32002
32扬辐麦2号 Yangfumai 2扬麦158/1-9012 Yangmai 158/1-90122003
33镇麦4号 Zhenmai 4扬麦158/镇麦1号 Yangmai 158/Zhenmai 12003
34宁麦11 Ningmai 11宁麦8号 Ningmai 82004
35宁麦12 Ningmai 12宁9170/扬麦158 Ning 9170/Yangmai 1582004
36扬麦14 Yangmai 14扬麦158/扬麦6号 Yangmai 158/Yangmai 62004
37扬麦16 Yangmai 16扬91F138/扬90-30 Yang91F138/Yang90-302004
38镇麦5号 Zhenmai 5扬麦158/宁麦9号 Yangmai 158/Ningmai 92004
39扬麦15 Yangmai 15扬麦4号/鉴三//川育21526 Yangmai 4/Jian 3//Chuanyu 215262005
40扬麦17 Yangmai 17扬92F101/川育21526 Yang 92F101/Chuanyu215262005
41镇麦6号 Zhenmai 6扬麦158/镇麦1号 Yangmai 158/Zhenmai 12005
42宁麦13 Ningmai 13宁麦9号 Ningmai 92006
43宁麦14 Ningmai 24宁麦9号 Ningmai 92006
44镇麦168 Zhenmai 168苏麦6号/扬97G59 Sumai 6/Yang 97G592007
45宁麦15 Ningmai 15宁9144 Ning 91442008
46宁糯麦1号 Ningnuomai 1EH-5/扬麦158 EH-5/Yangmai 1582008
47扬辐麦4号 Yangfumai 4宁麦8号/宁麦9号 Ningmai 8/Ningmai 92008
48扬麦18 Yangmai18宁94///扬麦1586//扬88-128/P045 Ningmai 94///Yangmai 1586//Yang 88-128/P0452008
49扬麦19 Yangmai 19扬麦9号6////扬1583///Yuma/Chancellor8/扬麦5号//扬85-854 Yangmai 96////Yangmai 1583///Yuma/Chancellor8/Yangmai 5//Yang85-8542008
50宁麦16 Ningmai 16宁麦8号/宁麦9号 Ningmai 8/Ningmai 92009
51扬麦20 Yangmai 20扬麦10号/扬麦9号 Yangmai 10/Yangmai 92010
52扬糯麦1号 Yangnuomai 1扬麦15///扬麦9号//扬麦9号/CAW Yangmai 15///Yangmai 9//Yangmai 9/CAW2010
53镇麦9号 Zhenmai 9苏麦6号/扬97G59 Sumai 6/Yang 97G592010
54宁麦18 Ningmai 18宁93123/扬93-111 Ning 93123/Yang93-1112012
55宁麦19 Ningmai 19宁9144 Ning 91442012
56扬麦22 Yangmai 22扬麦9号3/宁97033-2 Yangmai 93/Ning 970332012
57扬麦21 Yangmai 21宁麦9号6/红卷芒 Ningmai 96/Hongjuanmang2013
58扬麦23 Yangmai 23扬麦16/扬辐麦93-11 Yangmai 16/Yangfumai 93-112013
59宁麦21 Ningmai 21宁9312/扬麦158//宁9312 Ningmai 9312/Yangmai 158//Ningmai 93122013
60宁麦22 Ningmai 22宁麦12 Ningmai 122014
61宁麦24 Ningmai 24宁麦9号 Ningmai 92015
62扬麦24 Yangmai 24扬麦172//扬11/豫麦18 Yangmai 172//Yangmai 11/Yumai 182015
63宁麦26 Ningmai 26宁9531/宁麦9号 Ning9531/Ningmai 92016
64华麦8号 Humai 8扬麦158/小偃8788 Yangmai 158/Xiaoyan 87882016
65扬麦25 Yangmai 25扬麦172//扬11/豫麦18 Yangmai 172//Yangmai 11/Yumai 182016
66扬麦27 Yangmai 27扬麦19/扬07纹5418 Yangmai 19/Yang07wen54182017
67扬麦28 Yangmai 28扬麦16/扬麦18//扬麦16 Yangmai 16/Yangmai 18//Yangmai 162018
68扬麦29 Yangmai 29镇麦9号//扬麦175/pm17 Zhenmai 9//Yangmai175/pm172019
69安徽11 Anhui 11弗兰尼/早洋麦 Franny/Early PremiumUnkonwn
70荆州66 Jingzhou 66阿夫/硬粒小麦//南大2419/黑麦 Funo/Durum//Nanda 2419/RyeUnkonwn
71马场2号 Machang 2郑引1号 St1472/506Unkonwn
72毛颖阿夫 Maoying Funo阿夫 FunoUnkonwn
73南大2419 Nanda2419MentanaUnkonwn
74万年2号 Wannian 2南大2419 Nanda 2419Unkonwn
75浙麦1号 Zhemai1临浦早/太和小麦 Linpuzao/TaiheUnkonwn

新窗口打开|下载CSV

抗病性鉴定所用禾谷镰刀菌菌株(F0301、F0609、F0980和F1312)由江苏省农业科学院植物保护研究所陈怀谷研究员惠赠。

1.2 试验地点及抗病鉴定圃设置

试验于2015—2016、2016—2017、2017—2018年3个小麦生长期(以下简称2016、2017和2018)在江苏里下河地区农业科学研究所湾头试验基地赤霉病鉴定圃内进行。3年播种日期均为10月28日,每品种种植2行,行长150 cm,行距25 cm,每行均匀播种30粒,土质为沙壤土,前茬为水稻,肥力中等,田间管理如施肥、除草、灌溉及虫害防治同常规育种田。

1.3 赤霉病抗性鉴定与评价

2016、2017和2018年在田间分别进行接种鉴定。参照YU等[18]方法制备赤霉菌孢子悬浮液(1×105—5×105个/mL),采用单花滴注法接种,于小麦开花初期,用注射器吸取10 μL孢子液注入麦穗(自顶部小穗开始自上而下第6个小穗的任意一个小花中),每个品种接种30个穗子。接种后采用人工弥雾保湿(每半小时喷弥雾5 min)。

接种21 d后调查接种穗的病小穗数,计算病小穗率。病小穗率(the percentage of symptomatic spikelets,PSS)=发病小穗数(symptomatic spikelets)/总小穗数(total spikelets)×100%[19]。按照《中华人民共和国农业行业标准NY/T 2954-2016:小麦区域试验品种抗赤霉病鉴定技术规程》[20]标准调查和记载抗病情况,参考张晓军等[21]方法进行抗赤霉病评价。根据3年平均病小穗率和严重度分级,将供试品种分成抗病(resistant,简称R级,0<平均严重度<2.0,仅接种小穗发病,或相邻的个别小穗发病,但病斑不扩展到穗轴)、中抗(MR级,2.0≤平均严重度<3.0,穗轴发病,发病小穗占总小穗数的1/4以下)、中感(MS级,3.0≤平均严重度<3.5,穗轴发病,发病小穗占总小穗数的1/4—1/2)和感病(susceptible,简称S级,平均严重度≥3.5,穗轴发病,发病小穗占总小穗数的1/2以上)4个等级。

1.4 Fhb1的分子检测

选取每品种10粒种子,室温下发芽,取嫩叶放入液氮中速冻,采用SDS法提取基因组DNA,参考SU等[22]设计的Fhb1功能基因KASP标记引物序列,参考RASHEED等[23]检测方法,将Fhb1位点呈抗病基因型的品种简称Fhb1+、该位点呈感病基因型的品种简称Fhb1-

1.5 农艺性状调查

2018年秋,将筛选出的3年平均病小穗率≤50%的品种种植于江苏里下河地区农业科学研究所湾头试验基地产量鉴定圃,每品种种植6行,行长150 cm,行距25 cm,每行均匀播种50粒,土质为沙壤土,前茬为水稻,肥力中等,待出苗后定苗至每行40株,田间管理如施肥、除草、灌溉及虫害防治同常规育种田。2019年待各品种成熟期收获后,随机选取每品种10个单株,调查主茎株高、每穗小穗数、穗长和穗粒数(平均值),脱粒后考察千粒重(每个品种500粒称重,3次重复,取平均值,然后转化成千粒重),计算小穗着生密度(每穗小穗数/穗长)。

1.6 表型统计分析

利用Microsoft Excel 2016对试验获得的病小穗数、病小穗率、农艺性状等数据进行方差分析、T检验和描述性统计分析。

2 结果

2.1 小麦种质资源的赤霉病抗性鉴定与评价

3年抗赤霉病接种鉴定结果表明,地方品种只有望水白赤霉病抗性达到R级,平均病小穗率为9.7%;MR—MS级的品种有5个,平均病小穗率为15.0%—39.0%;S级的品种有12个,平均病小穗率为50.2%—78.5%,其中,红卷芒感病最重,平均病小穗率为78.5%(图1和电子附表3)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1地方品种和改良品种中赤霉病抗性的分布

R:抗性;MR:中抗;MS:中感;S:感性
Fig. 1Distribution of resistance to FHB at four classes in wheat landrace and cultivars

R: Resistance; MR: Moderately resistance; MS: Moderately susceptible; S: Susceptible


Supplemental table 3
附表3
附表3供试小麦品种病小穗率、严重度、抗赤霉病评价和Fhb1分型结果
Supplemental table 3Percentage of scabbed spikelets (PSS), severity, Fusarium head blight (FHB) resistance and Fhb1 allele for the all wheat varieties in this study
品种名称
Name
3年的病小穗率 PSS in three years平均 Average严重度 Severity抗性评价 ResistanceFhb1 alleles
201720182019
望水白 Wangshuibai10.910.37.89.71R+
白慈麦 Baicimai15.212.517.215.02MR+
红壳酱 Hongkejiang18.916.015.216.72MR-
红和尚头 Hongheshangtou27.427.825.927.03MS-
白火麦 Baihuomai30.238.333.033.83MS-
和蒲头 Heputou32.744.939.439.03MS+
白蒲 Baipu49.252.548.950.24S+
红袖子 Hongxiuzi45.558.048.050.54S-
胡须麦 Huxumai59.450.242.950.84S+
糯麦 Nuomai50.753.248.850.94S+
江东门 Jiangdongmen51.852.748.451.04S-
鲫鱼麦 Jiyumai51.450.853.251.84S-
和尚头 Heshangtou51.356.450.152.64S-
四方麦 Sifangmai58.147.553.753.14S-
六柱头 Liuzhutou63.767.159.863.54S-
鱼鳅麦 Yuqiumai71.069.361.667.34S-
蚰子头 Youzitou78.864.764.369.34S-
红卷芒 Hongjuanmang73.081.880.678.54S-
苏麦3号 Sumai 36.19.77.67.81R+
扬麦4号 Yangmai 413.911.714.213.22MR-
扬辐麦2号 Yangfumai 215.015.019.216.42MR-
镇麦3号 Zhenmai 317.215.217.516.62MR-
镇麦6号 Zhenmai 617.713.918.316.62MR-
扬麦11 Yangmai 1118.518.316.817.92MR-
宁麦24 Ningmai 2418.319.519.219.02MR-
扬麦17 Yangmai 1720.721.320.320.82MR-
宁麦18 Ningmai 1819.521.823.721.72MR+
扬麦18 Yangmai1822.619.922.821.72MR+
宁麦9号 Ningmai 920.920.924.322.02MR+
扬麦158 Yangmai 15821.420.025.622.32MR-
宁麦13 Ningmai 1324.720.623.122.82MR+
宁麦19 Ningmai 1921.822.025.623.12MR+
镇麦5号 Zhenmai 520.224.924.223.12MR+
镇麦4号 Zhenmai 423.220.226.123.22MR-
宁麦26 Ningmai 2621.325.922.723.32MR+
扬麦21 Yangmai 2123.825.421.523.52MR+
扬麦29 Yangmai 2921.026.323.823.72MR-
扬麦16 Yangmai 1621.428.124.524.72MR-
扬麦23 Yangmai 2324.028.621.424.72MR-
苏麦6号 Sumai 629.126.718.624.82MR-
扬麦14 Yangmai 1424.829.021.024.92MR-
扬麦28 Yangmai 2824.128.625.426.03MS+
扬麦22 Yangmai 2229.527.522.526.53MS-
宁麦14 Ningmai 2425.924.529.626.73MS+
扬糯麦1号 Yangnuomai 127.027.725.526.73MS-
镇麦9号 Zhenmai 923.327.629.426.83MS-
镇麦1号 Zhenmai 122.930.926.826.93MS-
扬麦24 Yangmai 2424.233.923.327.23MS-
苏麦5号 Sumai 528.334.123.028.53MS+
扬麦19 Yangmai 1932.025.328.328.53MS-
扬麦6号 Yangmai 629.826.430.128.83MS-
生选3号 Shengxuan 321.632.932.629.03MS-
扬麦27 Yangmai 2732.526.528.429.13MS-
扬麦20 Yangmai 2033.329.725.929.63MS-
宁麦16 Ningmai 1631.229.231.630.73MS+
宁麦8号 Ningmai 834.022.037.731.23MS-
扬麦25 Yangmai 2529.930.933.231.33MS-
镇麦168 Zhenmai 16827.328.938.331.53MS-
扬麦9号 Yangmai 932.538.427.632.93MS-
万年2号 Wannian 237.826.634.332.93MS-
扬麦5号 Yangmai 532.434.735.834.33MS-
扬麦12 Yangmai 1235.637.836.536.63MS-
宁麦11 Ningmai 1134.644.531.636.93MS-
扬麦10号 Yangmai 1037.942.937.939.63MS-
鄂麦9号 Emai 939.843.336.439.83MS-
扬麦2号 Yangmai 240.244.138.140.83MS-
鄂麦11 Emai 1135.349.938.941.43MS-
马场2号 Machang 250.035.042.542.53MS-
华麦8号 Humai 842.141.249.644.33MS-
宁麦12 Ningmai 1246.446.147.646.73MS-
宁糯麦1号 Ningnuomai 127.232.824.028.03MS-
宁麦21 Ningmai 2138.234.844.839.33MS-
宁麦22 Ningmai 2240.243.243.542.33MS-
扬辐麦4号Yangfumai 445.641.346.044.33MS+
鄂麦12 Emai 1246.448.347.047.23MS-
荆州66 Jingzhou 6647.943.750.747.43MS-
鄂恩1号 Een 147.949.446.848.03MS-
宁麦15 Ningmai 1549.647.750.049.13MS+
鄂麦18 Emai 1852.351.145.249.53MS-
扬麦3号 Yangmai 358.052.350.353.64S-
鄂麦17 Emai 1759.946.754.153.64S-
浙麦1号 Zhemai155.654.052.153.94S+
扬麦1号 Yangmai 148.058.954.953.94S-
鄂麦15 Emai 1556.053.053.254.14S-
鄂麦6号 Emai 652.154.955.654.24S-
毛颖阿夫 Maoying Funo61.959.046.055.64S-
鄂麦16 Emai1657.855.157.356.84S-
安徽11 Anhui 1152.656.361.956.94S-
扬麦15 Yangmai 1551.060.859.357.04S-
宁麦3号 Ningmai 355.954.561.957.54S-
南大2419 Nada241956.855.361.257.84S-
鄂麦19 Emai 1959.158.958.058.74S-
扬麦13 Yangmai 1360.863.368.864.34S-

新窗口打开|下载CSV

国内改良品种只有苏麦3号的赤霉病抗性达到R级,平均病小穗率为7.8%;MR—MS级的品种有60个,平均病小穗率变幅为13.2%—49.5%;S级的品种有14个,平均病小穗率变幅为53.6%—64.3%,其中,扬麦13感病最重,平均病小穗率为64.3%(图1电子附表3)。

2.2 Fhb1位点分子标记检测

应用Fhb1的KASP分型标记检测93个供试品种,结果表明,地方品种望水白、白慈麦、和蒲头、白蒲、胡须麦和糯麦是Fhb1+,其他12个是Fhb1-。改良品种苏麦3号(R)、宁麦18、扬麦18、宁麦9号、宁麦13、宁麦19、镇麦5号、宁麦26、扬麦21、扬麦28、宁麦14、苏麦5号、宁麦16、扬辐麦4号、宁麦15和浙麦1号是Fhb1+,其他59个是Fhb1-。统计结果表明,Fhb1+与Fhb1-品种平均病小穗率差异显著(P<0.05)(电子附表3图2)。总之,基因型为Fhb1+品种的赤霉病抗性显著好于Fhb1-,少数Fhb1+品种表型为感病。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同Fhb1基因型间的平均病小穗率

Fhb1+:Fhb1抗病等位基因;Fhb1-:Fhb1感病等位基因;*表示2种基因型间差异显著(P<0.05)
Fig. 2Comparison of the average PSS between the wheat varieties carrying different Fhb1 allele

Fhb1+: Fhb1 resistance allele: Fhb1-: Fhb1 susceptible allele; * indicates significant difference between genotypes at P<0.05


2.3 抗赤霉病品种的农艺性状分析

3年的抗赤霉病鉴定结果表明,共有67个品种的平均病小穗率≤50%,抗性达到中感及以上水平(电子附表3),其中地方品种6个,改良品种61个。2019年调查这些品种的农艺性状,利用小穗数和穗长计算小穗着生密度,结果表明,地方品种株高最大值为145.8 cm,最小值为122.6 cm,平均值为131.0 cm;穗粒数最大值为50.0粒,最小值为32.4粒,平均值为41.0粒;每穗小穗数最大为21.7个,最小为17.8个,平均值为19.1个;穗长最大值为12.7 cm,最小值为7.2 cm,平均值为10.8 cm;小穗着生密度最大值为3.0个/cm,最小值为1.4个/cm,平均值为1.9个/cm;千粒重最大值为35.5 g,最小值为26.8 g,平均值为31.5 g。改良品种株高最大值为119.6 cm,最小值为72.0 cm,平均值为86.8 cm;穗粒数最大值为50.6粒,最小值为30.9粒,平均值为43.0粒;每穗小穗数最大值为23.8个,最小值为15.7个,平均值为19.4个;穗长最大值为14.4 cm,最小值为7.9 cm,平均值为10.4 cm;小穗着生密度最大值为2.4个/cm,最小值为1.4个/cm,平均值为1.9个/cm;千粒重最大值为49.7 g,最小值为33.9 g,平均值为44.5 g(电子附表4)。

Supplemental table 4
附表4
附表4平均病小穗率≤50%的小麦品种农艺性状表现
Supplemental table 4Main agronomic trait of the varieties with ≤50% of PSS
品种名称
Name
株高
Plant height(cm)
穗粒数
Kernels per spike
小穗数
Spikelet per spike
穗长
Spikelet length(cm)
穗密度(个/cm)
Spikelet compactness (No./cm)
千粒重
1000-grain weight(g)
望水白 Wangshuibai145.833.418.712.61.535.5
白慈麦 Baicimai130.132.418.212.61.435.4
红壳酱 Hongkejiang122.643.319.811.31.826.8
红和尚头 Hongheshangtou123.250.021.77.23.030.7
白火麦 Baihuomai124.139.217.88.62.127.9
和蒲头 Heputou140.247.718.412.71.532.5
苏麦3号 Sumai 3117.443.519.711.41.744.6
扬麦4号 Yangmai 491.843.318.68.52.249.1
扬辐麦2号 Yangfumai 286.443.120.410.71.945.9
镇麦3号 Zhenmai 386.638.718.211.81.544.6
镇麦6号 Zhenmai 686.243.118.511.01.748.1
扬麦11 Yangmai 1192.639.018.310.31.849.5
宁麦24 Ningmai 2472.042.517.510.11.748.0
扬麦17 Yangmai 1788.642.019.010.01.945.3
宁麦18 Ningmai 1881.048.117.210.11.739.8
扬麦18 Yangmai1885.149.318.611.51.643.2
宁麦9号 Ningmai 978.544.018.59.61.933.9
扬麦158 Yangmai 15882.435.518.39.22.047.8
宁麦13 Ningmai 1380.344.017.99.61.941.1
宁麦19 Ningmai 1989.045.018.59.81.946.0
镇麦5号 Zhenmai 585.535.619.07.92.439.0
镇麦4号 Zhenmai 481.643.518.010.71.746.5
宁麦26 Ningmai 2688.042.717.010.11.748.5
扬麦21 Yangmai 2181.943.617.110.61.644.3
扬麦29 Yangmai 2978.046.320.010.51.947.3
扬麦16 Yangmai 1686.345.118.89.81.949.5
扬麦23 Yangmai 2378.946.219.19.81.945.4
苏麦6号 Sumai 674.846.020.910.32.040.7
扬麦14 Yangmai 1481.930.919.29.91.946.9
扬麦28 Yangmai 2890.837.718.811.01.747.1
扬麦22 Yangmai 2279.142.719.810.21.946.3
宁麦14 Ningmai 2480.241.317.99.51.945.5
扬糯麦1号 Yangnuomai 176.345.218.89.22.049.7
镇麦9号 Zhenmai 980.740.919.19.22.147.6
镇麦1号 Zhenmai 196.247.620.09.62.148.9
扬麦24 Yangmai 2483.336.319.49.72.044.9
苏麦5号 Sumai 583.645.518.79.52.039.9
扬麦19 Yangmai 1974.140.720.510.02.147.5
扬麦6号 Yangmai 675.447.721.310.12.144.8
生选3号 Shengxuan 3101.943.121.714.41.545.3
扬麦27 Yangmai 2775.240.021.311.31.943.1
扬麦20 Yangmai 2089.945.519.010.71.845.5
宁麦16 Ningmai 1690.047.419.59.72.046.4
宁麦8号 Ningmai 872.841.920.28.32.444.9
扬麦25 Yangmai 2582.041.619.610.61.845.5
镇麦168 Zhenmai 16880.641.319.39.62.047.4
扬麦9号 Yangmai 976.643.220.99.62.240.7
万年2号 Wannian 2119.646.219.111.61.743.0
扬麦5号 Yangmai 592.344.621.411.81.849.1
扬麦12 Yangmai 1286.440.019.09.22.146.2
宁麦11 Ningmai 1182.846.923.012.01.939.3
扬麦10号 Yangmai 1090.539.719.19.72.048.3
鄂麦9号 Emai 999.139.420.211.11.842.7
扬麦2号 Yangmai 2106.146.719.59.52.135.7
鄂麦11 Emai 1183.440.020.012.21.648.3
马场2号 Machang 279.650.619.29.22.136.8
华麦8号 Humai 875.734.718.412.41.536.9
宁麦12 Ningmai 1289.345.122.614.11.647.6
宁糯麦1号 Ningnuomai 191.541.719.19.52.043.8
宁麦21 Ningmai 2189.444.818.210.51.746.5
宁麦22 Ningmai 2288.743.319.812.01.746.8
扬辐麦4号 Yangfumai 487.545.719.49.92.048.9
鄂麦12 Emai 1285.642.820.59.52.239.9
荆州66 Jingzhou 66110.340.921.312.01.838.5
鄂恩1号 Een 1100.542.523.813.61.836.7
宁麦15 Ningmai 1592.645.315.710.91.443.5
鄂麦18 Emai 18100.939.420.511.01.942.0

新窗口打开|下载CSV

地方品种株高普遍偏高,千粒重普遍偏低,综合农艺性状差。改良品种的株高变辐范围较大,43个品种的株高小于90.0 cm,穗粒数达到或者超过45.0粒的有20个品种,其中宁麦19、扬麦29、扬麦16、扬麦23、扬糯麦1号、镇麦1号、扬麦20、宁麦12和扬辐麦4号的千粒重达到或者高于45.0 g(电子附表4),综合分析67个赤霉病中感及以上水平品种的主要农艺性状表现,认为宁麦19、扬麦29、扬麦16、扬麦23、扬糯麦1号、扬麦20、宁麦12和扬辐麦4号的综合农艺性状优良,穗粒数和千粒重表现突出(表1)。

Table 1
表1
表1综合农艺性状优良且赤霉病抗性达到中感赤霉病及以上水平的品种
Table 1The varieties with good agronomic traits and the FHB resistance above moderately susceptible
品种名称
Name
株高
Plant height
(cm)
穗粒数
Kernels per spike
小穗数
Spikelet per spike
穗长
Spikelet length (cm)
小穗着生密度(个/cm)
Spikelet compactness (No./cm)
千粒重
1000-grain weight (g)
宁麦19 Ningmai 1989.045.018.59.81.946.0
扬麦29 Yangmai 2978.046.320.010.51.947.3
扬麦16 Yangmai 1686.345.118.89.81.949.5
扬麦23 Yangmai 2378.946.219.19.81.945.4
扬糯麦1号 Yangnuomai 176.345.218.89.22.049.7
扬麦20 Yangmai 2089.945.519.010.71.845.5
宁麦12 Ningmai 1289.345.122.614.11.647.6
扬辐麦4号 Yangfumai 487.545.719.49.92.048.9

新窗口打开|下载CSV

3 讨论

3.1 抗赤霉病优异种质资源筛选

小麦赤霉病抗性由多基因控制,抗赤霉病QTL除具有加性效应外,也存在上位性效应[6]。本研究经过连续3年单花滴注抗赤霉病鉴定,筛选出67个赤霉病抗性达到中感及以上水平的品种,平均病小穗率为7.8%—49.5%,其中,望水白和苏麦3号分别是地方品种和改良品种中唯一的赤霉病抗性达到R级的品种,说明小麦R级抗赤霉病的种质资源十分稀少,在抗赤霉病遗传改良中搜集此类抗源较困难。已有研究[24,25]表明品种赤霉病抗性达到中抗至中感级的抗性一般受多基因控制,抗性稳定,可被广泛利用。程顺和等[26]提出抗赤霉病育种的第2条技术路线,即选用丰产、抗赤性中感至中抗品种(系)杂交,后代注重丰产,兼顾抗赤霉病等性状选择,可育成大面积推广种植的中抗赤霉病品种。地方品种株高普遍偏高、千粒重普遍较低(电子附表4),即使赤霉病抗性很好,也不利于小麦抗赤霉病育种直接利用,而改良品种的株高、千粒重等农艺性状较地方品种优良很多,利于生产上小麦抗赤霉病育种直接利用。以往研究表明,长江中下游小麦产量育种的策略是增加粒数、提高粒重为主[27],因此,每穗粒数和千粒重的选择是决定该麦区小麦产量的关键因素。本研究表明宁麦19、扬麦29、扬麦16、扬麦23、扬糯麦1号、扬麦20、宁麦12和扬辐麦4号的综合农艺性状优良,穗粒数和千粒重表现突出,可作为抗赤霉病育种的亲本选用。

3.2 不同Fhb1基因型在供试品种中的分布

已知苏麦3号是国际上研究和利用最广泛的赤霉病抗源[6],其携带的抗赤霉病主效基因Fhb1已经被克隆[28,29],有研究表明[30,31],不同来源的Fhb1抗病基因(供体),导入受体后赤霉病抗性表现差异显著,即使携带同一供体Fhb1抗病基因的材料在不同遗传背景下抗性也表现不同。朱展望等[32]通过基因检测和系谱分析发现,中国小麦改良品种所含Fhb1至少有2个来源,分别为苏麦3号和宁麦9号,并以后者为主。对本研究供试材料中改良品种系谱分析表明宁麦18、扬麦18、宁麦9号、宁麦13、宁麦19、镇麦5号、宁麦26、扬麦21、扬麦28、宁麦14、苏麦5号、宁麦16、扬辐麦4号和宁麦15等14个品种中的Fhb1抗病基因来源于宁麦9号(电子附表2)。

本研究筛选出67个赤霉病抗性在中感及以上水平品种,分子标记检测表明Fhb1+品种有18个,占26.9%:其中6个地方品种中共有3个携带Fhb1抗病基因,占50%,分别是望水白、和蒲头和白慈麦;61个改良品种中共有15个携带Fhb1抗病基因,占24.2%,说明有一定数量的中感及以上水平的品种并不携有Fhb1抗病基因,在这些不携带Fhb1抗病基因的品种中有17个赤霉病抗性达到中抗,这是一些非常宝贵的抗赤霉病种质资源,可通过配制双亲群体,挖掘新的抗赤霉病基因。

抗性评价为S级的品种中白蒲、胡须麦、糯麦和浙麦1号也携有来源尚不清楚的Fhb1抗病基因,推测这些感病品种中Fhb1可能与其他基因存在互作效应,导致品种赤霉病抗性改变或者降低。

3.3 扬麦系列品种的应用价值

已有报道表明,利用抗赤霉病基因/QTL进行抗病育种时,由于基因间的连锁而导入一些不利基因,从而导致某些农艺性状变差[33,34],而LI等[35]分别以宁麦9号、宁麦13和建阳84为Fhb1抗病基因供体,以黄淮冬麦区小麦品种为背景,构建6个回交群体,分别考察这6个群体中携带Fhb1纯合抗病基因型(Fhb1-R)、纯合感病基因型(Fhb1-S)和杂合基因型(Fhb1-H)的株高、穗长、每穗小穗数和千粒重等农艺性状考察,发现没有显著的差异,这可能是育种过程中不断选择的结果,也可能跟特定的遗传背景表达有关。

本研究供试品种中扬麦系列品种的平均病小穗率为13.2%—64.3%,86%的扬麦系列品种赤霉病抗性达到中抗—中感水平,其中10个赤霉病抗性达到中抗,平均病小穗率为13.2%—25.0%;15个赤霉病抗性达到中感,平均病小穗率为26.0%—40.8%;4个感赤霉病,平均病小穗率为53.6%—64.3%。考察67份赤霉病达到中感及以上水平品种的主要农艺性状,结果表明,8个品种的综合农艺性状优良,穗粒数和千粒重表现突出,可作为抗赤霉病育种的亲本选用,其中扬麦系列品种有6份,且只有扬辐麦4号含有Fhb1抗病基因。蒋正宁等[36]利用已知3个抗扩展QTL(Fhb1Fhb2QFhb-2DL)的7个分子标记对202份扬麦品种(系)进行分子检测,结果表明,扬麦品种(系)所含赤霉病抗扩展基因至少有2个来源,其一为含有Fhb1抗病基因的品种,以扬麦18、扬麦21和扬麦28等为代表,其抗源主要来自宁麦9号或其衍生品种;其二为不含有Fhb1抗病基因的品种,以扬麦14、扬麦16、扬麦17和扬麦23等为代表,推测这类品种所含抗性基因来自扬麦158。胡文静等[3]研究表明,扬麦16中携带抗赤霉病位点QFhb.yaas-2DLQFhb.yaas-3BLQFhb.yaas-4DSQFhb.yaas-6AS,表型贡献率为8.8%—15.0%,其中QFhb.yaas-2DL与已报道的Wuhan-1中检测到的2DL上抗赤霉病位点QFhs.crc-2D位置相近,ZHU等[37]利用小麦90K SNP芯片对240份国内外品种进行抗赤霉病全基因组关联分析,在19个扬麦品种(系)里检测到QFhb.hbaas-2DL位点抗性等位变异,且证实与Wuhan-1的QFhs.crc-2D位点是一致的。JIANG等[38]利用扬麦158/宁麦9号的RIL群体定位到来源于扬麦158的抗赤霉病位点QFhb-5A和来源于宁麦9号的Fhb1,且后代中同时具有2个位点的家系赤霉病抗性显著高于亲本。HU等[39]通过全基因组关联分析在染色体4A和5D上检测到来源于扬麦衍生系苏麦6号、镇麦168和镇麦9号的抗赤霉病优异单倍型。经过系谱分析推测扬麦抗赤霉病基因来源于最原始的亲本之一阿夫(电子附表2)。下一步将精细定位扬麦中携带的抗赤霉病主效QTL,开发利于抗赤霉病育种的分子标记,评鉴它们的抗赤霉病效应和对产量等性状的影响,解析在不同遗传背景下的效应,明确其最优组合及育种应用价值;同时,继续将已知抗病基因导入长江中下游大面积主栽品种中,在保持优良农艺性状的基础上,聚合多个抗赤霉病基因,进一步提升小麦品种的赤霉病抗性水平。

4 结论

除苏麦3号和望水白外,供试材料中未发现其他高抗赤霉病的种质资源,赤霉病抗性达到中感及以上水平的品种有67个,这些品种中仅26.9%携带Fhb1抗病基因。最终筛选得到的赤霉病抗性与综合农艺性状结合较好的小麦品种以扬麦品种为主,其中只有扬辐麦4号携带Fhb1抗病基因,说明利用Fhb1抗病基因并不是解决小麦赤霉病危害的唯一途径。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

王荣栋, 尹经章. 作物栽培学. 北京: 高等教育出版社, 2005: 4.
[本文引用: 2]

WANG R D, YIN J Z. Crop Cultivation. Beijing: Higher Education Press, 2005: 4. (in Chinese)
[本文引用: 2]

吴佳文, 杨荣明, 朱凤, 田子华. 2015年江苏省小麦赤霉病发生特点与防控对策探讨
中国植保导刊, 2016,36(10):31-34.

[本文引用: 1]

WU J W, YANG R M, ZHU F, TIAN Z H. The epidemic characteristics of wheat Fusarium head blight in Jiangsu Province in 2015 and discussion of its control measures
China Plant Protection, 2016,36(10):31-34. (in Chinese)

[本文引用: 1]

胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析
作物学报, 2020,46(2):157-165.

[本文引用: 3]

HU W J, ZHANG Y, LU C B, WANG F J, LIU J D, JIANG Z N, WANG J P, ZHU Z W, XU X T, HAO Y F, HE Z H, GAO D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16
Acta Agronomica Sinica, 2020,46(2):157-165. (in Chinese)

[本文引用: 3]

陆维忠, 程顺和, 王裕中. 小麦赤霉病研究. 北京: 科学出版社, 2001: 45-76.
[本文引用: 2]

LU W Z, CHENG S H, WANG Y Z. Studies on Fusarium Head Blight of Wheat. Beijing: Science Press, 2001: 45-76. (in Chinese)
[本文引用: 2]

丛雯雯, 郭长虹. 小麦近缘野生植物的赤霉病抗源筛选及其利用
分子植物育种, 2010,8(5):1043-1049.

[本文引用: 1]

CONG W W, GUO C H. Selection and utilization of resistance sources to Fusarium head bight in wheat wild relatives
Molecular Plant Breeding, 2010,8(5):1043-1049. (in Chinese)

[本文引用: 1]

张爱民, 阳文龙, 李欣, 孙家柱. 小麦抗赤霉病研究现状与展望
遗传, 2018,40(10):858-873.

[本文引用: 4]

ZHANG A M, YANG W L, LI X, SUN J Z. Current status and perspective on research againstFusarium head blight in wheat
Hereditas, 2018,40(10):858-873. (in Chinese)

[本文引用: 4]

MCCARTNEY C A, SOMERS D J, FEDAK G, CAO W. Haplotype diversity atFusarium head blight resistance QTLs in wheat
Theoretical and Applied Genetics, 2004,109:261-271.

DOI:10.1007/s00122-004-1640-xURLPMID:15057418 [本文引用: 1]
Fusarium head blight (FHB) reduces grain yield and quality in common and durum wheat. Host FHB resistance is an effective control measure that is achieved by stacking multiple resistance genes into a wheat line. Therefore, breeders would benefit from knowing which resistance sources carry different resistance genes. A diverse collection of FHB-resistant and -susceptible wheat lines was characterized with microsatellite markers linked to FHB resistance quantitative trait loci (QTLs) on chromosomes 2DL, 3BS (distal to the centromere), 3BSc (proximal to the centromere), 4B, 5AS and 6BS identified in wheat lines Maringa, Sumai 3 and Wuhan 1. Putative Sumai 3 QTLs were commonly observed in advanced breeding lines, whereas putative Maringa and Wuhan 1 QTLs were relatively rare. Marker data suggested the 3BS, 3BSc and 5AS QTLs in the Brazilian cv. Maringa were derived from Asian germplasm and not from Frontana or other Brazilian lines. Haplotype diversity was reduced near the 5AS QTL, which might impact the deployment of this QTL. Finally, Brazilian germplasm was not closely related to other resistance sources and might be useful for pyramiding with Asian wheat-derived FHB resistance.

陈佩度, 王兆悌, 王苏玲, 黄俐, 王裕中, 刘大钧. 将大赖草种质转移给普通小麦的研究: III. 抗赤霉病异附加系选育
遗传学报, 1995,22:206-210.

[本文引用: 1]

CHEN P D, WANG Z T, WANG S L, HUANG L, WANG Y Z, LIU D J. Transfer of useful germplasm fromLeymus racemosus Lam. to common wheat: III. Development of addition lines with wheat scab resistance
Journal of Genetics and Genomics, 1995,22:206-210. (in Chinese)

[本文引用: 1]

CAI X, CHEN P D, XU S S, OLIVER R E, CHEN X. Utilization of alien genes to enhanceFusarium head blight resistance in wheat-A review
Euphytica, 2005,142(3):309-318.

DOI:10.1007/s10681-005-2437-yURL [本文引用: 1]

LIU S, HALL M D, GRIFFEY C A, MCKENDRY A L. Meta-analysis of QTL associated withFusarium head blight resistance in wheat
Crop Science, 2009,49:1955-1968.

DOI:10.2135/cropsci2009.03.0115URL [本文引用: 1]

陈士强, 黄泽峰, 张勇. 中国春背景下长穗偃麦草抗赤霉病相关基因的染色体定位
麦类作物学报, 2012,32(5):839-845.

[本文引用: 1]

CHEN S Q, HUANG Z F, ZHANG Y. Chromosomal location of the genes associated with FHB resistance of lophopyrum elongatum in Chinese Spring Background
Journal of Triticeae Crops, 2012,32(5):839-845. (in Chinese)

[本文引用: 1]

DAI Y, DUAN Y M, LIU H P, CHI D, CAO W G, XUE A, GAO Y, FEDAK G, CHEN J M. Molecular cytogenetic characterization of twoTriticum-Secale-Thinopyrum trigeneric hybrids exhibiting superior resistance to Fusarium head blight, leaf rust, and stem rust race Ug99
Frontiers in Plant Science, 2017,8:797.

URLPMID:28555151 [本文引用: 1]

GUO J, ZHANG X, HOU Y, CAI J, SHEN X, ZHOU T, XU H, OHM H W, WANG H, LI A, WANG H, KONG L. High-density mapping of the major FHB resistance gene Fhb7 derived fromThinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection
Theoretical and Applied Genetics, 2015,128:1-16.

DOI:10.1007/s00122-014-2399-3URLPMID:25239219 [本文引用: 1]
KEY MESSAGE: Recent advances in Setaria genomics appear promising for genetic improvement of cereals and biofuel crops towards providing multiple securities to the steadily increasing global population. The prominent attributes of foxtail millet (Setaria italica, cultivated) and green foxtail (S. viridis, wild) including small genome size, short life-cycle, in-breeding nature, genetic close-relatedness to several cereals, millets and bioenergy grasses, and potential abiotic stress tolerance have accentuated these two Setaria species as novel model system for studying C4 photosynthesis, stress biology and biofuel traits. Considering this, studies have been performed on structural and functional genomics of these plants to develop genetic and genomic resources, and to delineate the physiology and molecular biology of stress tolerance, for the improvement of millets, cereals and bioenergy grasses. The release of foxtail millet genome sequence has provided a new dimension to Setaria genomics, resulting in large-scale development of genetic and genomic tools, construction of informative databases, and genome-wide association and functional genomic studies. In this context, this review discusses the advancements made in Setaria genomics, which have generated a considerable knowledge that could be used for the improvement of millets, cereals and biofuel crops. Further, this review also shows the nutritional potential of foxtail millet in providing health benefits to global population and provides a preliminary information on introgressing the nutritional properties in graminaceous species through molecular breeding and transgene-based approaches.

CAINONG J C, BOCKUS W W, FENG Y, ET A L. Chromosome engineering, mapping, and transferring of resistance toFusarium head blight disease from Elymus tsukushiensis into wheat
Theoretical and Applied Genetics, 2015,128(6):1019-1027.

URLPMID:25726000 [本文引用: 1]

RAWAT N, PUMPHREY M O, LIU S, ZHANG X, TIWARI V K, ANDO K, TRICK H N, BOCKUS W W, AKHUNOV E, ANDERSON J A, GILL B S. WheatFhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight
Nature Genetics, 2016,48(12):1576-1580.

URLPMID:27776114 [本文引用: 1]

SU Z, BERNARDO A, TIAN B, CHEN H, WANG S, MA H, CAI S, LIU D, ZHANG D, LI T, TRICK H, ST AMAND P, YU J, ZHANG Z, BAI G. A deletion mutation in TaHRC confersFhb1 resistance to Fusarium head blight in wheat
Nature Genetics, 2019,51(7):1099-1105.

DOI:10.1038/s41588-019-0425-8URLPMID:31182809 [本文引用: 1]
Fusarium head blight (FHB), which is mainly caused by Fusarium graminearum, is a destructive wheat disease that threatens global wheat production. Fhb1, a quantitative trait locus discovered in Chinese germplasm, provides the most stable and the largest effect on FHB resistance in wheat. Here we show that TaHRC, a gene that encodes a putative histidine-rich calcium-binding protein, is the key determinant of Fhb1-mediated resistance to FHB. We demonstrate that TaHRC encodes a nuclear protein conferring FHB susceptibility and that a deletion spanning the start codon of this gene results in FHB resistance. Identical sequences of the TaHRC-R allele in diverse accessions indicate that Fhb1 had a single origin, and phylogenetic and haplotype analyses suggest that the TaHRC-R allele most likely originated from a line carrying the Dahongpao haplotype. This discovery opens a new avenue to improve FHB resistance in wheat, and possibly in other cereal crops, by manipulating TaHRC sequence through bioengineering approaches.

LI G, ZHOU J, JIA H, GAO Z, FAN M, LUO Y, ZHAO P, XUE S, LI N, YUAN Y, MA S, KONG Z, JIA L, AN X, JIANG G, LIU W, CAO W, ZHANG R, FAN J, XU X, LIU Y, KONG Q, ZHENG S, WANG Y, QIN B, CAO S, DING Y, SHI J, YAN H, WANG X, RAN C, MA Z. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance toFusarium head blight
Nature Genetics, 2019,51(7):1106-1112.

DOI:10.1038/s41588-019-0426-7URLPMID:31182810 [本文引用: 1]
Head or ear blight, mainly caused by Fusarium species, can devastate almost all staple cereal crops (particularly wheat), resulting in great economic loss and imposing health threats on both human beings and livestock(1-3). However, achievement in breeding for highly resistant cultivars is still not satisfactory. Here, we isolated the major-effect wheat quantitative trait locus, Qfhs.njau-3B, which confers head blight resistance, and showed that it is the same as the previously designated Fhb1. Fhb1 results from a rare deletion involving the 3' exon of the histidine-rich calcium-binding-protein gene on chromosome 3BS. Both wheat and Arabidopsis transformed with the Fhb1 sequence showed enhanced resistance to Fusarium graminearum spread. The translation products of this gene's homologs among plants are well conserved and might be essential for plant growth and development. Fhb1 could be useful not only for curbing Fusarium head blight in grain crops but also for improving other plants vulnerable to Fusarium species.

YU J B, BAI G H, CAI S B, BAN T. Marker-assisted characterization of Asian wheat lines for resistance toFusarium head blight
Theoretical and Applied Genetics, 2006,113:308-320.

URLPMID:16791697 [本文引用: 2]

LI T, LUO M, ZHANG D, WU D, LI L, BAI G H. Effective marker alleles associated with type II resistance of wheat toFusarium head blight infection in field
Breeding Science Preview, 2016,66(3):350-357.

[本文引用: 1]

中华人民共和国农业行业标准 NY/T
2954-2016: 小麦区域试验品种抗赤霉病鉴定技术规程.

[本文引用: 1]

Agricultural Standard of the People’s Republic of China, NY/T
2954-2016: Technical regulations for resistance evaluation of wheat for trials to Fusarium head blight caused by Fusarium graminearum Schw. (in Chinese)

[本文引用: 1]

张晓军, 肖进, 王海燕, 乔麟轶, 李欣, 郭慧娟, 常利芳, 张树伟, 阎晓涛, 畅志坚, 武宗信. 小偃麦衍生品系的赤霉病抗性评价
作物学报, 2020,46(1):62-73.

[本文引用: 1]

ZHANG X J, XIAO J, WANG H Y, QIAO L Y, LI X, GUO H J, CHANG L F, ZHANG S W, YAN X T, CHANG Z J, WU Z X. Evaluation of resistance toFusarium head blight in Thinopyrum- derived wheat lines
Acta Agronomica Sinica, 2020,46(1):62-73. (in Chinese)

[本文引用: 1]

SU Z Q, JIN S J, ZHANG D D, BAI G H. Development and validation of diagnostic markers forFhb1 region, a major QTL for Fusarium head blight resistance in wheat
Theoretical and Applied Genetics, 2018,131(11):2371-2380.

URLPMID:30136107 [本文引用: 1]

RASHEED A, WEN W, GAO F M, ZHAI S, JIN H, LIU J D, GUO Q, ZHANG Y J, DREISIGACKER S, XIA X C, HE Z H, Development and validation of KASP assays for functional genes underpinning keyeconomic traits in wheat
Theoretical and Applied Genetics, 2016,129:1843-1860.

URLPMID:27306516 [本文引用: 1]

吕超, 姚琴, 宋彦霞, 周荣华, 许如根, 贾继增. 偃展1号×内乡188群体抗小麦赤霉病QTL分析
麦类作物学报, 2014,34(12):1633-1638.

[本文引用: 1]

C, YAO Q, SONG Y X, ZHOU R H, XU R G, JIA J Z. QTL analysis forFusarium head blight (FHB) resistance in RIL population from Yanzhan1×Neixiang188
Journal of Triticeae Crops, 2014,34(12):1633-1638. (in Chinese)

[本文引用: 1]

YI X, CHENG J Y, JIANG Z N, HU W J, BIE T D, GAO D R, LI D S, WU R L, LI Y L, CHEN S L, CHENG X M, LIU J, ZHANG Y, CHENG S H. Genetic analysis ofFusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping
Frontiers in Plant Science, 2018,9:573.

URLPMID:29780395 [本文引用: 1]

程顺和, 张勇, 张伯桥, 高德荣, 吴宏亚, 陆成彬, 吕国锋, 王朝顺. 小麦抗赤霉病育种2条技术路线的探讨
扬州大学学报(农业与生命科学版), 2003,24(1):59-62.

[本文引用: 1]

CHENG S H, ZHANG Y, ZHANG B Q, GAO D R, WU H Y, LU C B, G F, WANG C S. Discussion of two ways of breeding scab resistance in wheat
Journal of Yangzhou University (Agricultural and Life Science Edition), 2003,24(1):59-62. (in Chinese)

[本文引用: 1]

姚国才, 马鸿翔, 姚金保, 张鹏, 杨学明. 长江中下游地区小麦产量育种方向及策略探讨
中国农学通报, 2010,26(17):168-171.

[本文引用: 1]

YAO G C, MA H X, YAO J B, ZHANG P, YANG X M. The breeding strategies and direction on wheat yield in region of middle and lower reaches of the Yangtze river
Chinese Agricultural Science Bulletin, 2010,26(17):168-171. (in Chinese)

[本文引用: 1]

SU Z Q, BERNARDO A, TIAN B, CHEN H, WANG S, MA H X, CAI S B, LIU D T, ZHANG D D, LI T, TRICK H, ST A P, YU J M, ZHANG Z Y, BAI G H. A deletion mutation inTaHRC confers Fhb1 resistance to Fusarium head blight in wheat
Nature Genetics, 2019,51(7):1099-1105.

DOI:10.1038/s41588-019-0425-8URLPMID:31182809 [本文引用: 1]
Fusarium head blight (FHB), which is mainly caused by Fusarium graminearum, is a destructive wheat disease that threatens global wheat production. Fhb1, a quantitative trait locus discovered in Chinese germplasm, provides the most stable and the largest effect on FHB resistance in wheat. Here we show that TaHRC, a gene that encodes a putative histidine-rich calcium-binding protein, is the key determinant of Fhb1-mediated resistance to FHB. We demonstrate that TaHRC encodes a nuclear protein conferring FHB susceptibility and that a deletion spanning the start codon of this gene results in FHB resistance. Identical sequences of the TaHRC-R allele in diverse accessions indicate that Fhb1 had a single origin, and phylogenetic and haplotype analyses suggest that the TaHRC-R allele most likely originated from a line carrying the Dahongpao haplotype. This discovery opens a new avenue to improve FHB resistance in wheat, and possibly in other cereal crops, by manipulating TaHRC sequence through bioengineering approaches.

LI G Q, ZHOU J Y, JIA H Y, GAO Z X, FAN M, LUO Y J, ZHAO P T, XUE S L, LI N, YUAN Y, MA S W, KONG Z X, JIA L, AN X, JIANG G, LIU W X, CAO W J, ZHANG R R, FAN J C, XU X W, LIU Y F, KONG Q Q, ZHENG S H, WANG Y, QIN B, CAO S Y, DING Y X, SHI J X, YAN H S, WANG X, RAN C F, MA Z Q. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance toFusarium head blight
Nature Genetics, 2019,51(7):1106-1112.

URLPMID:31182810 [本文引用: 1]

张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性
作物学报, 2018,44(4):505-511.

[本文引用: 1]

ZHANG H J, SU Z Q, BAI G H, ZHANG X, MA H X, LI T, DENG Y, MAI C Y, YU L Q, LIU H W, YANG L, LI H J, ZHOU Y. Improvement of resistance of wheat cultivars to Fusarium head hlight in the Yellow-Huai rivers Valley winter wheat zone with functional marker selection of Fhb1 gene
Acta Agronomica Sinica, 2018,44(4):505-511. (in Chinese)

[本文引用: 1]

李腾. Fhb1基因对黄淮冬麦区小麦品种赤霉病抗性和主要农艺性状的影响
[D]. 北京: 中国农业科学研究院, 2019.

[本文引用: 1]

LI T. Effects of the Fhb1 gene on Fusarium head blight resistance and agronomic traits performances in the wheat cultivars adapted to the Yellow-Huai river valley winter wheat zone
[D]. Beijing: Chinese Academy of Agriculture Sciences, 2019. (in Chinese)

[本文引用: 1]

朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源
作物学报, 2018,44(4):473-482.

[本文引用: 1]

ZHU Z W, XU D A, CHENG S H, GAO C B, XIA X C, HAO Y F, HE Z H. Characterization ofFusarium head blight resistance gene Fhb1 and its putative ancestor in Chinese wheat germplasm
Acta Agronomica Sinica, 2018,44(4):473-482. (in Chinese)

[本文引用: 1]

ZHANG J B, LI H P, DANG F J, QU B, XU Y B, ZHAO C S, LIAO Y C. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of theFusarium graminearum clade from China
Mycological Research, 2007,111(8):967-975.

[本文引用: 1]

KHAN M R, DOOHAN F M. Comparison of the efficacy of chitosan with that of a fluorescent pseudomonad for the control ofFusarium head blight disease of cereals and associated mycotoxin contamination of grain
Biological Control, 2009,48(1):48-54.

[本文引用: 1]

LI T ZHANG H J HUANG Y W, SU Z Q, DENG Y, LIU H W, MAI C Y, YU G J, LI H L, YU L Q, ZHU T Q, YANG L, LI H J, ZHOU Y. Effects of theFhb1 gene on Fusarium head blight resistance and agronomic traits of winter wheat
The Crop Journal, 2019,7(6):799-808.

[本文引用: 1]

蒋正宁, 吕国锋, 王玲, 陈甜甜, 江伟, 李东升, 高德荣, 张勇. 扬麦品种(系)赤霉病抗扩展基因分子检测及其抗性评价
麦类作物学报, 2019,39(12):1406-1415.

[本文引用: 1]

JIANG Z N, G F, WANG L, CHEN T T, JIANG W, LI D S, GAO D R, ZHANG Y. Evaluation ofFusarium head blight resistance and molecular detection of typeⅡresistance genes for Yangmai wheat cultivars (lines)
Journal of Triticeae Crops, 2019,39(12):1406-1415. (in Chinese)

[本文引用: 1]

ZHU Z W, CHEN L, ZHANG W, YANG L J, ZHU W W, LI J H, LIU Y K, TONG H W, FU L P, LIU J D, RASHEED A, XIA X C, HE Z H, HAO Y F, GAO C B. Genome-wide association analysis ofFusarium head blight resistance in Chinese elite wheat lines
Frontiers in Plant Science, 2020,11:206.

URLPMID:32174947 [本文引用: 1]

JIANG P, ZHANG X, WU L, HE Y, ZHUANG W W, CHENG X X, GE W Y, MA H X, KONG L R. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance toFusarium head blight in wheat
Plant Pathology, 2019,69(2):249-258.

[本文引用: 1]

HU W J, GAO D R, WU H Y, LIU J, ZHANG C M, WANG J C, JIANG Z N, LIU Y Y, LI D S, ZHANG Y, LU C B. Genome-wide association mapping revealed syntenic lociQFhb-4AL and QFhb-5DL for Fusarium head blight resistance in common wheat(Triticum aestivum L.)
BMC Plant Biology, 2020,20:29.

DOI:10.1186/s12870-019-2177-0URLPMID:31959107 [本文引用: 1]
BACKGROUND: Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a major threat to wheat production and food security worldwide. Breeding stably and durably resistant cultivars is the most effective approach for managing and controlling the disease. The success of FHB resistance breeding relies on identification of an effective resistant germplasm. We conducted a genome-wide association study (GWAS) using the high-density wheat 90 K single nucleotide polymorphism (SNP) assays to better understand the genetic basis of FHB resistance in natural population and identify associated molecular markers. RESULTS: The resistance to FHB fungal spread along the rachis (Type II resistance) was evaluated on 171 wheat cultivars in the 2016-2017 (abbr. as 2017) and 2017-2018 (abbr. as 2018) growing seasons. Using Illumina Infinum iSelect 90 K SNP genotyping data, a genome-wide association study (GWAS) identified 26 loci (88 marker-trait associations), which explained 6.65-14.18% of the phenotypic variances. The associated loci distributed across all chromosomes except 2D, 6A, 6D and 7D, with those on chromosomes 1B, 4A, 5D and 7A being detected in both years. New loci for Type II resistance were found on syntenic genomic regions of chromsome 4AL (QFhb-4AL, 621.85-622.24 Mb) and chromosome 5DL (QFhb-5DL, 546.09-547.27 Mb) which showed high collinearity in gene content and order. SNP markers wsnp_JD_c4438_5568170 and wsnp_CAP11_c209_198467 of 5D, reported previously linked to a soil-borne wheat mosaic virus (SBWMV) resistance gene, were also associated with FHB resistance in this study. CONCLUSION: The syntenic FHB resistant loci and associated SNP markers identified in this study are valuable for FHB resistance breeding via marker-assisted selection.
相关话题/基因 鉴定 赤霉病 电子 材料