

Effects of Staggered Planting with Increased Density on the Photosynthetic Characteristics and Yield of Summer Maize
ZHANG ChunYu

通讯作者:
责任编辑: 杨鑫浩
收稿日期:2020-05-11接受日期:2020-07-29网络出版日期:2020-10-01
基金资助: |
Received:2020-05-11Accepted:2020-07-29Online:2020-10-01
作者简介 About authors
张春雨,E-mail:

摘要
关键词:
Abstract
Keywords:
PDF (880KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张春雨, 白晶, 丁相鹏, 张吉旺, 刘鹏, 任佰朝, 赵斌. 错株增密种植对夏玉米光合特性及产量的影响[J]. 中国农业科学, 2020, 53(19): 3928-3941 doi:10.3864/j.issn.0578-1752.2020.19.007
ZHANG ChunYu, BAI Jing, DING XiangPeng, ZHANG JiWang, LIU Peng, REN BaiZhao, ZHAO Bin.
0 引言
【研究意义】合理密植是实现玉米高产的关键措施之一[1],今后超高产栽培的发展趋势是在稳定单穗粒重或小幅降低的前提下,提高种植密度,合理增加群体数量[2,3]。但随着种植密度的增加,群体内植株相互遮荫,冠层中下部透光率大幅下降,引起叶片早衰并导致群体的光合性能减弱[4,5,6,7]。在玉米生产中,种植模式是在高密度协同条件下影响个体通风透光、营养状况和最终产量的因素之一,可以协调玉米群体与个体的关系[8]。利用栽培技术建立科学合理的群体结构,尽可能地提高玉米群体的光能利用率,是提高群体质量和生物产量的重要技术手段[9,10]。因此,探索如何改变种植模式来削弱密度过大对植株产生的负面作用意义重大。【前人研究进展】密度是影响玉米产量的关键因素,玉米群体产量取决于密度压力,合理密植是获得高产的重要栽培措施[2,11-12]。但密度过高会导致养分供应差,光照条件恶劣,玉米穗位叶净光合速率显著降低,单株干物质积累量下降,单位面积穗数的增加无法弥补因密度过大造成的空秆增加和穗粒数及千粒重锐减带来的损失[14,15]。当密度较高时,合理的种植模式能使植株在田间分布合理,从而改善植株的群体结构,并在一定程度上改善田间的通风、透光条件。有研究表明,改变种植模式使植株在田间的分布及群体内光分布更加均匀的做法可以提高产量[16,17]。不同的种植模式,不同的密度、植株空间排布方式,形成了不同的冠层结构,因此光截获也存在差异。错株种植可有效提高植株分布均匀度,使叶片空间分布更加合理,吐丝期更加均匀的植株空间分布提高了光截获[13,18]。合理的种植模式可以有效地改善高密度下作物群体间的光分布,行间错株形成的菱形分布既提高了冠层内的透光率又保证了最大光截获,因而中后期光能利用率较高,穗位叶同化物持续积累,保证了高产潜力的发挥[19,20,21]。【本研究切入点】前人对“蜂巢式种植”“双行交错种植”“三角留苗式种植”等相邻行间植株交错的错株种植模式开展了相关研究,并且多为增产效应[13,19-20]。但黄淮海夏玉米区,在玉米季光温资源有限的条件下,可否通过改变种植模式和提高密度改变群体结构,进而实现光能利用率和产量协同提高,尚未可知。【拟解决的关键问题】本试验设置不同种植模式和密度,研究错株种植与密度对夏玉米产量与光合特性的影响,明确错株种植与密度互作对夏玉米产量形成的调控机理,探索高产夏玉米适宜的种植模式,为高产夏玉米的科学种植提供理论依据。1 材料与方法
1.1 试验地点
田间试验于2018年在泰安市马庄试验基地进行,2019年在山东农业大学黄淮海区域玉米技术创新中心进行,两地土壤肥力高,水利设施条件良好。2个试验点均为温带大陆性季风气候,土壤为棕壤土,土壤基础地力如表1所示。Table 1
表1
表1土壤养分含量
Table 1
年份 Year | 试验地点 Test location | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 速效氮 Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|
2018 | 泰安市马庄镇试验基地 Test base in Mazhuang town, Tai'an city | 11.20 | 0.71 | 56.43 | 28.32 | 109.01 |
2019 | 黄淮海区域玉米技术创新中心 Huang-huai-hai regional maize technology innovation center | 10.38 | 0.78 | 57.11 | 36.51 | 126.87 |
新窗口打开|下载CSV
1.2 试验设计
2年试验均采用三因素裂区设计,大田种植。主区为种植模式:错株种植和对株种植;副区为种植密度:67 500株/hm2(LD)和82 500株/hm2(HD);副副区为品种:登海605(DH605)和郑单958(ZD958)。8个处理,重复3次,共24个小区,行距0.6 m,等行距种植,行长10 m,小区面积为30 m2。田间管理同一般高产田,种植模式如图1所示。图1

图1错株种植与对株种植田间模拟图
Fig. 1Staggered planting and parallel planting
1.3 测定项目及方法
1.3.1 群体整齐度 计算穗粒数整齐度及各个取样时期干物质重量、叶面积的整齐度,取平均值。$\text{s}=\sqrt{\frac{\sum {{x}^{2}}-\frac{1}{n}{{(\sum x)}^{2}}}{n-1}}$;$rd=\frac{(\overline{x}-s)}{\overline{x}}\times 100$
式中,s:标准差,n:样本个数,rd:整齐度,$\overline{x}$:样本平均值。
1.3.2 茎叶夹角 在开花期各小区选取具有代表性的植株6株,使用量角器测量棒三叶(穗位叶、穗位上叶、穗位下叶)的茎叶夹角。
1.3.3 叶面积指数(LAI) 在大喇叭口期(V12)、开花期(VT)、花后20 d(VT+20)、花后40 d(VT+40)和成熟期(VT+60),选取具有代表性的植株5株,量取每片叶长度和中部宽度,计算叶面积和叶面积指数。
单叶叶面积=叶长×叶宽×0.75;
LAI=单株叶面积(m2)×每公顷株数/10000。
1.3.4 植株地上部干重 在V12期分为茎和叶,VT、
VT+20、VT+40和VT+60分为茎秆(含穗轴)、叶片、雄穗、籽粒、苞叶5部分,各时期取样5株,将各部分样品在烘箱内105℃杀青15 min,80℃烘干至恒重后称重。
1.3.5 光能截获率 选择晴天无云天气,在11:30—14:30,采用SunScan冠层分析仪进行测定,移动手柄,采集探棒上64个传感器的瞬时读数。每个小区选取中间2个行间,按对角线方式,测定6个不同点,取平均值。分3层测量,即底部(离地面10—15 cm),中部(穗位叶及其上下叶)和顶部。光合有效辐射计算公式如下:
光能截获率(%)=$({{I}_{t}}-{{I}_{b}})/{{I}_{t}}$
式中,It:冠层顶部光合有效辐射,Ib:测定层光合有效辐射。
1.3.6 净光合速率 用CIRAS-3便携式光合测定系统分别于VT、VT+20以及VT+40的晴天11:00—13:30于自然光源下进行测量。每次各处理选取6个叶片,测量选择穗位叶叶片的中上部,避开中脉,在相同部位测定,取平均值。
1.3.7 光合关键酶活性 二磷酸核酮糖羧化酶(Rubisco)酶活性的测定:称取约0.1 g穗位叶组织样本,加入1 mL提取液,冰浴匀浆,10 000×g,4℃下离心10 min,取上清液加到试剂盒中,置于酶标仪中测定波长为340 nm时的吸光值,1 min后读取吸光值A1,15 min后读取A2,$\Delta $A=A1-A2;磷酸烯醇式丙酮酸羧化酶(PEPC)酶活性的测定:称取约0.1 g穗位叶组织样本,加入1 mL提取液,置于冰上,12 000 r/min,4℃下离心10 min,将样本解冻至室温取上清液加到试剂盒中,置于酶标仪中测定波长为340 nm时的吸光值,10 s时读取吸光值A1,10 min后读取A2。
$酶活力=[ \Delta A \times \!\!\text{ V2 }\!\!\div\!\!\text{ ( }\!\!\varepsilon\!\!\text{ }\!\!\times\!\!\text{ d) }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{9}}}\text{ }\!\!]\!\!\text{ }\!\!\div\!\!\text{ (V1}\times \text{Cpr) }\!\!\div\!\!\text{ T}$
$\Delta A=A1-A2$
式中,$\varepsilon $:NADH摩尔消光系数;d:96孔板直径,0.5 cm;V1:加入样本体积;V2:反应体系总体积;T:反应时间;Cpr:样本蛋白质浓度。
1.3.8 叶绿素含量 参照张宪政[22]的丙酮乙醇混合液法测定。取穗位叶新鲜玉米叶片,剪取相同大小的小圆片8片,放入丙酮乙醇混合液中,在室温下(10—30℃)暗处提取,至材料完全变白后,取清液,以丙酮乙醇混合液做对照,用分光光度计测定光密度。
1.3.9 叶片荧光特性 于VT及VT+20期,在自然光强下,上午10:00—11:30期间选取照光一致的植株穗位叶进行测定。采用M-PEA植物效率仪测定光适应下的最大荧光(Fm’)、稳态荧光(Fs)等荧光参数;暗适应30 min后测定初始荧光(Fo)、最大荧光(Fm)和光系统Ⅱ的最大光化学效率(Fv/Fm)。
1.3.10 成熟期测产和考种 收获前每小区调查所有穗数、空秆率和双穗率,各小区取中间5 m 3行具有代表性的植株考种,实收计产。测量果穗数、穗长、穗粗、秃尖长、穗行数、行粒数、平均每果穗子粒数、平均单个果穗重、百粒重等。
1.4 数据处理与分析
使用Microsoft Excel 2016进行数据处理;使用SPSS 26.0数据处理系统进行统计分析和差异显著性检验,以LSD法检验差异显著性(α=0.05);用Sigmaplot 14.0作图。2 结果
2.1 错株种植和密度对夏玉米产量及其构成因素的影响
由表2可以看出,2个品种产量均表现为S-HD>P-HD>S-LD>P-LD,高密度的产量高于低密度,2年规律一致。在种植模式方面,DH605在HD下2个种植模式处理差异达显著水平,LD下差异不显著;ZD958产量规律也表现为S>P,且差异均达显著水平,2年规律一致。错株种植较对株种植的2年平均产量增幅在LD、HD下分别为3.8%、6.1%,可见错株种植在高密度下增产效应更显著。在千粒重方面,在相同密度下,(除2019年ZD958-LD外)均表现为S>P,在HD下差异达显著水平,LD下差异不显著;在同一种植模式下,除2018年错株处理外,均表现为LD>HD。可以看出千粒重随种植密度的增加而降低,但错株种植显著缓解了高密度带来的负效应,密度与种植模式间存在显著互作效应。在穗粒数方面,在相同种植模式下,穗粒数均表现为LD>HD;在同一密度下,(除2018年ZD958)均表现为S>P,提高了2.7%。Table 2
表2
表2错株种植和密度对夏玉米产量及其构成因素的影响
Table 2
年份 Year | 品种 Maize variety | 密度 Density | 种植模式 Planting pattern | 收获穗数 Harvested ear number (ears/hm2) | 穗粒数 Number of kernels per ear | 千粒重 Thousand kernel weight (g) | 籽粒产量 Yield (kg·hm-2) |
---|---|---|---|---|---|---|---|
2018 | DH605 | LD | P | 65558.8b | 447.2a | 330.8a | 9245.2c |
S | 66670.0b | 467.9a | 334.9a | 10094.8c | |||
HD | P | 82226.3a | 403.3b | 312.8b | 11036.5b | ||
S | 81115.2a | 408.3b | 335.8a | 11916.1a | |||
ZD958 | LD | P | 66670.0b | 494.7a | 316.1ab | 11005.6c | |
S | 67781.2b | 484.2a | 320.6a | 11626.4b | |||
HD | P | 78892.8a | 461.4ab | 312.0b | 11459.8b | ||
S | 82226.3a | 450.9b | 322.4a | 11801.0a | |||
2019 | DH605 | LD | P | 66670.0b | 515.7b | 330.8ab | 11213.5c |
S | 65558.8b | 535.9a | 336.0a | 11229.6c | |||
HD | P | 81115.2a | 486.0c | 321.6b | 11630.0b | ||
S | 83337.5a | 519.1b | 331.8a | 12190.9a | |||
ZD958 | LD | P | 65558.8b | 533.8b | 322.3a | 11150.9c | |
S | 66670.0b | 556.2a | 316.3a | 11786.2b | |||
HD | P | 82226.3a | 511.6c | 293.7b | 11390.1b | ||
S | 80004.0a | 543.5a | 310.9a | 12384.4a | |||
ANOVA | |||||||
年份Year | ns | ** | ns | ** | |||
品种Maize variety | ns | ** | ** | * | |||
密度Density | ** | * | * | ** | |||
种植模式Planting pattern | ns | * | ns | ** | |||
密度×种植模式Density×Planting pattern | ns | ns | ** | * |
新窗口打开|下载CSV
2.2 干物质积累与分配
群体干物质积累量随生育进程的推进呈不断升高的趋势(图2)。群体干物质积累量总体表现为S-HD>P-HD>S-LD>P-LD,2个品种表现一致,DH605、ZD958错株处理较对株分别高3.4%、3.2%。从密度方面来看,各处理的群体干物质积累量均表现为HD>LD。从完熟期各器官的干物质分配情况来看(图3),2个品种籽粒的干物质量占全株总物质量的平均比例(2年)表现为S-LD>P-LD>S-HD>P-HD,DH605分别为51.8%、51.3%、48.0%和48.7%;郑单958分别为49.9%、49.2%、46.4%和45.4%。可以看出,在同一密度下时,籽粒所占比例S>P;在同一种植模式下时,表现为LD>HD。图2

图2错株种植与密度对夏玉米群体干物质积累量的影响
V12:大喇叭口期;VT:开花期;VT+20:花后20天;VT+40:花后40天;VT+60:成熟期。下同
Fig. 2Effect of staggered planting and plant density on dry matter accumulation of summer maize
V12: Male tetrad stage; VT: Flowering stage; VT+20: 20 days after flowering stage; VT+40: 40 days after flowering stage; VT+60: Maturity stage. The same as below
图3

图3错株种植与密度下各器官干物质的分配情况
Fig. 3Distribution of dry matter in different organs under the staggered planting and density
2.3 群体整齐度
群体植株性状的整齐度是反映群体生产力的重要指标之一。从表3来看,穗粒数、干物重、叶面积整齐度均表现为S>P,2个品种表现一致。DH605错株种植2年平均穗粒数、干物质积累量、叶面积整齐度较对株种植高2.9%、1.8%、2.0%,ZD958为4.8%、0.7%、2.6%,错株种植对3种整齐度的影响程度整体表现为穗粒数整齐度>叶面积整齐度>干物重整齐度。从密度方面来看,2018年3种整齐度均表现为LD>HD,但在2019年错株处理下干物重、叶面积整齐度表现为HD>LD,可见错株种植有效提升了高密度下植株的群体整齐度。Table 3
表3
表3错株种植与密度对夏玉米群体整齐度的影响
Table 3
年份 Year | 品种 Maize variety | 密度 Density | 种植模式 Planting pattern | 穗粒数整齐度 Uniformity of harvested ear number | 干物重整齐度 Uniformity of dry matter eight | 叶面积整齐度 Uniformity of leaf area |
---|---|---|---|---|---|---|
2018 | DH605 | LD | P | 95.27ab | 90.43b | 95.09ab |
S | 99.55a | 93.15a | 96.32a | |||
HD | P | 94.61b | 89.73b | 91.80b | ||
S | 95.06ab | 91.11ab | 94.09ab | |||
ZD958 | LD | P | 94.21ab | 91.43ab | 93.47ab | |
S | 98.13a | 93.67a | 95.09s | |||
HD | P | 89.59b | 88.48b | 88.34b | ||
S | 96.82a | 89.87b | 92.87ab | |||
2019 | DH605 | LD | P | 97.94ab | 90.07ab | 92.14a |
S | 99.76a | 90.44ab | 92.55a | |||
HD | P | 94.08b | 89.23b | 90.00a | ||
S | 98.64a | 91.19a | 93.26a | |||
ZD958 | LD | P | 96.49a | 90.06a | 90.88ab | |
S | 99.92a | 90.77a | 94.62a | |||
HD | P | 90.46b | 90.00a | 88.48b | ||
S | 93.54b | 90.81a | 93.65a | |||
ANOVA | ||||||
年份Year | ns | ns | ns | |||
品种Maize variety | * | * | ns | |||
密度Density | ** | ns | * | |||
种植模式Planting pattern | * | * | ** | |||
密度×种植模式Density×Planting pattern | * | ns | * |
新窗口打开|下载CSV
2.4 叶面积指数(LAI)
由图4可见,各处理的叶面积指数均随生育进程的推进,呈现出单峰曲线的变化趋势,在开花期达到最大值,此后LAI逐渐下降。从不同种植模式来看,2018年2个品种错株处理的叶面积指数在各生育时期均显著高于对株种植,DH605的LAI错株较对株高3.4%,ZD958高达7.5%。2019年情况略有不同,LD下DH605叶面积指数在生育期中期显著高于对株种植,HD下在生育期中后期略高于对株种植,差异不显著;LD下ZD958的LAI在开花期及花后20 d时显著高于对株种植,分别高7.3%、11.6%,其他时期与对株种植无明显差异,HD下错株种植的LAI在各生育时期均显著高于对株种植。在同一种植模式下,2个品种LAI均表现为HD>LD。图4

图4错株种植与密度对夏玉米叶面积指数的影响
Fig. 4Effect of staggered planting and plant density on LAI of summer maize
2.5 茎叶夹角
两品种的茎叶夹角均表现为穗位叶>穗位下叶>穗位上叶(图5),DH605穗位下叶、穗位叶、穗位上叶的茎叶夹角平均值分别为22.8°、30.7°、19.7°,ZD958分别为26.1°、34.6°、23.0°。2种植模式间比较,S的茎叶夹角高于P,但差异不显著。表明S有利于释放行上的空间,植株间竞争减弱,叶片较P平展,可截获更多光能。2个密度间比较,LD的茎叶夹角更大。图5

图5错株种植与密度对夏玉米茎叶夹角的影响
不同小写字母在 0.05 水平差异显著。下同
Fig. 5Effects of staggered planting and plant density on angle between stem and leaf of summer maize
Different small letters indicate significant differences at 0.05 level. The same as below
2.6 光能截获率
由图6可以看出,全株光能截获率均表现为花后随生育时期的推进逐渐降低。不同层次光能截获率均呈现上强下弱趋势,不同处理表现一致,在开花期上层光能截获率可达87%(DH605)和81.1%(ZD958)。在同一密度下,上层光能截获率均表现为S高于P,全株光能截获率与上层表现一致;在同一种植模式下,全株与上层光能截获率表现为HD>LD。各处理对下层光能截获率的影响无明显规律。分析比较花后40 d较开花期的降幅可发现,2个品种的上层光能截获率的降幅均表现为S的植株光能截获率降幅更低,可见S更有利于光能截获率的保持。图6

图6错株种植与密度对夏玉米光能截获率的影响
Fig. 6Effects of staggered planting and plant density on light energy capture ratio of summer maize
2.7 净光合速率(Pn)
如图7所示,净光合速率在花后随生育进程推进而降低。相同密度下,S净光合速率均一定程度上高于P,S较P平均高8.5%。分析比较花后40 d和开花期的降幅可见,DH605表现为P-HD>S-HD>S-LD>P-LD,ZD958表现为P-LD>S-HD>P-HD>S-LD。在相同密度下,除DH605-LD处理外,花后40 d净光合速率降幅均表现为P>S,说明S的植株净光合速率降低更为缓慢,S更有利于植株净光合速率的保持。同一种植模式下,净光合速率表现为LD>HD。DH605错株较对株提高6.7%(LD)、10%(HD),ZD958分别提高8.1%和10.5%。图7

图7错株种植与密度对夏玉米Pn的影响
Fig. 7Effect of staggered planting and plant density on leaf net photosynthetic rate of summer maize
2.8 光合关键酶活性
Rubisco、PEPC酶活性在花后20 d时较开花期整体降低(图8)。在同一密度下,2种光合关键酶活性均表现为S高于P,2个品种表现一致。在相同种植模式下,酶活性表现为LD>HD。从花后20 d酶活性的降幅可以发现,PEPC酶活性降幅均表现为S<P,LD<HD,2个品种表现一致;Rubisco酶活性降幅2个品种间规律不太一致,但能看出在高密度条件下降低速率较大,S能在一定程度上缓解Rubisco活性的降低。图8

图8错株种植与密度对夏玉米光合关键酶活性的影响
Fig. 8Effect of staggered planting and plant density on photosynthetic key enzyme activity of summer maize
2.9 叶绿素含量
叶绿素含量在花后随生育进程的推进呈逐渐下降的趋势(图9)。在种植模式方面分析可发现,S的植株叶绿素含量在各时期均较P有不同程度的提高,2个品种表现一致,S较P平均提高4.5%(DH605)和6.9%(ZD958)。且S下叶绿素含量在生育后期的降幅均较P小,减小2.0%—7.0%。从密度方面来看,在同一种植模式下,2个品种叶绿素平均含量在开花期及花后20 d时均表现为LD>HD;在花后40 d时,2个密度间无显著差异。图9

图9错株种植与密度对夏玉米叶绿素含量的影响
Fig. 9Effects of staggered planting and plant density on chlorophyll content of summer maize
2.10 PSⅡ最大光化学效率
如图10所示,Fv/Fm(PSⅡ最大光化学效率)在花后20 d时较开花期整体降低。2个品种Fv/Fm均表现为在同一密度下,S>P。DH605错株种植下的Fv/Fm较对株种植平均提高了0.9%(LD)和2.3%(HD),总增幅为1.6%;ZD958的Fv/Fm错株种植处理较对株提高了0.4%(LD)和2.5%(HD),平均提高了1.4%。可以看出S对Fv/Fm的影响在高密度下更为突出。在相同种植模式下,表现为LD>HD。通过分析2个时期Fv/Fm的降幅可以发现,DH605表现为P-LD>S-LD≈S-HD>P-HD,ZD958所呈规律为P-HD>S-LD>P-LD>S-HD,表明S在很大程度上缓解了Fv/Fm的降低。图10

图10错株种植与密度对夏玉米PSⅡ最大光化学效率(Fv/Fm)的影响
Fig. 10Effects of staggered planting and plant density on the maximum photochemical efficiency in the dark-adapted state (Fv/Fm) of summer maize
3 讨论
3.1 错株种植与密度对夏玉米产量及其构成因素的影响
密度是影响玉米产量的关键因素,玉米群体产量取决于群体个数,产量随密度的增加呈抛物线型的关系,即在一定密度范围内产量与密度呈正相关关系,当达到一定的密度后随着密度的增大,产量开始下降,这可能是高密度条件下,籽粒所占总干物质产量下降[23,24,25]。本试验结果表明,在同一种植模式下,完熟期雌穗的干物质量占全株比例在高密度下较低。合理密植是获得高产的重要栽培措施,但在高密度条件下植株个体间竞争激烈,许多研究表明,通过改变种植模式来削弱密度过大对植株产生的负面作用是切实可行的,适宜的群体分布可使群体表现出较高的生产力,从而获得较好的产量[4,13,26]。前人研究发现,玉米产量同群体整齐度之间有显著的相关关系[25]。杨利华等[3]研究发现,玉米植株在田间的排布方式对整齐度作用显著。本研究表明,同一密度下时,错株种植的群体整齐度均高于对株种植,且错株种植可协同高密度显著提高玉米群体的整齐度。吴雪梅[26]认为相邻行植株间的位置对产量影响明显,错株种植增产4.88%左右。张永科等[13]研究表明,高密度下缩行扩株辅以错株种植较普通种植模式实际增产率可达8.4%—33.3%,增产效果显著。范厚明等[4]研究不同种植模式对玉米生长发育和产量的影响发现,密度为59 550株/hm2,宽窄行双行单株错位定向移植比等行距单株移植增产显著。本试验条件下,群体数量的增多能带来显著的增产效应,高密度较低密度增产4.9%—10.1%。错株种植较传统种植模式具有明显优势,而且在高低密度下均有增产效果,产量增幅为3.8%(低密度)、6.1%(高密度),在高密度下的增产效果更优,错株种植模式产量的提升主要归因于千粒重和穗粒数的增加。3.2 错株种植与密度对夏玉米光分布及光能截获的影响
种植模式对冠层进行调控,是通过调整植株在田间的空间分布来实现的,这种调控方法是实现协同高密度增产的重要措施之一。在高密度条件下,通过调整种植模式来让植株个体在田间分布更为合理,可以显著优化作物的群体冠层结构,减弱植株个体间对资源的竞争,从而达到增产的目的。吴霞等[18]研究表明,植株不同的行间排布方式能显著调节玉米的冠层植株形态结构,大小行错株种植减小了穗下叶茎叶夹角1.9°—2.5°,优化了平展型植株的株型。本试验的结果显示,在同密度下等行距错株种植的茎叶夹角均较对株种植大,但差异不显著。随着密度的增加,植株间竞争更加激烈,叶片会上举来争夺光温资源,错株种植削弱了植株间的竞争,叶片较对株更平展,错株种植更为平展的株型使玉米光合面积增大,潜在光能截获率增大,地面光透射损失减少。光能截获率对作物群体的干物质生产有直接影响,提升作物冠层的有效光截获率对增产有重要意义。冠层结构由群体数量、个体分布的几何形态和空间散布等方面性状组成,玉米的品种、栽培方式、密度等均对玉米群体冠层结构有调控作用,其中密度对冠层结构的影响较其他因素更显著[14,27-28]。冠层的光能截获率和密度呈正相关关系,表现出与LAI相一致的规律[29]。本试验结果表明,增加种植密度可使冠层较早封闭,冠层的光截获率较低密度条件下显著提高。光能的充分截获提高了光能利用率,尤其在产量形成的关键生育后期,充足的光照条件有助于避免后期叶片早衰,保证籽粒的充分灌浆和成熟。下层光能截获率处理间差异不显著,上层光能截获各处理均表现为错株种植大于对株种植(同密度条件下),全株光能截获率与上层表现一致。比较生育后期光能截获率的降幅可发现,错株种植降幅更低,表明错株种植模式的光能截获率的维持能力更强,为后期光合作用的进行创造有利条件。
3.3 错株种植与密度对夏玉米光合特性的影响
胡昌浩等[9]研究发现,随种植密度的增加,玉米的群体光合速率提高,但在不同的生育时期,密度对群体光合作用的影响程度不同,随着生育进程的推进,密度对群体光合作用的影响逐渐减弱。不同种植模式的植株具有不同的空间排布,对玉米的光合特性有着显著影响[30,31,32]。卫丽等[20]研究表明,行间植株错位的三角留苗种植方式下的光合性能高于传统留苗方式。本试验结果表明,在同一种植模式下,2个品种Pn、PEPC酶活性、Rubisco酶活性、Fv/Fm和叶绿素含量均表现为低密度>高密度。其中Rubisco和PEPC酶活性在高密度下随生育期推进下降幅度更大,可以看出增密会使叶片衰老速率增大,不利于植株的光合作用。在相同密度条件下,Pn、PEPC酶活性、Rubisco酶活性、Fv/Fm及叶绿素含量均表现为错株>对株。比较生育后期较开花期的降幅可发现,2个品种Pn、光合关键酶活性和叶绿素含量在高密度下的降幅均表现为错株<对株,在低密度下无明显规律。叶绿素是捕获光能、同化CO2的主要色素,叶绿素含量的高低反映了叶片光合作用的强弱,在一定范围内,叶绿素含量越高,光合作用越强[33]。姚万山等[34]研究高产群体时认为,延长吐丝后30 d绿叶的持续期是高产的保证。由此可见,错株种植可增强植株的光合性能,净光合速率有所提高,延缓了植株的衰老,有利于光合性能的保持,而且在82 500株/hm2密度下促进作用更显著。4 结论
错株种植对夏玉米干物质积累及其光合特性有显著影响,错株种植相比对株种植能显著改善群体冠层结构,优化群体的光照条件,提高了群体的光能截获率,增强其光合性能及物质生产能力并且延长了其功能期。群体数量是玉米高产的前提,错株种植既保证了群体的数量,同时削弱了群体内个体植株间对光温资源的竞争。在相同群体数量条件下,错株种植的冠层结构较对株种植更为合理,对夏玉米干物质积累及光合特性起到良好的促进作用。在本试验条件下,综合分析认为82 500株/hm2密度条件下,采用错株种植可充分利用黄淮海区域光温资源,进一步提高夏玉米产量,是一种增密栽培下较为合理的种植模式。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
DOI:10.3724/SP.J.1006.2012.00080URL [本文引用: 1]

Maize high-yield potential and small-area super-high yield research in different areas were conducted in 2006–2010. The geographical distribution, yield components and key culture techniques of 159 maize super-high yield plots with yield of ≥15 000 kg ha-1 were analyzed comprehensively. Results showed that: (1) most high-yield plots distributed in higher latitude (40°–43°N) and higher elevation regions (1 000–1 500 m) with abundant sunlight and higher temperature in the daytime and lower temperature in the nighttime which were the primary factors affected super-high yield; (2) the yield structure was 88 950 ears ha-1, 541 kernels per ear, 360.0 g per 1000-kernel, 191.8 g per ear, and the average yield was 16 692 kg ha-1;the ear and kernel numbers among yield components were correlated significantly with yield; (3) the key culture techniques for maize high-yield was selecting high density tolerant maize cultivar combined with reasonable dense planting, abundant water and fertilizer supply, scientific management, and film mulching.
DOI:10.3724/SP.J.1006.2012.00080URL [本文引用: 1]

Maize high-yield potential and small-area super-high yield research in different areas were conducted in 2006–2010. The geographical distribution, yield components and key culture techniques of 159 maize super-high yield plots with yield of ≥15 000 kg ha-1 were analyzed comprehensively. Results showed that: (1) most high-yield plots distributed in higher latitude (40°–43°N) and higher elevation regions (1 000–1 500 m) with abundant sunlight and higher temperature in the daytime and lower temperature in the nighttime which were the primary factors affected super-high yield; (2) the yield structure was 88 950 ears ha-1, 541 kernels per ear, 360.0 g per 1000-kernel, 191.8 g per ear, and the average yield was 16 692 kg ha-1;the ear and kernel numbers among yield components were correlated significantly with yield; (3) the key culture techniques for maize high-yield was selecting high density tolerant maize cultivar combined with reasonable dense planting, abundant water and fertilizer supply, scientific management, and film mulching.
URL [本文引用: 2]

Zhengdan 958 was used as materials to study on the Yield of corn under the different density and the row spacing, the results showed that: The different row spacing and the different density and their interaction make the output to have the very significant differences, Moderately increase the density can increase production,It has falling trend of the yield when expending the row spacing, The yield of erectophile type corn was not only related to planting density but also to the methods of cultivation.
URL [本文引用: 2]

Zhengdan 958 was used as materials to study on the Yield of corn under the different density and the row spacing, the results showed that: The different row spacing and the different density and their interaction make the output to have the very significant differences, Moderately increase the density can increase production,It has falling trend of the yield when expending the row spacing, The yield of erectophile type corn was not only related to planting density but also to the methods of cultivation.
[本文引用: 2]
[本文引用: 2]
[本文引用: 3]
[本文引用: 3]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
URL [本文引用: 1]
URL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
URL [本文引用: 2]

The present study was carried out during 1989-1990 to investigate the relationship between the canopy apparent photosynthesis(CAP) rate and grainyield of two high-yielding summer corn cultivars at five different sowing densities. The results are as follows. The CAP rate of summer corn showed a
URL [本文引用: 2]

The present study was carried out during 1989-1990 to investigate the relationship between the canopy apparent photosynthesis(CAP) rate and grainyield of two high-yielding summer corn cultivars at five different sowing densities. The results are as follows. The CAP rate of summer corn showed a
[本文引用: 1]
[本文引用: 1]
DOI:10.5846/stxb201305020885URL [本文引用: 1]

为探明种植方式和密度对玉米光合特征及产量的影响,以郑单958为材料,在不同种植密度水平(67500 株/hm2和82500 株/hm2)下,以常规等行距种植方式为对照,设置3种不同缩行宽带种植方式(三行一带、四行一带、五行一带)进行比较研究。结果表明:与对照相比,无论高密度还是中等密度下,各缩行宽带种植方式均使玉米穗位上第1叶茎叶夹角显著减小,其中中三行一带种植方式穗位上两叶叶夹角值均最小;各缩行宽带种植方式光合速率(Pn)均不同程度高于对照,子粒产量显著增加,其中三行一带、四行一带、五行一带种植方式分别比对照增加16.7%、6.1% 、10.7% (2011年)和17.2%、12.1%、10.6%(2012年)。所有处理中,三行一带种植方式高密度处理2011年和2012年籽粒产量均最高,因此可推荐为黄淮海夏玉米高产高效种植新方式。
DOI:10.5846/stxb201305020885URL [本文引用: 1]

为探明种植方式和密度对玉米光合特征及产量的影响,以郑单958为材料,在不同种植密度水平(67500 株/hm2和82500 株/hm2)下,以常规等行距种植方式为对照,设置3种不同缩行宽带种植方式(三行一带、四行一带、五行一带)进行比较研究。结果表明:与对照相比,无论高密度还是中等密度下,各缩行宽带种植方式均使玉米穗位上第1叶茎叶夹角显著减小,其中中三行一带种植方式穗位上两叶叶夹角值均最小;各缩行宽带种植方式光合速率(Pn)均不同程度高于对照,子粒产量显著增加,其中三行一带、四行一带、五行一带种植方式分别比对照增加16.7%、6.1% 、10.7% (2011年)和17.2%、12.1%、10.6%(2012年)。所有处理中,三行一带种植方式高密度处理2011年和2012年籽粒产量均最高,因此可推荐为黄淮海夏玉米高产高效种植新方式。
[本文引用: 1]
[本文引用: 1]
[本文引用: 4]
[本文引用: 4]
[本文引用: 2]
[本文引用: 2]
[本文引用: 1]
[本文引用: 1]
DOI:10.2134/agronj2000.923524xURL [本文引用: 1]
DOI:10.1016/S0378-4290(01)00158-7URL [本文引用: 1]
[本文引用: 2]
[本文引用: 2]
URL [本文引用: 2]

以郑单958为试验材料,采用三种种植方式比较其干物质积累动态变化,探索“双行交错”种植方式玉米增产机理.结果表明:“双行交错”种植方式玉米根的数量和干物重明显提高,茎秆粗壮.播种50 d后“双行交错”种植方式的玉米群体干物质积累比“双行平行”和“单行等距平行”的分别高25%~40%和60%~80%.结论是:“双行交错”种植方式玉米可合理地协调密度增加后群体和个体之间的矛盾,是目前我国玉米栽培历史上的一次革命,为我国玉米栽培上继续增加密度、获得高产创出了一条崭新途径.
URL [本文引用: 2]

以郑单958为试验材料,采用三种种植方式比较其干物质积累动态变化,探索“双行交错”种植方式玉米增产机理.结果表明:“双行交错”种植方式玉米根的数量和干物重明显提高,茎秆粗壮.播种50 d后“双行交错”种植方式的玉米群体干物质积累比“双行平行”和“单行等距平行”的分别高25%~40%和60%~80%.结论是:“双行交错”种植方式玉米可合理地协调密度增加后群体和个体之间的矛盾,是目前我国玉米栽培历史上的一次革命,为我国玉米栽培上继续增加密度、获得高产创出了一条崭新途径.
URL [本文引用: 3]

大田试验以夏玉米为试料,采用裂裂区试验设计,密度设计包含75000、90000\,105000株/hm2 3个密度作为主区,每个密度处理包括: ①等行距60 cm×单株留苗,②等行距60 cm×双株三角留苗,③宽窄行距(宽行70 cm + 窄行距50 cm)×单株留苗和 ④宽窄行距×双株三角留苗共12种方式进行处理,测定光合及叶绿素荧光参数。研究不同群体结构对夏玉米灌浆期群体光合特性的影响。结果表明,在吐丝期,随着种植密度的增加,群体光合速率提高;蜡熟期以90000株/hm2最高,种植方式上表现为宽窄行大于等行距种植,双株留苗种植方式大于单株种植方式,差异均达到显著水平;随着种植密度的提高,群体内3个层次叶片最大光能转换效率(Fv/Fm)、光化学猝灭系数(qP)逐渐降低,种植方式基本表现为宽窄行大于等行距,留苗方式表现为双株大于单株。试验条件下,以90000株/hm2,宽窄行,双株三角留苗产量最高。
URL [本文引用: 3]

大田试验以夏玉米为试料,采用裂裂区试验设计,密度设计包含75000、90000\,105000株/hm2 3个密度作为主区,每个密度处理包括: ①等行距60 cm×单株留苗,②等行距60 cm×双株三角留苗,③宽窄行距(宽行70 cm + 窄行距50 cm)×单株留苗和 ④宽窄行距×双株三角留苗共12种方式进行处理,测定光合及叶绿素荧光参数。研究不同群体结构对夏玉米灌浆期群体光合特性的影响。结果表明,在吐丝期,随着种植密度的增加,群体光合速率提高;蜡熟期以90000株/hm2最高,种植方式上表现为宽窄行大于等行距种植,双株留苗种植方式大于单株种植方式,差异均达到显著水平;随着种植密度的提高,群体内3个层次叶片最大光能转换效率(Fv/Fm)、光化学猝灭系数(qP)逐渐降低,种植方式基本表现为宽窄行大于等行距,留苗方式表现为双株大于单株。试验条件下,以90000株/hm2,宽窄行,双株三角留苗产量最高。
URL [本文引用: 1]

采用随机区组试验,研究了不同密度对紧凑型品种农大486群体结构的影响.结果表明,随着密度的增加,群体的最大叶面积指数增加,但增加到一定值后,其增加幅度逐渐减小.随密度越大,群体内光的分布越不均匀,且在中部影响最大;随着密度的增加,光合势和叶面积衰亡速率逐渐增加,抽雄-成熟净同化率逐渐降低;随着密度的增加,群体干物质积累增加,但随密度的增加,干物质增加速率逐渐变小.
URL [本文引用: 1]

采用随机区组试验,研究了不同密度对紧凑型品种农大486群体结构的影响.结果表明,随着密度的增加,群体的最大叶面积指数增加,但增加到一定值后,其增加幅度逐渐减小.随密度越大,群体内光的分布越不均匀,且在中部影响最大;随着密度的增加,光合势和叶面积衰亡速率逐渐增加,抽雄-成熟净同化率逐渐降低;随着密度的增加,群体干物质积累增加,但随密度的增加,干物质增加速率逐渐变小.
[本文引用: 1]
[本文引用: 1]
DOI:10.3724/SP.J.1006.2011.01301URL [本文引用: 1]

选用玉米品种登海661和农大108,设置不同种植密度,研究高产条件下种植密度对夏玉米产量及干物质积累与分配的影响。结果表明,种植密度增加后群体产量和干物质积累量显著增加,单株产量和干物质积累量反之。登海661在9万株 hm-2时充分发挥了生长潜能,可获高产。随种植密度的增加,开花期和乳熟期茎秆干物质积累量的降幅大于叶片,主要影响茎秆干物质积累;成熟期茎秆干物质积累量降幅小于叶片,主要影响叶片干物质积累。乳熟期以后茎秆和叶片的干物质输出率均随种植密度增加显著减少,茎秆的贡献率随种植密度增加显著减少,而叶片的贡献率,随种植密度增加显著增加。密度3~9万株 hm-2时茎秆对籽粒干物质积累量贡献率大,10.5~13.5万株 hm-2时叶片对籽粒库建成影响大。
DOI:10.3724/SP.J.1006.2011.01301URL [本文引用: 1]

选用玉米品种登海661和农大108,设置不同种植密度,研究高产条件下种植密度对夏玉米产量及干物质积累与分配的影响。结果表明,种植密度增加后群体产量和干物质积累量显著增加,单株产量和干物质积累量反之。登海661在9万株 hm-2时充分发挥了生长潜能,可获高产。随种植密度的增加,开花期和乳熟期茎秆干物质积累量的降幅大于叶片,主要影响茎秆干物质积累;成熟期茎秆干物质积累量降幅小于叶片,主要影响叶片干物质积累。乳熟期以后茎秆和叶片的干物质输出率均随种植密度增加显著减少,茎秆的贡献率随种植密度增加显著减少,而叶片的贡献率,随种植密度增加显著增加。密度3~9万株 hm-2时茎秆对籽粒干物质积累量贡献率大,10.5~13.5万株 hm-2时叶片对籽粒库建成影响大。
DOI:10.3724/SP.J.1006.2010.01153URL [本文引用: 1]

Plant density has been recognized as a major factor determining the grain yield. The photosynthetic performance changes as the density increases. The main objective of this research was to evaluate the response of the photosynthetic performance to planting densities in different hybrids of maize (Zea mays L.). Field experiments were conducted in Gongzhuling, Jilin province. Three corn hybrids were cultivated at 60 000 plants ha-1, 75 000 plants ha-1, 90 000 plants ha-1 and 105000 plants ha-1. Treatments were arranged in a split-plot design with three replications. Plant population density was the main-plot and hybrids the subplot. The results indicated that leaf area index (LAI), leaf area duration (LAD), mean leaf area index (MLAI), ear number m-2(EN) increased and net assimilation rate (NAR), harvest index (HI), grains per ear (GN), grain weight (GW) decreased in all hybrids as plant density intensified, as a result, the assimilate transmission rate reduced, the leaf senescence accelerated, physiological activity declined. During the growth period, the changes of LAI, LAD showed a single peak curve. The peak of LAI appeared at silking, the peak of chlorophyll content appeared at grain filling and peak of high value duration of LAD appeared from full-grown to milky maturity. The peak of NAR appeared from seeding stage to jointing and from silking to grain filling respectively. The photosynthetic characteristics were different in plant density treatments. The highest grain yield of Xianyu 335, Zhengdan 958, Jidan 209 was obtained in the treatments of 90 000 plants ha-1, 75 000 plants ha-1, 90 000 plants ha-1 respectively. Kernel yield per plant decreased in all hybrids as plant density intensified. The density-tolerance of hybrids was Xianyu335>Zhengdan958>Jidan209. The suitable planting density range was 90 000–105 000 plants ha-1 for Xianyu 335, and 75 000–90 000 plants ha-1 for Zhengdan 958 and Jidan 209.
DOI:10.3724/SP.J.1006.2010.01153URL [本文引用: 1]

Plant density has been recognized as a major factor determining the grain yield. The photosynthetic performance changes as the density increases. The main objective of this research was to evaluate the response of the photosynthetic performance to planting densities in different hybrids of maize (Zea mays L.). Field experiments were conducted in Gongzhuling, Jilin province. Three corn hybrids were cultivated at 60 000 plants ha-1, 75 000 plants ha-1, 90 000 plants ha-1 and 105000 plants ha-1. Treatments were arranged in a split-plot design with three replications. Plant population density was the main-plot and hybrids the subplot. The results indicated that leaf area index (LAI), leaf area duration (LAD), mean leaf area index (MLAI), ear number m-2(EN) increased and net assimilation rate (NAR), harvest index (HI), grains per ear (GN), grain weight (GW) decreased in all hybrids as plant density intensified, as a result, the assimilate transmission rate reduced, the leaf senescence accelerated, physiological activity declined. During the growth period, the changes of LAI, LAD showed a single peak curve. The peak of LAI appeared at silking, the peak of chlorophyll content appeared at grain filling and peak of high value duration of LAD appeared from full-grown to milky maturity. The peak of NAR appeared from seeding stage to jointing and from silking to grain filling respectively. The photosynthetic characteristics were different in plant density treatments. The highest grain yield of Xianyu 335, Zhengdan 958, Jidan 209 was obtained in the treatments of 90 000 plants ha-1, 75 000 plants ha-1, 90 000 plants ha-1 respectively. Kernel yield per plant decreased in all hybrids as plant density intensified. The density-tolerance of hybrids was Xianyu335>Zhengdan958>Jidan209. The suitable planting density range was 90 000–105 000 plants ha-1 for Xianyu 335, and 75 000–90 000 plants ha-1 for Zhengdan 958 and Jidan 209.
[本文引用: 2]
[本文引用: 2]
[D].
[本文引用: 2]
[D].
[本文引用: 2]
DOI:10.3321/j.issn:1000-7091.1990.03.004URL [本文引用: 1]

The length and spatial distribution of leaves of the compact-type maize on the stem forms the shape of a "spindle". In comparison with the spread-type maize, the compact-type has a smaller leaf angle, greater leaf orientation value, better light-reception posture, higher rate of CO2 assimilation, stronger root absorption intensity, and higher activity of the nitrate reductase. It also has the following advantages, vigorous nitrogen metabolism, no early senescence in the later growing stage, fast grain-filling rates, high grain weight, high productivity per plant, and suitability for intensive planting.Selection and extension of the compact-type maize hybrids possessing high photosynthetic efficiency will be the main approach to the higher production of maize.
DOI:10.3321/j.issn:1000-7091.1990.03.004URL [本文引用: 1]

The length and spatial distribution of leaves of the compact-type maize on the stem forms the shape of a "spindle". In comparison with the spread-type maize, the compact-type has a smaller leaf angle, greater leaf orientation value, better light-reception posture, higher rate of CO2 assimilation, stronger root absorption intensity, and higher activity of the nitrate reductase. It also has the following advantages, vigorous nitrogen metabolism, no early senescence in the later growing stage, fast grain-filling rates, high grain weight, high productivity per plant, and suitability for intensive planting.Selection and extension of the compact-type maize hybrids possessing high photosynthetic efficiency will be the main approach to the higher production of maize.
DOI:10.2135/cropsci1986.0011183X002600050007xURL [本文引用: 1]
DOI:10.3724/SP.J.1006.2008.00447URL [本文引用: 1]

Canopy structure has strong effects on photosynthesis and grain yield in maize (Zea mays L.). Planting density is one of the most important factors that can regulate canopy structure. Many researches have shown that leaf area index (LAI) and leaf area duration (LAD) increase accordantly with the proper increase of planting density, but the percent transmission decreases sharply under excessive high density, resulting in uneven light distribution within canopy and photosynthesis reduction. We need to know which proper planting densities for cultivars lead to little influence on photosynthesis and higher grain yield in summer maize. However, so far few reports on this topic have been found and no quantitative criteria can be used in evaluating canopy structure of different maize cultivars. Therefore, we conducted an experiment with three cultivars and three planting densities in the field having medium soil fertility and application of 180 kg N ha-1 in Wuqiao Experimental Station (37°41′02″N,116°37′23″E) of China Agricultural University in 2006 to establish such quantitative criteria for high yielding cultivars in North China Plain. The split plot design was employed with main plot of plant density (low, medium, and high respectively), sub-plot of cultivar (CF008, Zhengdan 958, and Jinhai 5 respectively), and three replicates in each sup-plot. According to plant type, the densities of three cultivars were 9.75×104 (low), 11.25×104 (medium), and 12.45×104 (high) plants ha-1 for CF008; 8.25×104 (low), 9.75×104 (medium), and 11.25×104 (high) plants ha-1 for Zhengdan 958; and 6.75×104 (low), 8.25×104 (medium), and 9.75×104 (high) plants ha-1 for Jinhai 5. The high-yielding canopy structure and photosynthesis were obtained under both low and medium densities of the three cultivars. Percent transmission, leaf angle, and stem diameter decreased with the increase of plant density. The chlorophyll relative content (SPAD) and the rate of net photosynthesis rate (Pn) were the smallest under high density because of the uneven light distribution within canopy. For CF008, SPAD value of ear leaf and the third leaf under ear decreased sharply in later growth stages. LAD and LAI values before mid-filling stage were greater under medium or high densities, while different tendency occurred in the maturity stages. Moreover, the proportion of after-silking LAD was greater under low or medium densities, showing that canopy structure was unsuitable under high density due to early senescence. For Zhengdan 958 and Jinhai 5, LAD after silking was greater than that before silking, which was benefit for high grain yield. Our results confirmed that proper planting density can establish high-yielding canopy structure and improve population photosynthesis and yield in maize. We also obtained a series quantitative criteria for high-yielding canopy structure based on the data from Wuqiao area: percent transmission of 13.4%–19.45% in silking stage and 16.19%–21.48% in mid-filling stage under low or medium densities; LAI of 5.59–6.75 in silking stage and 2.24–3.68 in maturity stage, especially highen in middle and upper leaf layers in maturity stage under low or medium densities; Pn of 33.6–43.8 μmol CO2 m-2 s-1 in middle and upper layer leaves in silking stage under low or medium densities; higher LAD after silking under low or medium densities, with 172.01–235.91 m2 d m-2 under medium density.
DOI:10.3724/SP.J.1006.2008.00447URL [本文引用: 1]

Canopy structure has strong effects on photosynthesis and grain yield in maize (Zea mays L.). Planting density is one of the most important factors that can regulate canopy structure. Many researches have shown that leaf area index (LAI) and leaf area duration (LAD) increase accordantly with the proper increase of planting density, but the percent transmission decreases sharply under excessive high density, resulting in uneven light distribution within canopy and photosynthesis reduction. We need to know which proper planting densities for cultivars lead to little influence on photosynthesis and higher grain yield in summer maize. However, so far few reports on this topic have been found and no quantitative criteria can be used in evaluating canopy structure of different maize cultivars. Therefore, we conducted an experiment with three cultivars and three planting densities in the field having medium soil fertility and application of 180 kg N ha-1 in Wuqiao Experimental Station (37°41′02″N,116°37′23″E) of China Agricultural University in 2006 to establish such quantitative criteria for high yielding cultivars in North China Plain. The split plot design was employed with main plot of plant density (low, medium, and high respectively), sub-plot of cultivar (CF008, Zhengdan 958, and Jinhai 5 respectively), and three replicates in each sup-plot. According to plant type, the densities of three cultivars were 9.75×104 (low), 11.25×104 (medium), and 12.45×104 (high) plants ha-1 for CF008; 8.25×104 (low), 9.75×104 (medium), and 11.25×104 (high) plants ha-1 for Zhengdan 958; and 6.75×104 (low), 8.25×104 (medium), and 9.75×104 (high) plants ha-1 for Jinhai 5. The high-yielding canopy structure and photosynthesis were obtained under both low and medium densities of the three cultivars. Percent transmission, leaf angle, and stem diameter decreased with the increase of plant density. The chlorophyll relative content (SPAD) and the rate of net photosynthesis rate (Pn) were the smallest under high density because of the uneven light distribution within canopy. For CF008, SPAD value of ear leaf and the third leaf under ear decreased sharply in later growth stages. LAD and LAI values before mid-filling stage were greater under medium or high densities, while different tendency occurred in the maturity stages. Moreover, the proportion of after-silking LAD was greater under low or medium densities, showing that canopy structure was unsuitable under high density due to early senescence. For Zhengdan 958 and Jinhai 5, LAD after silking was greater than that before silking, which was benefit for high grain yield. Our results confirmed that proper planting density can establish high-yielding canopy structure and improve population photosynthesis and yield in maize. We also obtained a series quantitative criteria for high-yielding canopy structure based on the data from Wuqiao area: percent transmission of 13.4%–19.45% in silking stage and 16.19%–21.48% in mid-filling stage under low or medium densities; LAI of 5.59–6.75 in silking stage and 2.24–3.68 in maturity stage, especially highen in middle and upper leaf layers in maturity stage under low or medium densities; Pn of 33.6–43.8 μmol CO2 m-2 s-1 in middle and upper layer leaves in silking stage under low or medium densities; higher LAD after silking under low or medium densities, with 172.01–235.91 m2 d m-2 under medium density.
[本文引用: 1]
[本文引用: 1]
[D].
[本文引用: 1]
[D].
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]