删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

长江中下游冬油菜产区有机无机肥配施下减氮增效潜力分析

本站小编 Free考研考试/2021-12-26

蒋倩红,, 陆志峰, 赵海燕, 郭俊杰, 刘文波, 凌宁,, 郭世伟南京农业大学资源与环境科学学院/江苏省固体有机废弃物资源化研究重点实验室,南京210095

Potential Analysis of Reducing Chemical Nitrogen Inputs While Increasing Efficiency by Organic-Inorganic Fertilization in Winter Rapeseed Producing Areas of the Middle and Lower Reaches of the Yangtze River

JIANG QianHong,, LU ZhiFeng, ZHAO HaiYan, GUO JunJie, LIU WenBo, LING Ning,, GUO ShiWei1College of Resources and Environmental Sciences, Nanjing Agricultural University /Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing 210095

通讯作者: 凌宁,E-mail:nling@njau.edu.cn

责任编辑: 李云霞
收稿日期:2019-09-12接受日期:2019-11-6网络出版日期:2020-07-16
基金资助:国家重点研发计划.2018YFD0200900


Received:2019-09-12Accepted:2019-11-6Online:2020-07-16
作者简介 About authors
蒋倩红,E-mail:2018803199@njau.edu.cn









摘要
【目的】评估长江中下游冬油菜主产区化肥减施增效的潜力与区域适宜性,为该区域油菜产业减肥增效提供科学依据。【方法】于2018年在江苏(高淳)、湖南(安仁)、湖北(沙洋)、安徽(休宁和当涂)四省(共5个地点)布置以有机肥(M)用量(0、2 250 kg·hm-2)和施氮(N)水平(0、90、135、180、225、270 kg·hm-2)为控制因素的冬油菜田间试验,分析有机无机肥配施对油菜产量、化学氮肥利用率和经济效益的影响,并评估不同区域冬油菜最佳产量和施肥效益下适宜的有机无机配施技术模式及其减肥潜力。【结果】相比于单施化肥,增施有机肥显著提升油菜产量,增产幅度达7.7%—43.3%。以最高产量为目标,各试验点在增施有机肥的基础上推荐化肥氮施用量分别为:高淳195 kg·hm-2,安仁199 kg·hm-2,沙洋195 kg·hm-2,休宁179 kg·hm-2,当涂185 kg·hm-2。通过模型拟合发现各试验点达到单施化肥最高产量时,有机肥施用可替代26.7%—45.9%的化肥氮投入,且随着土壤基础肥力提高,化肥氮减施潜力增加。不同有机肥用量下,油菜化学氮肥利用率均随施氮量的增加呈下降趋势,但有机无机配施能够有效提高各氮肥梯度下油菜的化学氮肥偏生产力和农学效率,各试验点化学氮肥偏生产力增幅为24.4%—53.0%,化学氮肥农学利用效率增幅为26.3%—89.9%。与不施氮处理(N0)相比,安仁、休宁和当涂试验点在施用180 kg N·hm-2并配施有机肥处理下增收效益最大,依次为8 915、10 358和6 569元/hm2;而高淳和沙洋试验点在单施化肥(225 kg N·hm-2)处理下增收效益最大,分别为11 252、8 500元/hm2。【结论】长江中下游部分冬油菜产区采用有机无机肥配施技术可实现减化肥氮26.7%—45.9%的同时提高籽粒产量、化学氮肥利用率及氮肥或有机肥增收效益,实现减氮增效。
关键词: 冬油菜;有机无机肥配施;最佳化肥氮用量;减氮潜力;长江中下游地区

Abstract
【Objective】In order to provide a scientific basis for reducing chemical nitrogen (N) inputs and improving N efficiency in the rapeseed production, the reduction potential of chemical fertilizer and regional suitability was evaluated in winter rapeseed producing areas along the middle and lower reaches of the Yangtze River. 【Method】To analyze the effects of organic and inorganic fertilizer on yield and chemical N fertilizer use efficiency of rapeseed, the experiments were set up in Gaochun, Anren, Shayang, Xiuning and Dangtu across in 4 provinces in 2018, which consisted of two factors, including manure dosages (0, and 2 250 kg·hm-2) and nitrogen application rates (0, 90, 135, 180, 225, and 270 kg·hm-2). In total, 12 treatments were contained in all field experiments. Meanwhile, the optimal chemical nitrogen rates for winter rapeseed were evaluated in different regions under the optimal yield and fertilization benefit. 【Result】Compared with only application of chemical fertilizer, applying organic fertilizer could significantly increase the yield of rapeseed by 7.7% to 43.3%. With the target to the highest yield under the application of organic fertilizer, the recommended chemical N fertilizers rates were: 195, 199, 195, 179 and 185 kg·hm-2 in Gaochun, Anren, Shayang, Xiuning and Dangtu, respectively. 26.7%-45.9% of chemical N could be replaced by organic fertilizer to maintain the same highest yield at each site. Moreover, as the soil fertility was better, the substitution rate on chemical N by organic fertilizer got higher. In addition, the N use efficiency decreased with the increase of chemical N rate under different dosage of organic fertilizer, while the combined application of manure and mineral fertilizer could significantly increase the nitrogen fertilizer partial productivity by 24.4%-53.0% and agronomic utilization efficiency by 26.3%-89.9% in rapeseed production. In Anren, Xiuning and Dangtu, the income increases were the highest under 180 kg N·hm-2 input combined with organic fertilizer, and the corresponding values were 8 915, 1 0358 and 6 569 yuan/hm2, respectively. However, in Gaochun and Shayang, the highest income increases were under only application of chemical fertilizer (225 kg N·hm-2 input), and were 11 252 and 8 500 yuan/hm2, respectively. 【Conclusion】In the experimental sites along middle and lower reaches of the Yangtze River, combined application of chemical and organic fertilizer could reduce 26.7%-45.9% chemical N fertilizer input, increase grain yield, chemical nitrogen use efficiency and income increases for winter rapeseed production, and achieve the goal of reducing chemical N input with increased efficiency.
Keywords:winter rapeseed;organic-inorganic fertilization;optimal chemical nitrogen rate;chemical nitrogen reduction potential;areas of the middle and lower reaches of the Yangtze River


PDF (1299KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
蒋倩红, 陆志峰, 赵海燕, 郭俊杰, 刘文波, 凌宁, 郭世伟. 长江中下游冬油菜产区有机无机肥配施下减氮增效潜力分析[J]. 中国农业科学, 2020, 53(14): 2907-2918 doi:10.3864/j.issn.0578-1752.2020.14.014
JIANG QianHong, LU ZhiFeng, ZHAO HaiYan, GUO JunJie, LIU WenBo, LING Ning, GUO ShiWei. Potential Analysis of Reducing Chemical Nitrogen Inputs While Increasing Efficiency by Organic-Inorganic Fertilization in Winter Rapeseed Producing Areas of the Middle and Lower Reaches of the Yangtze River[J]. Scientia Acricultura Sinica, 2020, 53(14): 2907-2918 doi:10.3864/j.issn.0578-1752.2020.14.014


0 引言

【研究意义】油菜是我国重要的粮油和能源作物,其产量的提高对于保障国家粮油安全至关重要。土壤氮素供应是限制油菜高产的主要因子之一[1],合理的化学氮肥投入对油菜稳产丰产发挥着不可忽视的作用。长江流域作为油菜的主产区,其种植面积占全国80%以上[2],然而该区域不合理施肥现象较为普遍,前人调查发现约30%的农户施肥过量[3]。过量施用氮肥无益于油菜增产,还会引发众多环境问题[4,5]。为积极响应国家化肥农药“双减”政策的要求[6],优化氮肥用量可实现油菜减氮增效的目标。不同区域油菜减氮潜力并不一致,就长江流域而言,在稳产前提下其下游地区化肥氮减量空间约为11%,中游和上游地区仅为8%和7%[3]。在现有生产管理措施下,部分区域依靠减施氮肥难以实现协同油菜减肥、增产和提效的目标[7,8],而有机无机配施作为一项有力的农业措施,能有效提高作物产量和化学氮肥利用效率。因此,构建有机无机配施技术模式可为长江中下游地区油菜增产增效提供理论依据。【前人研究进展】前人研究发现青海东部及甘肃天水两个春油菜产区,在保障产量的同时,施用有机肥可减少32%和8.1%的化肥氮用量[9,10]。而在长江中游湖南浏阳冬油菜产区,有机肥在稳产增产的前提下可替代化肥氮10%—30% [11],这些研究表明化肥氮的可替代比例在区域间存在较大差异。【本研究切入点】前人多数研究仅对单个地区油菜减肥潜力进行分析,忽视了不同区域气候、土壤特征等因素的影响。而本研究立足于长江中下游冬油菜主产区,针对不同地区气候特征、土壤肥力水平,综合探究有机肥投入对化肥氮减施的潜力,旨在形成一套具有区域特色的有机无机配施技术模式。【拟解决的关键问题】本研究分别在江苏高淳、湖南安仁、湖北沙洋、安徽休宁、安徽当涂四省(共5个地点)设立试验地,以冬油菜为研究对象,探究有机替代实现油菜减肥增效的可能性及区域适宜性,并确定不同地区在配施有机肥条件下的最佳化肥氮施用量,为建立以高产高效、环境友好为目标、有机无机配施为主要技术手段的区域施肥技术体系提供理论依据。

1 材料与方法

1.1 试验地点

试验于2018年在江苏省南京市高淳区、湖南省郴州市安仁县、湖北省荆州市沙洋县、安徽省黄山市休宁县、安徽省马鞍山市当涂县5个地点展开,各试验点生育期依次为227、192、213、223及219 d。各试验点土壤基础理化和气候特征如表1所示,各试验点前茬作物均为水稻(高淳点除外)。

Table 1
表1
表1试验点土壤基础理化和气候特征
Table 1Soil physical and chemical properties and climate features of experiment sites
地点
Site
生长季积温
Accumulated temperature in growing period (℃)
生长季降水量
Precipitation in growing period
(mm)
pH有机质
Soil organic matter (g·kg-1)
全氮
Total nitrogen (g·kg-1)
速效磷
Soil available phosphorus (mg·kg-1)
速效钾
Soil available potassium (mg·kg-1)
土壤质地
Soil texture
高淳Gaochun
31°19′10″ N, 119°07′54″ E
24206365.611.60.38.4119.5黏土Clay
安仁 Anren
26°46′52″ N, 113°10′27″ E
21599685.129.81.527.350.2壤土 Loam
沙洋 Shayang
30°43′60″ N, 112°18′24″ E
22113685.320.21.522.6160.3壤土Loam
休宁 Xiuning
29°37′23″ N, 118°11′59″ E
219810795.536.52.248.7106.1黏土Clay
当涂Dangtu
31°20′42″ N, 118°35′15″ E
22846447.042.12.028.297.4砂土 Sandy

新窗口打开|下载CSV

1.2 试验设计

本试验采用双因素设计,主因素为施用0和 2 250 kg·hm-2有机肥(施用有机肥用M表示),辅以设置6个氮水平,即化肥氮用量为0、90、 135、180、225、270 kg·hm-2 (分别用N0、N90、N135、N180、N225、N270表示),共12个处理,每个处理均设3次重复,随机区组排列,小区面积为50 m2

所有试验点氮肥和有机肥用量统一,其中氮肥按照60%基肥+20%提苗肥+20%越冬肥比例施用,有机肥、磷肥、钾肥和硼肥一次性基施。高淳试验点磷肥、钾肥用量分别为:90和105 kg·hm-2;安仁、休宁、当涂试验点磷肥和钾肥用量分别为:60和75 kg·hm-2;沙洋试验点磷肥、钾肥用量分别为:75和75 kg·hm-2。此外,各试验点硼肥用量均为9 kg·hm-2。试验所用氮肥为尿素(N 46%)、磷肥为过磷酸钙(P2O5 12%)、钾肥为氯化钾(K2O 60%)、硼肥为硼砂(B 10.8%)。5个试验点均采用直播的播种方式,播种量为6 kg·hm-2,播种期为各地直播油菜的最佳时期。

1.3 试验材料

试验所用有机肥均由安徽宁国司尔特有机肥厂提供(有机质34.6%、N 2.22%、P2O5 6.94%、K2O 2.11%);氮、磷及钾肥均由试验点当地肥料经销商提供。种植品种均为当地生产中推荐和适宜的油菜品种,其中高淳为宁油18,安仁为湘油420,沙洋、休宁和当涂为华油杂62R。

1.4 测定项目及方法

1.4.1 油菜籽粒收获 各试验点每个小区收割长势

均匀的10 m2植株,装入网袋待风干后脱粒,称重并计产。

1.4.2 数据处理及分析

本研究采用线性加平台模型将油菜籽粒产量与化肥氮用量的关系进行拟合,模型由直线-平台两部分组成,直线与平台交点所对应的横坐标值为适宜的化肥氮用量(也称最佳化肥氮用量),其对应的C值为最佳产量。通过模型明确适合于不同区域的最佳化肥氮用量,以计算各区域节氮潜力[12]

线性加平台模型:

Y=a + bx(x<joint)

Y=C(x≥joint)

式中,Y为油菜籽粒产量(kg·hm-2),a为截距,b为回归系数,x为化肥氮用量(kg·hm-2),C为最佳产量(kg·hm-2),joint为最佳化肥氮用量(kg·hm-2)。

1.4.3 参数计算[13]

化学氮肥偏生产力(kg·kg-1)=施氮区籽粒产量/化肥氮用量;

化学氮肥农学效率(kg·kg-1)=(施氮区籽粒产量-不施氮区籽粒产量)/化肥氮用量;

施用氮肥或有机肥增加产值(增加产值,元/hm2)=施肥处理产值(氮肥和有机肥)-不施氮处理产值(N0);

施用氮肥或有机肥增收效益(增收效益,元/hm2)=施用氮肥或有机肥增加产值-施用氮肥或有机肥成本-施用有机肥人工成本。

1.4.4 数据统计

试验数据用Excel 2007进行数据处理,SPSS 16.0和R 3.3.1进行数据统计分析。用LSD法检验处理间的显著性差异(P<0.05)。

2 结果

2.1 有机肥与化学氮肥配施对籽粒产量的影响

长江中下游各试验点氮肥和有机肥施用后冬油菜的产量变化规律总体一致(图1,表2)。单施化肥处理下,油菜籽粒产量与化肥氮用量呈线性加平台关系。在单施化肥时,各试验点的最佳化肥氮用量分别为高淳205 kg·hm-2、安仁213 kg·hm-2、沙洋237 kg·hm-2、休宁258 kg·hm-2、当涂202 kg·hm-2,其对应的最高产量分别为2 486、1 754、2 159、3 369和3 024 kg·hm-2。在N0处理下,与休宁(1 292 kg·hm-2)和当涂(1 414 kg·hm-2)相比,高淳、安仁、沙洋试验点油菜籽粒产量较低,分别为123、112和85 kg·hm-2。与单施化肥处理相比,增施有机肥可提高各氮肥处理下油菜籽粒产量(7.7%—43.3%),其中以安仁试验点增产幅度最高,休宁试验点最低(图1,表2)。增施有机肥处理下达到最高产量时的氮肥用量分别为:高淳195 kg·hm-2、安仁199 kg·hm-2、沙洋195 kg·hm-2、休宁179 kg·hm-2、当涂185 kg·hm-2,其对应的最高产量依次为2 777、2 514、2 342、3 629和3 577 kg·hm-2

图1

新窗口打开|下载原图ZIP|生成PPT
图1施肥对油菜籽粒产量的影响及减氮潜力评估

◇表示在有机无机配施处理下达到最高产量时的化肥氮用量和籽粒产量;△表示在单施化肥处理下达到最高产量时的化肥氮用量和籽粒产量;☆表示有机无机配施下达到单施化肥最高产量时的化肥氮用量和籽粒产量。替代比例指在相同目标产量下,施用有机肥后化肥氮的减施比例。N:单施化肥处理;M+N:有机无机配施处理。下同
Fig. 1Effects of fertilization on rapeseed yield and evaluation on chemical N reduction potential

◇ Represents the highest yield and corresponding N application rate under the combination of manure and chemical fertilizer; △ Denotes the highest yield and corresponding N application rate in only application of chemical fertilizer; ☆ Indicates the N application rate when the rapeseed yield of combined treatment is same to the highest yield of only application of chemical fertilizer. Replacement ratio refers to the reduced ratio of nitrogen fertilizer according to on the purpose to achieve same yields. N: Only application of chemical fertilizer; M+N: Combination of manure and chemical fertilizer. The same as below


Table 2
表2
表2各试验点籽粒产量与化肥氮用量拟合关系式
Table 2Fitting expression of relationship between rapeseed yield and N application rate
处理 Treatment高淳 Gaochun安仁 Anren沙洋 Shayang休宁 Xiuning当涂 Dangtu
Ny=12x+142, x<205
y=2486, x≥205
R2=0.947
y=8.0x+46, x<213
y=1754, x≥213
R2=0.920
y=8.8x+78, x<237
y=2159, x≥237
R2=0.980
y=8.6x+1421, x<258
y=3369, x≥258
R2=0.918
y=8.2x +1366, x<202
y=3024, x≥202
R2=0.899
M+Ny=7.0x+1452, x<195
y=2777, x≥195
R2=0.918
y=10x+444, x<199
y=2514, x≥199
R2=0.904
y=8.6x+659, x<195
y=2342, x≥195
R2=0.926
y=9.7x+1887, x<179
y=3629, x≥179
R2=0.892
y=7.3x+2223, x<185
y=3704, x≥185
R2=0.787

新窗口打开|下载CSV

2.2 化学氮肥减施潜力及其影响因子

通过图1模型可以得到与单施化肥相同最高产量下的有机无机配施方案,即各试验点增施有机肥均显著降低化肥氮用量并达到单施化肥处理下的最高产量,降幅可达26.7%—45.9%,其中以当涂试验点的化肥氮降幅最高,沙洋试验点最低。图2相关性分析结果显示,化肥氮可替代比例与土壤有机质含量之间呈显著正相关(P=0.016,R2=0.890),与土壤全氮、速效磷及速效钾含量之间无显著相关性。

图2

新窗口打开|下载原图ZIP|生成PPT
图2化肥氮可替代比例与土壤基本理化因子的关系

Fig. 2The relationships between the basic soil physio-chemical parameters and the substitutable proportion of chemical N fertilizer by organic fertilizer



2.3 有机肥与化学氮肥配施对油菜化学氮肥利用率的影响

表3 所示,有机肥用量、化肥氮用量以及有机肥和氮肥交互作用均会影响油菜化学氮肥利用率。各试验点在单施化肥和增施有机肥处理下均表现为,随着施氮量增加,油菜化学氮肥偏生产力和农学效率呈下降趋势。等化肥氮用量下,增施有机肥能提升化学氮肥偏生产力和农学效率,高淳、安仁、沙洋、休宁和当涂5个试验点化学氮肥偏生产力分别增加31%、53%、33%、29%和24%,而化学氮肥农学效率依次提高36%、66%、26%、90%和50%,其中以安仁和休宁试验点效果较为显著。在同等化肥氮施用水平下,当化肥氮用量低于180 kg·hm-2时,增施有机肥处理下氮肥偏生产力和氮肥农学效率显著高于单施化肥处理(安仁点除外),且均以M+N90处理最高(沙洋点除外)。

Table 3
表3
表3各施肥处理对油菜化学氮肥利用率的影响
Table 3Effects of the fertilization regimes on chemical N use efficiency in rapeseed
处理
Treatment
氮肥偏生产力PFPN (kg·kg-1)氮肥农学效率AEN (kg·kg-1)
高淳
Gaochun
安仁
Anren
沙洋
Shayang
休宁
Xiuning
当涂
Dangtu
高淳
Gaochun
安仁
Anren
沙洋
Shayang
休宁
Xiuning
当涂
Dangtu
N0----------
N9012.6±3.9 ab *7.2±1.0 bc **9.6±0.4 ab **19.0±0.4 a **21.3±3.4 a *11.2±3.9 ab *5.9±1.0 a **8.6±0.4 ab **4.7±0.4 c **7.6±0.3 bc *
N13513.7±1.4 a *9.4±2.4 a NS9.8±0.9 a *16.1±0.7 b **19.7±1.1 a *12.8±1.4 a *7.3±3.2 a NS9.1±0.9 a *6.5±0.7 b **9.2±1.1 a *
N18011.7±1.6 ab *8.7±0.4 ab **8.4±1.0 bc *16.6±0.2 b **15.5±1.1 b *11.0±1.6 ab *8.1±0.4 a **8.0±1.0 ab *9.4±0.2 a **7.7±1.1 ab *
N22511.0±0.5 ab NS8.3±0.3 ab **9.5±0.0 ab NS13.5±1.3 c *13.3±0.5 bc **10.5±0.5 ab NS7.8±0.3 a **9.1±0.0 a NS7.7±1.3 b *7.0±0.5 bc **
N2709.2±0.7 b NS6.1±0.3 c **8.0±0.1 c **12.5±0.9 c NS11.3±0.9 c NS8.8±0.7 b NS5.6±0.3 a **7.7±0.1 b **7.7±0.9 b NS6.1±0.9 c NS
M+N0----------
M+N9022.9±0.7 a14.8±0.4 a16.0±0.4 a26.8±1.3 a29.6±3.6 a21.5±0.7 a13.5±0.4 a15.0±0.4 a15.5±1.7 a13.8±3.6 a
M+N13517.4±1.8 b10.7±0.0 b13.5±1.6 b24.7±0.6 b23.6±1.1 b16.5±1.8 b9.9±0.0 bc12.8±1.6 b15.1±0.6 a13.1±1.1 a
M+N18015.2±0.6 b14.6±0.1 a11.9±0.9 b20.5±1.2 c19.6±1.9 c14.3±0.4 c14.0±0.1 a11.4±0.9 bc13.3±1.2 ab11.8±1.9 ab
M+N22512.4±1.0 c11.2±0.4 b9.9±0.8 c16.3±0.7 d15.9±0.3 d11.8±1.0 c10.7±0.4 b9.5±0.8 c10.5±0.7 bc9.6±0.3 bc
M+N2709.6±0.9 c8.6±0.3 c9.1±0.3 c13.1±0.8 e13.3±0.8 d10.0±0.8 c8.9±1.2 c8.8±0.3 c8.3±0.8 c8.0±0.8 c
N********************
M********************
N×M********NS*******NS
In the results of two-way ANOVA, N indicates nitrogen fertilizer gradients, M indicates manure dosages; Different lowercases after mean value indicate significant difference among treatments (P<0.05); Under the same nitrogen gradient,the symbols after the mean value indicates the significant difference between the two manure dosages, ** represents P<0.01, * represents P<0.05, NS represents P>0.05. The same as below
双因素方差分析结果中,N表示氮肥用量,M表示有机肥用量;同一有机肥用量下,平均值后不同小写字母表示处理间差异显著(P<0.05);同一氮肥用量下,平均值后的符号表示两种有机肥用量之间的差异显著性,**代表P<0.01;*代表P<0.05;NS代表P>0.05。下同

新窗口打开|下载CSV

2.4 有机肥与化学氮肥配施对油菜产值及收益的影响

表4结果显示,有机肥用量、有机肥与氮肥交互作用均显著影响安仁和沙洋试验点油菜增收效益。与N0处理相比,安仁、休宁及当涂试验点均在M+N180处理下增收效益最多,依次为8 915、1 0358和6 569元/hm2,而高淳和沙洋试验点在N225处理下增收效益最多,分别为11 252和8 500元/hm2。因此,就考虑氮肥和有机肥的增收效益而言,安仁、休宁及当涂3个试验点推荐采取有机无机配施技术模式,而高淳和沙洋试验点推荐单施化肥技术模式。

Table 4
表4
表4不同施肥处理下的增加产值和增收效益评估(元/hm2
Table 4Evaluation of output increases and income increases by fertilizing under different fertilization treatment (yuan/hm2)
处理
Treatment
高淳 Gaochun安仁 Anren沙洋 Shayang休宁 Xiuning当涂 Dangtu
增加产值
Increased production
氮肥和
有机肥
成本
Chemical N and manure cost
人工成本(施用有机肥)
Labor cost Applying organic fertilizer
增收
效益
Income increase benefit
增加产值 Increased production氮肥和有机肥成本Chemical N and manure cost人工成本(施用有机肥)
Labor cost Applying organic fertilizer
增收
效益
Income increase benefit
增加产值 Increased production氮肥和有机肥成本Chemical N and manure cost人工成本(施用有机肥)
Labor cost Applying organic fertilizer
增收效益
Income increase benefit
增加产值 Increased production
氮肥和有机肥成本Chemical N and manure cost人工成本(施用有机肥)
Labor cost Applying organic fertilizer
增收效益
Income increase benefit
增加产值 Increased production氮肥和有机肥成本Chemical N and manure cost人工成本(施用有机肥)
Labor cost Applying organic fertilizer
增收效益
Income increase benefit
N0-------------------
N905301440-4860±
911cNS
2559440-2119±
216c**
3647440-3207±
92cNS
2363440-1923±
93cNS
2313440-1872±
712bNS
N1359030660-8370±
503bNS
4753660-4093±
1039bNS
5803660-5142±
294bNS
4906660-4245±
251bNS
5708660-5048±
340aNS
N18010395880-9515±
765abNS
6981880-6101±
169a**
6743880-5863±
438aNS
9473880-8592±
108aNS
6363880-5483±
445aNS
N225123521101-11252±
317aNS
84411101-7340±
147aNS
96011101-8500±
16a*
97491101-8648±
830aNS
72961101-6195±
256aNS
N270124131321-11092±
495aNS
73181321-5997±
172aNS
97461321-8426±
38a*
116721321-10351±
714aNS
75161321-6195±
590aNS
M+N0706018006264634±
431d
21781800501-123±
4c
23541800585-31±
108d
371218004181494±
958c
363218005011331±
580b
M+N901014722406267281±
163c
584722405013106±
87b
703822405854213±
588c
708022404184422±
759b
699022405014249±
1317a
M+N1351168724606268601±
647bc
642424605013463±
0b
814824605855102±498bc1144624604188567±
239a
814624605015185±
350a
M+N18013710268062610403±
290a
1209626805018915±
52a
965226805856387±
362ab
13456268041810358±
603a
975126805016569±
787a
M+N22513944290162610418±
597a
1152629015018125±
218a
1004729015856562±
409a
1327629014189957±
443a
993329015016532±
147a
M+N27013869312162610122±
392ab
1152831215017907±
776a
1116731215857461±
197a
1252331214188985±
624a
996531215016343±
505a
N**********
MNS****NSNS
N×MNS***NSNS
Rapeseed prices at each site: Gaochun 5.24 yuan/kg, Anren 4.8 yuan/kg, Shayang 4.7 yuan/kg, Xiuning 5.6 yuan/kg, Dangtu 4.6 yuan/kg. Applying organic fertilizer: 4.2 labor·d-1·hm-2, labor costs at Gaochun, Anren, Shayang, Xiuning and Dangtu: 150, 120, 140, 100 and 120 yuan·labor-1·d-1, respectively. Fertilizer prices: Urea 2.25 yuan/kg, Superphosphate 0.70 yuan/kg, Potassium chloride 3.00 yuan/kg, Borax 15 yuan/kg, Organic fertilizer 0.80 yuan/kg
各试验点油菜籽售价:高淳 5.24 元/kg,安仁4.8元/kg ,沙洋 4.7元/kg ,休宁5.6元/kg,当涂4.6元/kg;施用有机肥:4.2人·hm-2·d-1,各试验点人工成本:高淳 150 元·人-1·d-1,安仁120元·人-1·d-1,沙洋 140元·人-1·d-1,休宁100元·人-1·d-1,当涂120元·人-1·d-1;肥料价格:尿素2.25元/kg,过磷酸钙0.70元/kg,氯化钾3.00元/kg,硼砂15元/kg,有机肥0.80元/kg

新窗口打开|下载CSV

2.5 养分贡献模式图

化肥和有机肥对油菜籽粒产量的贡献可分为四部分,分别为土壤基础肥力贡献、单施有机肥贡献、单施化肥贡献和有机肥促效贡献,其对油菜籽粒产量的贡献分别为605、751、1917和439 kg·hm-2 图3)。各氮肥处理下,增施有机肥均能提高油菜籽粒产量,且在单施化肥处理达到最高产量时,增施有机肥可产生促效作用,进一步提高17.4%的作物产量。

图3

新窗口打开|下载原图ZIP|生成PPT
图3养分对油菜籽粒产量的贡献模型

图中各点均为各氮肥用量下5个试验点油菜籽粒的平均产量
Fig. 3Model of nutrient contribution to rapeseed yield

Each point in the figure is the average yield of rapeseed at five sites under different N rate


3 讨论

3.1 有机肥在油菜减肥增效中的作用

本研究综合考虑了化肥和有机肥对油菜籽粒产量的贡献。结果表明,在油菜生产中,有机肥与化学氮肥配施技术可实现化肥氮减施和增产促效的作用(图3)。据统计,我国油菜生产的氮肥平均用量为181 kg·hm-2,其中长江中游地区习惯施氮量与全国平均水平一致,而下游地区明显高于全国平均水平,为227 kg·hm-2 [7]。在配施2 250 kg·hm-2有机肥的条件下,投入109—174 kg·hm-2化肥氮即可达到各试验点单施化肥处理下的最高产量(图1),该氮肥投入量显著低于长江中下游流域的农民习惯用量[7],这可能是由于长期不合理的化肥施用破坏了该地区土壤结构并且降低了土壤对养分的固持能力[15],而有机肥投入不仅可以提供部分有效养分,还能活化土壤中难以溶解的氮磷钾养分,一定程度上提高了根际土壤养分[16],并能提升大团聚体的比例,改善土壤结构[17,18]。此外,前人研究表明有机肥施用能够改变土壤微生物区系特征,增加微生物多样性,增强土壤微生物-微生物之间的互作[19],进而促进作物生长,实现增产增效。

油菜是一种低氮效率作物[20],而增施有机肥能有效提高作物氮肥利用率[21]。本研究结果显示,相比单施化肥处理,油菜化学氮肥偏生产力和农学效率在有机无机配施处理下分别提高24.4%—53.0%和26.3%—89.9%(表3),可能是由于有机肥中氮素营养释放缓慢,利于后期氮素的补充及其积累[22];有机肥的投入提供了丰富的碳源和氮源,促进土壤微生物增殖的同时增加氮的固定,避免了前期大量无机氮以氨挥发、淋洗等形式损失[23,24,25]。此外,增施有机肥能够改善土壤保水保肥性能,促进土壤养分的供应及作物的吸收,从而提高氮肥利用率[26]。然而,单施化肥处理在生长后期氮素难以得到充分转移和再利用,从而导致作物氮素需求和外源氮素供应不协调[27]。因此,有机无机配施可作为一种有效的技术手段,以提高油菜的氮肥利用率。

3.2 化肥氮减施潜力及区域间差异

本研究结果显示,增施有机肥可在稳产的基础上替代26.7%—45.9%的化肥氮,且不同地区减氮潜力不同,这可能是受到土壤地力条件的影响[28]。研究表明化肥氮的可替代比例与土壤有机质含量呈显著正相关(图2,P<0.05),土壤有机质是衡量土壤肥力的重要因子,有机质含量越高,说明土壤肥力越高[29]。总体来看,当涂、休宁和安仁试验点土壤有机质含量较高,其减氮空间较大,高淳和沙洋两个试验点基础土壤肥力低,其减氮空间较小(图1),这与张智等[30]的研究结果一致。高肥力土壤氮素持留和供应能力普遍高于低肥力土壤[31],施用有机肥后可产生激发效应促进土壤养分供应,显著提高微生物量及可溶性有机氮含量,以满足油菜后期生长的需求[32,33,34],因而具备更大的减氮空间。低肥力土壤形成的微生物群落功能相对较弱,在施用有机肥后因微生物的分解能力不足,土壤养分释放能力及活性氮量低于高肥力土壤[35],相应的其减氮空间较小。不同地区减氮潜力也会受到种植制度,气候条件等因素的影响[36,37],贺亚琴[38]指出有效积温是影响油菜生长的重要因素,当有效积温低于1 650℃时籽粒发育受抑制。此外,我国不同油菜产区在温度、降水和土壤性质等方面均有明显差异,因此其适宜的化肥氮用量不同[39,40,41]。本研究制定的有机无机配施技术对于长江中下游冬油菜主产区化肥氮减施具有一定的参考意义,然而不同地区的土壤肥力存在较大差异,应结合当地实际情况进行调整,进而为不同区域油菜施肥提供科学依据。

3.3 有机无机配施的发展前景

经济效益评估结果显示,不同地区产值、有机肥和氮肥成本以及氮肥与有机肥增加收益均存在较大差异。其中高淳和沙洋试验点在单施化肥(225 kg N·hm-2)时氮肥与有机肥增收收益最多,而安仁、休宁和当涂试验点在单施化肥(180 kg N·hm-2)基础上增施有机肥时氮肥与有机肥增收收益最多(表4),说明有机肥投入在以上3个试验点能得到较高的经济回报。造成这种区域间差异的原因一方面是由于不同地区施用有机肥的增产效果不同(图1),另一方面可能是区域间土壤养分和施肥状况不同,进而产生肥料成本上的差异[42]。同时在这项研究中,我们发现过量的氮肥投入无益于油菜的增产增效,反而会增加肥料成本并且减少收益(表4),这与前人在玉米[43]、小麦[44]、番茄[45]等作物上的研究结果一致,且研究指出长期不合理施用化肥会破坏土壤结构、降低农田生态系统的稳定性[46]。试验结果也表明,安仁、休宁及当涂3个试验点均在增施有机肥条件下获得最高产量,且此时氮肥与有机肥增加收益最多(图1,表4),说明有机替代在长江中下游部分区域增产增效作用显著,可同时兼顾产量和经济效益,具有良好的发展前景。

4 结论

在长江中下游部分冬油菜产区,增施有机肥对油菜具有增产增效作用。相比单施化肥,增施有机肥能够提高油菜产量,增产幅度为7.7%—43.3%。在配施2 250 kg·hm-2有机肥条件下,该地区可实现26.7%—45.9%化肥氮减施,同时达到与单施化肥相同的最高产量。此外,有机无机配施在不同区域对化肥氮的减施效果不同,土壤基础肥力越高,化肥氮可替代比例越高。综合考虑产量、经济效益,有机无机配施为长江中下游冬油菜产区的减肥增效的有效措施。

致谢:

感谢华中农业大学的任涛副教授、沙洋县农业农村局杨运清高级农艺师、湖南农业大学宋海星教授、安徽省农科院侯树敏研究员、当涂县农业委员会胡现荣主任、休宁县农业技术推广中心陈宝才站长、江苏高淳禾田坊谷物种植家庭农场魏清技术员等提供指导与帮助。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

邹娟, 鲁剑巍, 陈防, 李银水, 李小坤. 冬油菜施氮的增产和养分吸收效应及氮肥利用率研究
中国农业科学, 2011,44(4):745-752.

[本文引用: 1]

ZOU J, LU J W, CHEN F, LI Y S, LI X K. Study on yield increasing and nutrient uptake effect by nitrogen application and nitrogen use efficiency for winter rapeseed
Scientia Agricultura Sinica, 2011,44(4):745-752. (in Chinese)

[本文引用: 1]

王汉中. 我国油菜产业发展的历史回顾与展望
中国油料作物报, 2010,32(2):300-302.

[本文引用: 1]

WANG H Z. Review and future development of rapeseed industry in China
Chinese Journal of Oil Crop Sciences, 2010,32(2):300-302. (in Chinese)

[本文引用: 1]

徐华丽. 长江流域油菜施肥状况调查及配方施肥效果研究
[D]. 武汉: 华中农业大学, 2012.

[本文引用: 2]

XU H L. Investigation on fertilization and effect of formulated fertilization of winter rapeseed in Yangtze river basin
[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese)

[本文引用: 2]

朱兆良, 金继运. 保障我国粮食安全的肥料问题
植物营养与肥料学报, 2013,19(2):259-273.

[本文引用: 1]

ZHU Z L, JIN J Y. Fertilizer use and food security in China
Journal of Plant Nutrition and Fertilizer, 2013,19(2):259-273. (in Chinese)

[本文引用: 1]

王艳群, 彭正萍, 薛世川, 杨云马, 周亚鹏, 赵立宾. 过量施肥对设施农田土壤生态环境的影响
农业环境科学学报, 2005,24(增刊):81-84.

[本文引用: 1]

WANG Y Q, PENG Z P, XUE S C, YANG Y M, ZHOU Y P, ZHAO L B. Effect of excessive fertilization on soil ecological environment in the facility farmland
Journal of Agro-Environment Science, 2005,24(suppl.):81-84. (in Chinese)

[本文引用: 1]

中华人民共和国农业部. 到2020年化肥使用量零增长行动方案. http://www.moa.gov.cn, 2015.
URL [本文引用: 1]

Ministry of Agriculture of China. Action plan for zero growth of fertilizer use by 2020. http://www.moa.gov.cn, 2015.(in Chinese)
URL [本文引用: 1]

鲁剑巍, 任涛, 丛日环, 李小坤, 张洋洋. 我国油菜施肥状况及施肥技术研究展望
中国油料作物学报, 2018,40(5):712-720.

[本文引用: 3]

LU J W, REN T, CONG R H, LI X K, ZHANG Y Y. Prospects of research on fertilization status and technology of rapeseed in China
Chinese Journal of Oil Crop Sciences, 2018,40(5):712-720. (in Chinese)

[本文引用: 3]

科技部. 国家重点研发计划“化学肥料和农药减施增效综合技术研发”试点专项2018年度项目申报指南
[R]. 北京: 科技部, 2017.

[本文引用: 1]

Ministry of Science and Technology. 2018 annual project application guidelines for the pilot project of “research and development of comprehensive technologies for reducing application and increasing efficiency of chemical fertilizers and pesticides”, national key research and development plan
[R]. Beijing: Ministry of Science and Technology, 2017. (in Chinese)

[本文引用: 1]

宋佳. 有机肥和氮肥用量对青海春油菜生长及硝态氮残留的影响
[D]. 杨凌: 西北农林科技大学, 2018.

[本文引用: 1]

SONG J. Effects of organic fertilizer and nitrate residues of spring rapeseed in Qinghai province
[D]. Yanglin: Northwest A & F University, 2018. ( in Chinese)

[本文引用: 1]

杨志奇, 罗照霞, 俄胜哲. 有机肥无机肥配施对白菜型冬油菜的影响研究
甘肃农业科技, 2014(11):49-52.

[本文引用: 1]

YANG Z Q, LUO Z X, E S Z. Effect of organic fertilizer and inorganic fertilizer on winter rape of Chinese cabbage
Gansu Agricultural Science and Technology, 2014(11):49-52. (in Chinese)

[本文引用: 1]

田昌, 彭建伟, 宋海星, 荣湘民, 官春云, 刘强. 有机肥化肥配施对冬油菜养分吸收、籽粒产量和品质的影响
中国土壤与肥料, 2012(4):70-74.

[本文引用: 1]

TIAN C, PENG J W, SONG H X, RONG X M, GUAN C Y, LIU Q. Effects of organic manure application combined with chemical fertilizers on absorption of nutrient, yield and quality of rapeseed
Soil and Fertilizer Sciences in China, 2012(4):70-74. (in Chinese)

[本文引用: 1]

王圣瑞, 陈新平, 高祥照, 毛达如, 张福锁. “3414”肥料试验模型拟合的探讨
植物营养与肥料学报, 2002,8(4):409-413.

[本文引用: 1]

WANG S R, CHEN X P, GAO X Z, MAO D R, ZHANG F S. Study on simulation of “3414” fertilizer experiments
Plant Nutrition and Fertilizer Science, 2002,8(4):409-413. (in Chinese)

[本文引用: 1]

刘学彤, 杨军芳, 黄少辉, 贾良良, 邢素丽, 杨云马, 王欣雅, 刘子轩. 尿素硝铵溶液对冬小麦产量及土壤无机氮含量的影响
中国土壤与肥料, 2019(4):116-120, 126.

[本文引用: 1]

LIU X T, YANG J F, HUANG S H, JIA L L, XING S L, YANG Y M, WANG X Y, LIU Z X. Effects of urea ammonium nitrogen on the yield of winter wheat and the concentration of soil mineral nitrogen
Soil and Fertilizer Sciences in China, 2019(4):116-120, 126. (in Chinese)

[本文引用: 1]

SUI B, FENG X M, TIAN G L, HU X Y, SHEN Q R; GUO S W. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors
Field Crops Research, 2013,1:99-107.



LAL R. Soil degradation as a reason for inadequate human nutrition
Food Security, 2009,1:45-57.

[本文引用: 1]

LADISLAV M, LUKá? H, LUBICA P, EVA K. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment
Journal of Soils and Sediments, 2018,18(8):2813-2822.

[本文引用: 1]

LIN Y X, YE G P, KUZYYAKOV Y, LIU D Y, FAN J B, DING W X. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa
Soil Biology and Biochemistry, 2019,134:187-196.

[本文引用: 1]

YE G P, LIN Y X, KUZYYAKOV Y, LIU D Y, LUO J F, LINDSEY S, WANG W J, FAN J B, DING W X. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment
Soil Biology and Biochemistry, 2019,134:15-24.

[本文引用: 1]

LING N, ZHU C, XUE C, CHEN H, DUAN Y H, PENG C, GUO S W, SHEN Q R. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis
Soil Biology and Biochemistry, 2016,99:137-149.

[本文引用: 1]

REN T, ZOU J, WANG Y, LI X K, CONG R H, LU J W. Estimating nutrient requirements for winter oilseed rape based on QUEFTS analysis
The Journal of Agricultural Science, 2016,154(3):425-437.

[本文引用: 1]

任科宇, 段英华, 徐明岗, 张旭博. 施用有机肥对我国作物氮肥利用率影响的整合分析
中国农业科学, 2019,52(17):2983-2996.

[本文引用: 1]

REN K Y, DUAN Y H, XU M G, ZHANG X B. Effect of manure application on nitrogen use efficiency of crops in China: A meta-analysis
Scientia Agricultura Sinica, 2019,52(17):2983-2996. (in Chinese)

[本文引用: 1]

王玉雯, 郭九信, 孔亚丽, 张瑞卿, 宋立新, 刘振刚, 张俊, 王建中, 郭世伟. 氮肥优化管理协同实现水稻高产和氮肥高效
植物营养与肥料学报, 2016(5):1157-1166.

[本文引用: 1]

WANG Y W, GUO J X, KONG Y L, ZHANG R Q, SONG L X, LIU Z G, ZHANG J, WANG J Z, GUO S W. Optimization management of nitrogen fertilizer to achieve high yield and high efficiency of nitrogen fertilizer in rice
Journal of Plant Nutrition and Fertilizer, 2016(5):1157-1166. (in Chinese)

[本文引用: 1]

KUSHWAHA C, TRIPATHI S, SINGH K. Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem
Soil and Tillage Research, 2000,56(3/4):153-166.

[本文引用: 1]

徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响
土壤学报, 2002,39(1):89-96.

[本文引用: 1]

XU Y C, SHEN Q R, RAN W. Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping
Acta Pedologica Sinica , 2002,39(1):89-96. (in Chinese)

[本文引用: 1]

王艳博, 黄启为, 孟琳, 沈其荣. 有机无机肥料配施对盆栽菠菜生长和土壤供氮特性的影响
南京农业大学学报, 2006,29(3):44-48.

[本文引用: 1]

WANG Y B, HUANG Q W, MENG L, SHEN Q R. Effect of combined application of organic and inorganic fertilizer application on growth of spinach and soil nitrogen supply
Journal of Nanjing Agricultural University, 2006,29(3):44-48. (in Chinese)

[本文引用: 1]

刘汝亮, 张爱平, 李友宏, 王芳, 赵天成, 陈晨, 洪瑜. 长期配施有机肥对宁夏引黄灌区水稻产量和稻田氮素淋失及平衡特征的影响
农业环境科学学报, 2015,34(5):947-954.

[本文引用: 1]

LIU R L, ZHANG A P, LI Y H, WANG F, ZHAO T C, CHEN C, HONG Y. Rice yield, nitrogen use efficiency (NUE) and nitrogen leaching losses as affected by long-term combined applications of manure and chemical fertilizers in Yellow River irrigated region of Ningxia, China
Journal of Agro-Environment Science, 2015,34(5):947-954. (in Chinese)

[本文引用: 1]

MALAGOLI P, LAINE P, ROSSATO L, OURRY A. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N
Annals of Botany, 2005,95(5):853-861.

DOI:10.1093/aob/mci091URLPMID:15701662 [本文引用: 1]
BACKGROUND AND AIMS: Despite its high capacity to take up nitrate from the soil, winter oilseed rape (Brassica napus) is characterized by a very low N recovery in the reproductive tissues under field conditions. A significant part of the N taken up is lost to the soil in dead leaves during the growth cycle. An accurate description of N dynamics at the whole plant level in each compartment under field conditions should lead to a better understanding of N allocation in B. napus and improvements in the nitrogen harvest index. METHODS: An experiment was conducted in field conditions using sequential weekly 15N labelling to follow N uptake, partitioning and mobilization. Nitrogen labelling (2.5 kg N ha(-1); 10 % excess) was analysed weekly (from stem extension to harvest) to distinguish between uptake of new N (labelled) and mobilized N (unlabelled) in the different plant components. KEY RESULTS AND CONCLUSIONS: N requirements for seed filling were satisfied mainly by N mobilized from vegetative parts (about 73 % of the total N in pods). Determination of the endogenous N flow showed that there was net transfer of N to the pods by leaves (36 %), stem (34 %), inflorescences (22 %) and taproot (8 %). Precise study of N flow from leaves at different nodes revealed the existence of two main groups of leaves in terms of their apparent capacity to mobilize N; 30-60 % and 70-80 % of peak N content occurring during flowering and pod filling, respectively. Moreover, the latter group was found to be the main source of endogenous N from leaves. The mobilization of endogenous N from these leaves was prolonged and concomitant with N accumulation in the pods. A complex pattern of N mobilization from the leaves, to vegetative or reproductive tissues, was revealed. These results will be used to model N partitioning during the growth cycle.

吴良泉, 武良, 崔振岭, 陈新平, 张福锁. 中国玉米区域氮磷钾肥推荐用量及肥料配方研究
土壤学报, 2015,52(4):802-817.

[本文引用: 1]

WU L Q, WU L, CUI Z L, CHEN X P, ZHANG F S. Basic NPK fertilizer recommendation and fertilizer formula for maize production regions in China
Acta Pedologica Sinica, 2015,52(4):802-817. (in Chinese)

[本文引用: 1]

王清奎, 汪思龙, 冯宗炜, 黄宇. 土壤活性有机质及其与土壤质量的关系
生态学报, 2005(3):513-519.

[本文引用: 1]

WANG Q K, WANG S L, FENG Z W, HUANG Y. Active soil organic matter and its relationship with soil quality
Acta Ecologica Sinica, 2005(3):513-519. (in Chinese)

[本文引用: 1]

张智, 丛日环, 鲁剑巍. 中国冬油菜产业氮肥减施增效潜力分析
植物营养与肥料学报, 2017,23(6):1494-1504.

[本文引用: 1]

ZHANG Z, CONG R H, LU J W. Potential analysis on winter oilseed rape production under reducing nitrogen input and increasing its efficiency in China
Journal of Plant Nutrition and Fertilizers, 2017,23(6):1494-1504. (in Chinese)

[本文引用: 1]

王楠, 王帅, 高强, 赵兰坡, 田特, 张晋京. 施氮水平对不同肥力土壤微生物学特性的影响
水土保持学报, 2014,28(4):148-152, 167.

[本文引用: 1]

WANG N, WANG S, GAO Q, ZHAO L P, TIAN T, ZHANG J J. Effect of nitrogen application levels on microbiological characteristics of soils with different fertility basics
Journal of Soil and Water Conservation, 2014,28(4):148-152, 167. (in Chinese)

[本文引用: 1]

ZHOU J, LI S, CHEN Z. Soil microbial biomass nitrogen and its relationship to uptake of nitrogen by plants
Pedosphere, 2002,12(3):251-256.

[本文引用: 1]

SINGH S, GHOSHAL N, SINGH K. Synchronizing nitrogen availability through application of organic inputs of varying resource quality in a tropical dryland agroecosystem
Applied Soil Ecology, 2007,36(2/3):164-175.

DOI:10.1016/j.apsoil.2007.01.007URL [本文引用: 1]

王寅, 郭聃, 高强, 焉莉, 宋立新, 刘振刚. 吉林省不同生态区玉米施氮效果与氮肥利用效率差异
土壤学报, 2016,53(6):1464-1475.

[本文引用: 1]

WANG Y, GUO D, GAO Q, YAN L, SONG L X, LIU Z G. Differences in yield response and N use efficiency of maize crops in different ecological zones of Jilin province
Acta Pedologica Sinica, 2016,53(6):1464-1475. (in Chinese)

[本文引用: 1]

杨馨逸, 刘小虎, 韩晓日. 施氮量对不同肥力土壤氮素转化及其利用率的影响
中国农业科学, 2016,49(13):2561-2571.

DOI:10.3864/j.issn.0578-1752.2016.13.012URL [本文引用: 1]
【Objective】 The objective of this study is to research the effect of different nitrogen (N) application rates on soil labile N pools transformations (soil mineral N-SMN; soil soluble N-SSON; soil microbial biomass N-SMBN) and N use efficiency in soils after application of N fertilizer at wheat (Triticum aestivum L.) booting stage. 【Method】 A pot experiment with 15N isotopic tracer technique was conducted to study the soil labile N pools and the effect of supply N in different fertilization managements for 37 years (poor soil-NF: no application of fertilizer; low fertility soil-LF: inorganic fertilizer; moderate fertility soil-MF: low rate of organic fertilizer with inorganic fertilizer; high fertility soil-HF: high rate of organic fertilizer with inorganic fertilizer) after application of three different application rates of N (N0: 0, N1: 135 kg·hm-2, N2: 180 kg·hm-2) in soil and their relationships. 【Result】 SMN and SSON were the highest in the N1 treatment and then decreased with the application rate of N, but SMBN performed opposite tendency with the application rate of N, they were firstly decreased and then increased, and the highest in the N2 treatment. In the same application rate of N, SMN and SSON generally decreased in the order: high fertility soil>moderate fertility soil>low fertility soil>poor soil, while SMBN generally decreased in the order: high fertility soil>moderate fertility soil>poor soil>low fertility soil (P<0.05). The increased amplitude of SMN, SSON and SMBN after addition of N into soils with different fertilities were the highest in the low fertility soil treatments, and were the lowest in the high fertility soil treatments. The soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer generally decreased in the order: high fertility soil>moderate fertility soil>low fertility soil>poor soil (P<0.05), respectively. The percentage of N from ammonium sulfate fertilizer by wheat to total N uptake by wheat generally decreased in the order: low fertility soil>moderate fertility soil>high fertility soil>poor soil (P<0.05). In the same soil fertility, the soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer were firstly decreased and then increased with the application rate of N, and were the highest in the N1 treatment (P<0.05), as a whole, N from ammonium sulfate fertilizer by wheat/total N uptake ratio averaged 44%; meanwhile, the loss of 15N-labeled fertilizer generally decreased in the order: poor soil>low fertility soil>moderate fertility soil>high fertility soil (P<0.05). Furthermore, significant positive relationships were found between soil labile N pools and the soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer (P<0.05). 【Conclusion】 In this experiment, appropriate application rate of N fertilizer (N3, 135 kg·hm-2) in high fertility soil is beneficial to soil labile N pools transformations and has a high ability to synchronize the relationship between soil N supply and N requirements of crops, and increased the NUE, decreased the loss of fertilizer, so it may be an effective strategy for maintaining long-term soil fertility.
YANG X Y, LIU X H, HAN X R. Effect of nitrogen application rates in different fertility soils on soil N transformations and N use efficiency under different fertilization managements
Scientia Agricultura Sinica, 2016,49(13):2561-2571. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2016.13.012URL [本文引用: 1]
【Objective】 The objective of this study is to research the effect of different nitrogen (N) application rates on soil labile N pools transformations (soil mineral N-SMN; soil soluble N-SSON; soil microbial biomass N-SMBN) and N use efficiency in soils after application of N fertilizer at wheat (Triticum aestivum L.) booting stage. 【Method】 A pot experiment with 15N isotopic tracer technique was conducted to study the soil labile N pools and the effect of supply N in different fertilization managements for 37 years (poor soil-NF: no application of fertilizer; low fertility soil-LF: inorganic fertilizer; moderate fertility soil-MF: low rate of organic fertilizer with inorganic fertilizer; high fertility soil-HF: high rate of organic fertilizer with inorganic fertilizer) after application of three different application rates of N (N0: 0, N1: 135 kg·hm-2, N2: 180 kg·hm-2) in soil and their relationships. 【Result】 SMN and SSON were the highest in the N1 treatment and then decreased with the application rate of N, but SMBN performed opposite tendency with the application rate of N, they were firstly decreased and then increased, and the highest in the N2 treatment. In the same application rate of N, SMN and SSON generally decreased in the order: high fertility soil>moderate fertility soil>low fertility soil>poor soil, while SMBN generally decreased in the order: high fertility soil>moderate fertility soil>poor soil>low fertility soil (P<0.05). The increased amplitude of SMN, SSON and SMBN after addition of N into soils with different fertilities were the highest in the low fertility soil treatments, and were the lowest in the high fertility soil treatments. The soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer generally decreased in the order: high fertility soil>moderate fertility soil>low fertility soil>poor soil (P<0.05), respectively. The percentage of N from ammonium sulfate fertilizer by wheat to total N uptake by wheat generally decreased in the order: low fertility soil>moderate fertility soil>high fertility soil>poor soil (P<0.05). In the same soil fertility, the soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer were firstly decreased and then increased with the application rate of N, and were the highest in the N1 treatment (P<0.05), as a whole, N from ammonium sulfate fertilizer by wheat/total N uptake ratio averaged 44%; meanwhile, the loss of 15N-labeled fertilizer generally decreased in the order: poor soil>low fertility soil>moderate fertility soil>high fertility soil (P<0.05). Furthermore, significant positive relationships were found between soil labile N pools and the soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer (P<0.05). 【Conclusion】 In this experiment, appropriate application rate of N fertilizer (N3, 135 kg·hm-2) in high fertility soil is beneficial to soil labile N pools transformations and has a high ability to synchronize the relationship between soil N supply and N requirements of crops, and increased the NUE, decreased the loss of fertilizer, so it may be an effective strategy for maintaining long-term soil fertility.

张智. 长江流域冬油菜产量差与养分效率差特征解析
[D]. 武汉: 华中农业大学, 2018.

[本文引用: 1]

ZHANG Z. Characteristic analysis of yield gap and nutrient use efficiency gap of winter oilseed rape in Yangtze River Basin
[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)

[本文引用: 1]

ZHI Z, LU J W, CONG R H, REN T, LI X K. Evaluating agroclimatic constraints and yield gaps for winter oilseed rape (Brassica napus L.)-A case study
Scientific Reports, 2017,7(1):7852.

DOI:10.1038/s41598-017-08164-xURLPMID:28798315 [本文引用: 1]
Evaluating the effects of agroclimatic constraints on winter oilseed rape (WOSR) yield can facilitate the development of agricultural mitigation and adaptation strategies. In this study, we investigated the relationship between the WOSR yield and agroclimatic factors using the yield data collected from Agricultural Yearbook and field experimental sites, and the climate dataset from the meteorological stations in Hubei province, China. Five agroclimatic indicators during WOSR growth, such as >/=0 degrees C accumulated temperature (AT-0), overwintering days (OWD), precipitation (P), precipitation at an earlier stage (EP) and sunshine hours (S), were extracted from twelve agroclimatic indices. The attainable yield for the five yield-limiting factors ranged from 2638 kg ha(-1) (EP) to 3089 kg ha(-1) (AT-0). Farmers (Y farm ) and local agronomists (Y exp ) have achieved 63% and 86% of the attainable yield (Y att ), respectively. The contribution of optimum fertilization to narrow the yield gap (NY exp ) was 52% for the factor P, which was remarkably lower than the mean value (63%). Overall, the precipitation was the crucial yield-limiting agroclimatic factor, and restricted the effect of optimizing fertilization. The integrated data suggest that agricultural strategies of mitigation and adaptation to climatic variability based on different agroclimatic factors are essential for improving the crop yield.

贺亚琴. 气候变化对中国油菜生产的影响研究
[D]. 武汉: 华中农业大学, 2016.

[本文引用: 1]

HE Y Q. Study on the climate change impact on Chinese oilseed rape production
[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)

[本文引用: 1]

刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波, 次但. 直播冬油菜干物质积累及氮磷钾养分的吸收利用
植物营养与肥料学报, 2011,17(4):956-963.

DOI:10.11674/zwyf.2011.0481URL [本文引用: 1]
为优化当季和下季作物的养分管理,采用田间试验研究了冬油菜品种:华双5号与中油杂12号叶片的干物质及氮、磷、钾的积累及转移规律,并比较了品种间的异同。结果表明,两个油菜品种的绿叶干物质量在苗后期基本达最大值,花后期迅速降低;苗期的落叶干物质量较小,蕾薹期后直线增加;叶片总干物质先增后减,花期达最大值。中油杂12号的落叶及叶片总干物质均高于华双5号,差异随生育期的推进逐渐明显。绿叶氮含量出苗后逐渐降低,后因越冬肥的施用又略有升高,蕾薹期后便迅速下降;落叶氮含量持续降低,苗后期降至最低点,其后一直保持稳定。绿叶磷含量在苗期缓慢增加,蕾薹期达到最大值,而后迅速下降;苗期落叶的磷含量逐渐降低,蕾薹期降至最低值,角果期后又略有升高。出苗50d后绿叶钾含量快速下降,70d达到最低值,其后保持稳定;落叶钾含量在蕾薹期达到最低值,其后波动较大。两品种叶片养分含量的变化趋势相似,但无论绿叶还是落叶,华双5号的养分含量总体略低于中油杂12号。绿叶的养分与叶片总养分积累的变化规律一致,即氮、磷、钾积累量均先增加后降低,分别在蕾薹期、苗后期和花期达到最高值。落叶的养分积累量在抽薹后迅速增加,收获期达最大值。华双5号叶片的干物质、N、P2O5、K2O转移率分别为25.5%、82.9%、75.4%、45.8%;中油杂12号则分别为8.4%、76.0%、60.2%、38.8%,品种间差异显著。
LIU X W, LU J W, LI X K, BU R Y, LIU B, CI D. Study on characteristics of dry matter and nutrient accumulation and transportation in leaves of winter oilseed rape
Journal of Plant Nutrition and Fertilizer, 2011,17(4):956-963. (in Chinese)

DOI:10.11674/zwyf.2011.0481URL [本文引用: 1]
为优化当季和下季作物的养分管理,采用田间试验研究了冬油菜品种:华双5号与中油杂12号叶片的干物质及氮、磷、钾的积累及转移规律,并比较了品种间的异同。结果表明,两个油菜品种的绿叶干物质量在苗后期基本达最大值,花后期迅速降低;苗期的落叶干物质量较小,蕾薹期后直线增加;叶片总干物质先增后减,花期达最大值。中油杂12号的落叶及叶片总干物质均高于华双5号,差异随生育期的推进逐渐明显。绿叶氮含量出苗后逐渐降低,后因越冬肥的施用又略有升高,蕾薹期后便迅速下降;落叶氮含量持续降低,苗后期降至最低点,其后一直保持稳定。绿叶磷含量在苗期缓慢增加,蕾薹期达到最大值,而后迅速下降;苗期落叶的磷含量逐渐降低,蕾薹期降至最低值,角果期后又略有升高。出苗50d后绿叶钾含量快速下降,70d达到最低值,其后保持稳定;落叶钾含量在蕾薹期达到最低值,其后波动较大。两品种叶片养分含量的变化趋势相似,但无论绿叶还是落叶,华双5号的养分含量总体略低于中油杂12号。绿叶的养分与叶片总养分积累的变化规律一致,即氮、磷、钾积累量均先增加后降低,分别在蕾薹期、苗后期和花期达到最高值。落叶的养分积累量在抽薹后迅速增加,收获期达最大值。华双5号叶片的干物质、N、P2O5、K2O转移率分别为25.5%、82.9%、75.4%、45.8%;中油杂12号则分别为8.4%、76.0%、60.2%、38.8%,品种间差异显著。

RATHKE G W, BEHRENS T, DIEPENBROCK W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review
Agriculture, Ecosystems & Environment, 2006,117:80-108.

[本文引用: 1]

张亚丽. 青海甘蓝型春油菜需肥特性研究
青海农林科技, 2014(3):1-3.

[本文引用: 1]

ZHANG Y L. Study on fertilizer requirement characteristic of spring rapeseedBrassica napus L. in Qinghai
Science and Technology of Qinghai Agriculture and Forestry, 2014(3):1-3. (in Chinese)

[本文引用: 1]

邹小云, 陈伦林, 李书宇, 邹晓芬, 张建模, 宋来强. 氮、磷、钾、 硼肥施用对甘蓝型杂交油菜产量及经济效益的影响
中国农业科学, 2011,44(5):917-924.

[本文引用: 1]

ZOU X Y, CHEN L L, LI S Y, ZOU X F, ZHANG J M, SONG L Q. Effect of nitrogen, phosphorus, potassium and boron fertilizers on yield and profit of hybrid rapeseed (Brassica napus L.)
Scientia Agricultura Sinica, 2011,44(5):917-924. (in Chinese)

[本文引用: 1]

马良, 朱玉祥, 沈足金. 施氮量对美玉7号玉米鲜穗产量、施肥效益及氮素利用率的影响
浙江农业科学, 2017,58(4):562-564.

[本文引用: 1]

MA L, ZHU Y X, SHEN Z J. Effects of nitrogen application on fresh ear yield, fertilization efficiency and nitrogen utilization rate of Meiyu No.7 maize
Journal of Zhejiang Agricultural Sciences, 2017,58(4):562-564. (in Chinese)

[本文引用: 1]

金雪丹. 基于产量、经济与环境效益的旱地冬小麦氮素合理施用阈值研究
[D]. 杨凌: 西北农林科技大学, 2019.

[本文引用: 1]

JIN X D. The threshold of optima N rate of winter wheat based on yield, economic efficiency and environmental impact in dryland
[D]. Yangling: Northwest A & F University, 2019. (in Chinese)

[本文引用: 1]

李红艳, 沈足金, 许甫金, 姚张良, 张乐平, 方明. 不同氮肥类型和氮素水平对直播晚稻嘉58产量和经济效益的影响
浙江农业科学, 2018,59(8):1344-1346.

[本文引用: 1]

LI H Y, SHEN Z J, XU F J, YAO J L, ZHANG L P, FANG M. Effect of type and application level of nitrogen fertilizer on yield and economic benefits in direct-seeding late rice Jia 58
Journal of Zhejiang Agricultural Sciences, 2018,59(8):1344-1346. (in Chinese)

[本文引用: 1]

王阳. 长期施用化肥对土壤有机质含量及其组成的影响
[D]. 吉林: 吉林农业大学, 2015.

[本文引用: 1]

WANG Y. Effect of long-term chemical fertilizer on content and composition of soil organic matter
[D]. Jilin: Jilin Agriculture University, 2015. (in Chinese)

[本文引用: 1]

相关话题/土壤 化学 作物 物质 技术