Potential Analysis of Reducing Chemical Nitrogen Inputs While Increasing Efficiency by Organic-Inorganic Fertilization in Winter Rapeseed Producing Areas of the Middle and Lower Reaches of the Yangtze River
JIANG QianHong,, LU ZhiFeng, ZHAO HaiYan, GUO JunJie, LIU WenBo, LING Ning,, GUO ShiWei1College of Resources and Environmental Sciences, Nanjing Agricultural University /Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing 210095通讯作者:
责任编辑: 李云霞
收稿日期:2019-09-12接受日期:2019-11-6网络出版日期:2020-07-16
基金资助: |
Received:2019-09-12Accepted:2019-11-6Online:2020-07-16
作者简介 About authors
蒋倩红,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (1299KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
蒋倩红, 陆志峰, 赵海燕, 郭俊杰, 刘文波, 凌宁, 郭世伟. 长江中下游冬油菜产区有机无机肥配施下减氮增效潜力分析[J]. 中国农业科学, 2020, 53(14): 2907-2918 doi:10.3864/j.issn.0578-1752.2020.14.014
JIANG QianHong, LU ZhiFeng, ZHAO HaiYan, GUO JunJie, LIU WenBo, LING Ning, GUO ShiWei.
0 引言
【研究意义】油菜是我国重要的粮油和能源作物,其产量的提高对于保障国家粮油安全至关重要。土壤氮素供应是限制油菜高产的主要因子之一[1],合理的化学氮肥投入对油菜稳产丰产发挥着不可忽视的作用。长江流域作为油菜的主产区,其种植面积占全国80%以上[2],然而该区域不合理施肥现象较为普遍,前人调查发现约30%的农户施肥过量[3]。过量施用氮肥无益于油菜增产,还会引发众多环境问题[4,5]。为积极响应国家化肥农药“双减”政策的要求[6],优化氮肥用量可实现油菜减氮增效的目标。不同区域油菜减氮潜力并不一致,就长江流域而言,在稳产前提下其下游地区化肥氮减量空间约为11%,中游和上游地区仅为8%和7%[3]。在现有生产管理措施下,部分区域依靠减施氮肥难以实现协同油菜减肥、增产和提效的目标[7,8],而有机无机配施作为一项有力的农业措施,能有效提高作物产量和化学氮肥利用效率。因此,构建有机无机配施技术模式可为长江中下游地区油菜增产增效提供理论依据。【前人研究进展】前人研究发现青海东部及甘肃天水两个春油菜产区,在保障产量的同时,施用有机肥可减少32%和8.1%的化肥氮用量[9,10]。而在长江中游湖南浏阳冬油菜产区,有机肥在稳产增产的前提下可替代化肥氮10%—30% [11],这些研究表明化肥氮的可替代比例在区域间存在较大差异。【本研究切入点】前人多数研究仅对单个地区油菜减肥潜力进行分析,忽视了不同区域气候、土壤特征等因素的影响。而本研究立足于长江中下游冬油菜主产区,针对不同地区气候特征、土壤肥力水平,综合探究有机肥投入对化肥氮减施的潜力,旨在形成一套具有区域特色的有机无机配施技术模式。【拟解决的关键问题】本研究分别在江苏高淳、湖南安仁、湖北沙洋、安徽休宁、安徽当涂四省(共5个地点)设立试验地,以冬油菜为研究对象,探究有机替代实现油菜减肥增效的可能性及区域适宜性,并确定不同地区在配施有机肥条件下的最佳化肥氮施用量,为建立以高产高效、环境友好为目标、有机无机配施为主要技术手段的区域施肥技术体系提供理论依据。1 材料与方法
1.1 试验地点
试验于2018年在江苏省南京市高淳区、湖南省郴州市安仁县、湖北省荆州市沙洋县、安徽省黄山市休宁县、安徽省马鞍山市当涂县5个地点展开,各试验点生育期依次为227、192、213、223及219 d。各试验点土壤基础理化和气候特征如表1所示,各试验点前茬作物均为水稻(高淳点除外)。Table 1
表1
表1试验点土壤基础理化和气候特征
Table 1
地点 Site | 生长季积温 Accumulated temperature in growing period (℃) | 生长季降水量 Precipitation in growing period (mm) | pH | 有机质 Soil organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 速效磷 Soil available phosphorus (mg·kg-1) | 速效钾 Soil available potassium (mg·kg-1) | 土壤质地 Soil texture |
---|---|---|---|---|---|---|---|---|
高淳Gaochun 31°19′10″ N, 119°07′54″ E | 2420 | 636 | 5.6 | 11.6 | 0.3 | 8.4 | 119.5 | 黏土Clay |
安仁 Anren 26°46′52″ N, 113°10′27″ E | 2159 | 968 | 5.1 | 29.8 | 1.5 | 27.3 | 50.2 | 壤土 Loam |
沙洋 Shayang 30°43′60″ N, 112°18′24″ E | 2211 | 368 | 5.3 | 20.2 | 1.5 | 22.6 | 160.3 | 壤土Loam |
休宁 Xiuning 29°37′23″ N, 118°11′59″ E | 2198 | 1079 | 5.5 | 36.5 | 2.2 | 48.7 | 106.1 | 黏土Clay |
当涂Dangtu 31°20′42″ N, 118°35′15″ E | 2284 | 644 | 7.0 | 42.1 | 2.0 | 28.2 | 97.4 | 砂土 Sandy |
新窗口打开|下载CSV
1.2 试验设计
本试验采用双因素设计,主因素为施用0和 2 250 kg·hm-2有机肥(施用有机肥用M表示),辅以设置6个氮水平,即化肥氮用量为0、90、 135、180、225、270 kg·hm-2 (分别用N0、N90、N135、N180、N225、N270表示),共12个处理,每个处理均设3次重复,随机区组排列,小区面积为50 m2 。所有试验点氮肥和有机肥用量统一,其中氮肥按照60%基肥+20%提苗肥+20%越冬肥比例施用,有机肥、磷肥、钾肥和硼肥一次性基施。高淳试验点磷肥、钾肥用量分别为:90和105 kg·hm-2;安仁、休宁、当涂试验点磷肥和钾肥用量分别为:60和75 kg·hm-2;沙洋试验点磷肥、钾肥用量分别为:75和75 kg·hm-2。此外,各试验点硼肥用量均为9 kg·hm-2。试验所用氮肥为尿素(N 46%)、磷肥为过磷酸钙(P2O5 12%)、钾肥为氯化钾(K2O 60%)、硼肥为硼砂(B 10.8%)。5个试验点均采用直播的播种方式,播种量为6 kg·hm-2,播种期为各地直播油菜的最佳时期。
1.3 试验材料
试验所用有机肥均由安徽宁国司尔特有机肥厂提供(有机质34.6%、N 2.22%、P2O5 6.94%、K2O 2.11%);氮、磷及钾肥均由试验点当地肥料经销商提供。种植品种均为当地生产中推荐和适宜的油菜品种,其中高淳为宁油18,安仁为湘油420,沙洋、休宁和当涂为华油杂62R。1.4 测定项目及方法
1.4.1 油菜籽粒收获 各试验点每个小区收割长势均匀的10 m2植株,装入网袋待风干后脱粒,称重并计产。
1.4.2 数据处理及分析
本研究采用线性加平台模型将油菜籽粒产量与化肥氮用量的关系进行拟合,模型由直线-平台两部分组成,直线与平台交点所对应的横坐标值为适宜的化肥氮用量(也称最佳化肥氮用量),其对应的C值为最佳产量。通过模型明确适合于不同区域的最佳化肥氮用量,以计算各区域节氮潜力[12]。
线性加平台模型:
Y=a + bx(x<joint)
Y=C(x≥joint)
式中,Y为油菜籽粒产量(kg·hm-2),a为截距,b为回归系数,x为化肥氮用量(kg·hm-2),C为最佳产量(kg·hm-2),joint为最佳化肥氮用量(kg·hm-2)。
1.4.3 参数计算[13]
化学氮肥偏生产力(kg·kg-1)=施氮区籽粒产量/化肥氮用量;
化学氮肥农学效率(kg·kg-1)=(施氮区籽粒产量-不施氮区籽粒产量)/化肥氮用量;
施用氮肥或有机肥增加产值(增加产值,元/hm2)=施肥处理产值(氮肥和有机肥)-不施氮处理产值(N0);
施用氮肥或有机肥增收效益(增收效益,元/hm2)=施用氮肥或有机肥增加产值-施用氮肥或有机肥成本-施用有机肥人工成本。
1.4.4 数据统计
试验数据用Excel 2007进行数据处理,SPSS 16.0和R 3.3.1进行数据统计分析。用LSD法检验处理间的显著性差异(P<0.05)。
2 结果
2.1 有机肥与化学氮肥配施对籽粒产量的影响
长江中下游各试验点氮肥和有机肥施用后冬油菜的产量变化规律总体一致(图1,表2)。单施化肥处理下,油菜籽粒产量与化肥氮用量呈线性加平台关系。在单施化肥时,各试验点的最佳化肥氮用量分别为高淳205 kg·hm-2、安仁213 kg·hm-2、沙洋237 kg·hm-2、休宁258 kg·hm-2、当涂202 kg·hm-2,其对应的最高产量分别为2 486、1 754、2 159、3 369和3 024 kg·hm-2。在N0处理下,与休宁(1 292 kg·hm-2)和当涂(1 414 kg·hm-2)相比,高淳、安仁、沙洋试验点油菜籽粒产量较低,分别为123、112和85 kg·hm-2。与单施化肥处理相比,增施有机肥可提高各氮肥处理下油菜籽粒产量(7.7%—43.3%),其中以安仁试验点增产幅度最高,休宁试验点最低(图1,表2)。增施有机肥处理下达到最高产量时的氮肥用量分别为:高淳195 kg·hm-2、安仁199 kg·hm-2、沙洋195 kg·hm-2、休宁179 kg·hm-2、当涂185 kg·hm-2,其对应的最高产量依次为2 777、2 514、2 342、3 629和3 577 kg·hm-2。图1
新窗口打开|下载原图ZIP|生成PPT图1施肥对油菜籽粒产量的影响及减氮潜力评估
◇表示在有机无机配施处理下达到最高产量时的化肥氮用量和籽粒产量;△表示在单施化肥处理下达到最高产量时的化肥氮用量和籽粒产量;☆表示有机无机配施下达到单施化肥最高产量时的化肥氮用量和籽粒产量。替代比例指在相同目标产量下,施用有机肥后化肥氮的减施比例。N:单施化肥处理;M+N:有机无机配施处理。下同
Fig. 1Effects of fertilization on rapeseed yield and evaluation on chemical N reduction potential
◇ Represents the highest yield and corresponding N application rate under the combination of manure and chemical fertilizer; △ Denotes the highest yield and corresponding N application rate in only application of chemical fertilizer; ☆ Indicates the N application rate when the rapeseed yield of combined treatment is same to the highest yield of only application of chemical fertilizer. Replacement ratio refers to the reduced ratio of nitrogen fertilizer according to on the purpose to achieve same yields. N: Only application of chemical fertilizer; M+N: Combination of manure and chemical fertilizer. The same as below
Table 2
表2
表2各试验点籽粒产量与化肥氮用量拟合关系式
Table 2
处理 Treatment | 高淳 Gaochun | 安仁 Anren | 沙洋 Shayang | 休宁 Xiuning | 当涂 Dangtu |
---|---|---|---|---|---|
N | y=12x+142, x<205 y=2486, x≥205 R2=0.947 | y=8.0x+46, x<213 y=1754, x≥213 R2=0.920 | y=8.8x+78, x<237 y=2159, x≥237 R2=0.980 | y=8.6x+1421, x<258 y=3369, x≥258 R2=0.918 | y=8.2x +1366, x<202 y=3024, x≥202 R2=0.899 |
M+N | y=7.0x+1452, x<195 y=2777, x≥195 R2=0.918 | y=10x+444, x<199 y=2514, x≥199 R2=0.904 | y=8.6x+659, x<195 y=2342, x≥195 R2=0.926 | y=9.7x+1887, x<179 y=3629, x≥179 R2=0.892 | y=7.3x+2223, x<185 y=3704, x≥185 R2=0.787 |
新窗口打开|下载CSV
2.2 化学氮肥减施潜力及其影响因子
通过图1模型可以得到与单施化肥相同最高产量下的有机无机配施方案,即各试验点增施有机肥均显著降低化肥氮用量并达到单施化肥处理下的最高产量,降幅可达26.7%—45.9%,其中以当涂试验点的化肥氮降幅最高,沙洋试验点最低。图2相关性分析结果显示,化肥氮可替代比例与土壤有机质含量之间呈显著正相关(P=0.016,R2=0.890),与土壤全氮、速效磷及速效钾含量之间无显著相关性。图2
新窗口打开|下载原图ZIP|生成PPT图2化肥氮可替代比例与土壤基本理化因子的关系
Fig. 2The relationships between the basic soil physio-chemical parameters and the substitutable proportion of chemical N fertilizer by organic fertilizer
2.3 有机肥与化学氮肥配施对油菜化学氮肥利用率的影响
由表3 所示,有机肥用量、化肥氮用量以及有机肥和氮肥交互作用均会影响油菜化学氮肥利用率。各试验点在单施化肥和增施有机肥处理下均表现为,随着施氮量增加,油菜化学氮肥偏生产力和农学效率呈下降趋势。等化肥氮用量下,增施有机肥能提升化学氮肥偏生产力和农学效率,高淳、安仁、沙洋、休宁和当涂5个试验点化学氮肥偏生产力分别增加31%、53%、33%、29%和24%,而化学氮肥农学效率依次提高36%、66%、26%、90%和50%,其中以安仁和休宁试验点效果较为显著。在同等化肥氮施用水平下,当化肥氮用量低于180 kg·hm-2时,增施有机肥处理下氮肥偏生产力和氮肥农学效率显著高于单施化肥处理(安仁点除外),且均以M+N90处理最高(沙洋点除外)。Table 3
表3
表3各施肥处理对油菜化学氮肥利用率的影响
Table 3
处理 Treatment | 氮肥偏生产力PFPN (kg·kg-1) | 氮肥农学效率AEN (kg·kg-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
高淳 Gaochun | 安仁 Anren | 沙洋 Shayang | 休宁 Xiuning | 当涂 Dangtu | 高淳 Gaochun | 安仁 Anren | 沙洋 Shayang | 休宁 Xiuning | 当涂 Dangtu | |
N0 | - | - | - | - | - | - | - | - | - | - |
N90 | 12.6±3.9 ab * | 7.2±1.0 bc ** | 9.6±0.4 ab ** | 19.0±0.4 a ** | 21.3±3.4 a * | 11.2±3.9 ab * | 5.9±1.0 a ** | 8.6±0.4 ab ** | 4.7±0.4 c ** | 7.6±0.3 bc * |
N135 | 13.7±1.4 a * | 9.4±2.4 a NS | 9.8±0.9 a * | 16.1±0.7 b ** | 19.7±1.1 a * | 12.8±1.4 a * | 7.3±3.2 a NS | 9.1±0.9 a * | 6.5±0.7 b ** | 9.2±1.1 a * |
N180 | 11.7±1.6 ab * | 8.7±0.4 ab ** | 8.4±1.0 bc * | 16.6±0.2 b ** | 15.5±1.1 b * | 11.0±1.6 ab * | 8.1±0.4 a ** | 8.0±1.0 ab * | 9.4±0.2 a ** | 7.7±1.1 ab * |
N225 | 11.0±0.5 ab NS | 8.3±0.3 ab ** | 9.5±0.0 ab NS | 13.5±1.3 c * | 13.3±0.5 bc ** | 10.5±0.5 ab NS | 7.8±0.3 a ** | 9.1±0.0 a NS | 7.7±1.3 b * | 7.0±0.5 bc ** |
N270 | 9.2±0.7 b NS | 6.1±0.3 c ** | 8.0±0.1 c ** | 12.5±0.9 c NS | 11.3±0.9 c NS | 8.8±0.7 b NS | 5.6±0.3 a ** | 7.7±0.1 b ** | 7.7±0.9 b NS | 6.1±0.9 c NS |
M+N0 | - | - | - | - | - | - | - | - | - | - |
M+N90 | 22.9±0.7 a | 14.8±0.4 a | 16.0±0.4 a | 26.8±1.3 a | 29.6±3.6 a | 21.5±0.7 a | 13.5±0.4 a | 15.0±0.4 a | 15.5±1.7 a | 13.8±3.6 a |
M+N135 | 17.4±1.8 b | 10.7±0.0 b | 13.5±1.6 b | 24.7±0.6 b | 23.6±1.1 b | 16.5±1.8 b | 9.9±0.0 bc | 12.8±1.6 b | 15.1±0.6 a | 13.1±1.1 a |
M+N180 | 15.2±0.6 b | 14.6±0.1 a | 11.9±0.9 b | 20.5±1.2 c | 19.6±1.9 c | 14.3±0.4 c | 14.0±0.1 a | 11.4±0.9 bc | 13.3±1.2 ab | 11.8±1.9 ab |
M+N225 | 12.4±1.0 c | 11.2±0.4 b | 9.9±0.8 c | 16.3±0.7 d | 15.9±0.3 d | 11.8±1.0 c | 10.7±0.4 b | 9.5±0.8 c | 10.5±0.7 bc | 9.6±0.3 bc |
M+N270 | 9.6±0.9 c | 8.6±0.3 c | 9.1±0.3 c | 13.1±0.8 e | 13.3±0.8 d | 10.0±0.8 c | 8.9±1.2 c | 8.8±0.3 c | 8.3±0.8 c | 8.0±0.8 c |
N | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
M | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
N×M | ** | ** | ** | ** | NS | ** | * | ** | ** | NS |
新窗口打开|下载CSV
2.4 有机肥与化学氮肥配施对油菜产值及收益的影响
表4结果显示,有机肥用量、有机肥与氮肥交互作用均显著影响安仁和沙洋试验点油菜增收效益。与N0处理相比,安仁、休宁及当涂试验点均在M+N180处理下增收效益最多,依次为8 915、1 0358和6 569元/hm2,而高淳和沙洋试验点在N225处理下增收效益最多,分别为11 252和8 500元/hm2。因此,就考虑氮肥和有机肥的增收效益而言,安仁、休宁及当涂3个试验点推荐采取有机无机配施技术模式,而高淳和沙洋试验点推荐单施化肥技术模式。Table 4
表4
表4不同施肥处理下的增加产值和增收效益评估(元/hm2)
Table 4
处理 Treatment | 高淳 Gaochun | 安仁 Anren | 沙洋 Shayang | 休宁 Xiuning | 当涂 Dangtu | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
增加产值 Increased production | 氮肥和 有机肥 成本 Chemical N and manure cost | 人工成本(施用有机肥) Labor cost Applying organic fertilizer | 增收 效益 Income increase benefit | 增加产值 Increased production | 氮肥和有机肥成本Chemical N and manure cost | 人工成本(施用有机肥) Labor cost Applying organic fertilizer | 增收 效益 Income increase benefit | 增加产值 Increased production | 氮肥和有机肥成本Chemical N and manure cost | 人工成本(施用有机肥) Labor cost Applying organic fertilizer | 增收效益 Income increase benefit | 增加产值 Increased production | 氮肥和有机肥成本Chemical N and manure cost | 人工成本(施用有机肥) Labor cost Applying organic fertilizer | 增收效益 Income increase benefit | 增加产值 Increased production | 氮肥和有机肥成本Chemical N and manure cost | 人工成本(施用有机肥) Labor cost Applying organic fertilizer | 增收效益 Income increase benefit | |
N0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
N90 | 5301 | 440 | - | 4860± 911cNS | 2559 | 440 | - | 2119± 216c** | 3647 | 440 | - | 3207± 92cNS | 2363 | 440 | - | 1923± 93cNS | 2313 | 440 | - | 1872± 712bNS |
N135 | 9030 | 660 | - | 8370± 503bNS | 4753 | 660 | - | 4093± 1039bNS | 5803 | 660 | - | 5142± 294bNS | 4906 | 660 | - | 4245± 251bNS | 5708 | 660 | - | 5048± 340aNS |
N180 | 10395 | 880 | - | 9515± 765abNS | 6981 | 880 | - | 6101± 169a** | 6743 | 880 | - | 5863± 438aNS | 9473 | 880 | - | 8592± 108aNS | 6363 | 880 | - | 5483± 445aNS |
N225 | 12352 | 1101 | - | 11252± 317aNS | 8441 | 1101 | - | 7340± 147aNS | 9601 | 1101 | - | 8500± 16a* | 9749 | 1101 | - | 8648± 830aNS | 7296 | 1101 | - | 6195± 256aNS |
N270 | 12413 | 1321 | - | 11092± 495aNS | 7318 | 1321 | - | 5997± 172aNS | 9746 | 1321 | - | 8426± 38a* | 11672 | 1321 | - | 10351± 714aNS | 7516 | 1321 | - | 6195± 590aNS |
M+N0 | 7060 | 1800 | 626 | 4634± 431d | 2178 | 1800 | 501 | -123± 4c | 2354 | 1800 | 585 | -31± 108d | 3712 | 1800 | 418 | 1494± 958c | 3632 | 1800 | 501 | 1331± 580b |
M+N90 | 10147 | 2240 | 626 | 7281± 163c | 5847 | 2240 | 501 | 3106± 87b | 7038 | 2240 | 585 | 4213± 588c | 7080 | 2240 | 418 | 4422± 759b | 6990 | 2240 | 501 | 4249± 1317a |
M+N135 | 11687 | 2460 | 626 | 8601± 647bc | 6424 | 2460 | 501 | 3463± 0b | 8148 | 2460 | 585 | 5102±498bc | 11446 | 2460 | 418 | 8567± 239a | 8146 | 2460 | 501 | 5185± 350a |
M+N180 | 13710 | 2680 | 626 | 10403± 290a | 12096 | 2680 | 501 | 8915± 52a | 9652 | 2680 | 585 | 6387± 362ab | 13456 | 2680 | 418 | 10358± 603a | 9751 | 2680 | 501 | 6569± 787a |
M+N225 | 13944 | 2901 | 626 | 10418± 597a | 11526 | 2901 | 501 | 8125± 218a | 10047 | 2901 | 585 | 6562± 409a | 13276 | 2901 | 418 | 9957± 443a | 9933 | 2901 | 501 | 6532± 147a |
M+N270 | 13869 | 3121 | 626 | 10122± 392ab | 11528 | 3121 | 501 | 7907± 776a | 11167 | 3121 | 585 | 7461± 197a | 12523 | 3121 | 418 | 8985± 624a | 9965 | 3121 | 501 | 6343± 505a |
N | ** | ** | ** | ** | ** | |||||||||||||||
M | NS | ** | ** | NS | NS | |||||||||||||||
N×M | NS | ** | * | NS | NS |
新窗口打开|下载CSV
2.5 养分贡献模式图
化肥和有机肥对油菜籽粒产量的贡献可分为四部分,分别为土壤基础肥力贡献、单施有机肥贡献、单施化肥贡献和有机肥促效贡献,其对油菜籽粒产量的贡献分别为605、751、1917和439 kg·hm-2 (图3)。各氮肥处理下,增施有机肥均能提高油菜籽粒产量,且在单施化肥处理达到最高产量时,增施有机肥可产生促效作用,进一步提高17.4%的作物产量。图3
新窗口打开|下载原图ZIP|生成PPT图3养分对油菜籽粒产量的贡献模型
图中各点均为各氮肥用量下5个试验点油菜籽粒的平均产量
Fig. 3Model of nutrient contribution to rapeseed yield
Each point in the figure is the average yield of rapeseed at five sites under different N rate
3 讨论
3.1 有机肥在油菜减肥增效中的作用
本研究综合考虑了化肥和有机肥对油菜籽粒产量的贡献。结果表明,在油菜生产中,有机肥与化学氮肥配施技术可实现化肥氮减施和增产促效的作用(图3)。据统计,我国油菜生产的氮肥平均用量为181 kg·hm-2,其中长江中游地区习惯施氮量与全国平均水平一致,而下游地区明显高于全国平均水平,为227 kg·hm-2 [7]。在配施2 250 kg·hm-2有机肥的条件下,投入109—174 kg·hm-2化肥氮即可达到各试验点单施化肥处理下的最高产量(图1),该氮肥投入量显著低于长江中下游流域的农民习惯用量[7],这可能是由于长期不合理的化肥施用破坏了该地区土壤结构并且降低了土壤对养分的固持能力[15],而有机肥投入不仅可以提供部分有效养分,还能活化土壤中难以溶解的氮磷钾养分,一定程度上提高了根际土壤养分[16],并能提升大团聚体的比例,改善土壤结构[17,18]。此外,前人研究表明有机肥施用能够改变土壤微生物区系特征,增加微生物多样性,增强土壤微生物-微生物之间的互作[19],进而促进作物生长,实现增产增效。油菜是一种低氮效率作物[20],而增施有机肥能有效提高作物氮肥利用率[21]。本研究结果显示,相比单施化肥处理,油菜化学氮肥偏生产力和农学效率在有机无机配施处理下分别提高24.4%—53.0%和26.3%—89.9%(表3),可能是由于有机肥中氮素营养释放缓慢,利于后期氮素的补充及其积累[22];有机肥的投入提供了丰富的碳源和氮源,促进土壤微生物增殖的同时增加氮的固定,避免了前期大量无机氮以氨挥发、淋洗等形式损失[23,24,25]。此外,增施有机肥能够改善土壤保水保肥性能,促进土壤养分的供应及作物的吸收,从而提高氮肥利用率[26]。然而,单施化肥处理在生长后期氮素难以得到充分转移和再利用,从而导致作物氮素需求和外源氮素供应不协调[27]。因此,有机无机配施可作为一种有效的技术手段,以提高油菜的氮肥利用率。
3.2 化肥氮减施潜力及区域间差异
本研究结果显示,增施有机肥可在稳产的基础上替代26.7%—45.9%的化肥氮,且不同地区减氮潜力不同,这可能是受到土壤地力条件的影响[28]。研究表明化肥氮的可替代比例与土壤有机质含量呈显著正相关(图2,P<0.05),土壤有机质是衡量土壤肥力的重要因子,有机质含量越高,说明土壤肥力越高[29]。总体来看,当涂、休宁和安仁试验点土壤有机质含量较高,其减氮空间较大,高淳和沙洋两个试验点基础土壤肥力低,其减氮空间较小(图1),这与张智等[30]的研究结果一致。高肥力土壤氮素持留和供应能力普遍高于低肥力土壤[31],施用有机肥后可产生激发效应促进土壤养分供应,显著提高微生物量及可溶性有机氮含量,以满足油菜后期生长的需求[32,33,34],因而具备更大的减氮空间。低肥力土壤形成的微生物群落功能相对较弱,在施用有机肥后因微生物的分解能力不足,土壤养分释放能力及活性氮量低于高肥力土壤[35],相应的其减氮空间较小。不同地区减氮潜力也会受到种植制度,气候条件等因素的影响[36,37],贺亚琴[38]指出有效积温是影响油菜生长的重要因素,当有效积温低于1 650℃时籽粒发育受抑制。此外,我国不同油菜产区在温度、降水和土壤性质等方面均有明显差异,因此其适宜的化肥氮用量不同[39,40,41]。本研究制定的有机无机配施技术对于长江中下游冬油菜主产区化肥氮减施具有一定的参考意义,然而不同地区的土壤肥力存在较大差异,应结合当地实际情况进行调整,进而为不同区域油菜施肥提供科学依据。3.3 有机无机配施的发展前景
经济效益评估结果显示,不同地区产值、有机肥和氮肥成本以及氮肥与有机肥增加收益均存在较大差异。其中高淳和沙洋试验点在单施化肥(225 kg N·hm-2)时氮肥与有机肥增收收益最多,而安仁、休宁和当涂试验点在单施化肥(180 kg N·hm-2)基础上增施有机肥时氮肥与有机肥增收收益最多(表4),说明有机肥投入在以上3个试验点能得到较高的经济回报。造成这种区域间差异的原因一方面是由于不同地区施用有机肥的增产效果不同(图1),另一方面可能是区域间土壤养分和施肥状况不同,进而产生肥料成本上的差异[42]。同时在这项研究中,我们发现过量的氮肥投入无益于油菜的增产增效,反而会增加肥料成本并且减少收益(表4),这与前人在玉米[43]、小麦[44]、番茄[45]等作物上的研究结果一致,且研究指出长期不合理施用化肥会破坏土壤结构、降低农田生态系统的稳定性[46]。试验结果也表明,安仁、休宁及当涂3个试验点均在增施有机肥条件下获得最高产量,且此时氮肥与有机肥增加收益最多(图1,表4),说明有机替代在长江中下游部分区域增产增效作用显著,可同时兼顾产量和经济效益,具有良好的发展前景。4 结论
在长江中下游部分冬油菜产区,增施有机肥对油菜具有增产增效作用。相比单施化肥,增施有机肥能够提高油菜产量,增产幅度为7.7%—43.3%。在配施2 250 kg·hm-2有机肥条件下,该地区可实现26.7%—45.9%化肥氮减施,同时达到与单施化肥相同的最高产量。此外,有机无机配施在不同区域对化肥氮的减施效果不同,土壤基础肥力越高,化肥氮可替代比例越高。综合考虑产量、经济效益,有机无机配施为长江中下游冬油菜产区的减肥增效的有效措施。致谢:
感谢华中农业大学的任涛副教授、沙洋县农业农村局杨运清高级农艺师、湖南农业大学宋海星教授、安徽省农科院侯树敏研究员、当涂县农业委员会胡现荣主任、休宁县农业技术推广中心陈宝才站长、江苏高淳禾田坊谷物种植家庭农场魏清技术员等提供指导与帮助。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[D]. ,
[本文引用: 2]
[D].
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
URL [本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 3]
[本文引用: 3]
[R]. ,
[本文引用: 1]
[R].
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1093/aob/mci091URLPMID:15701662 [本文引用: 1]
BACKGROUND AND AIMS: Despite its high capacity to take up nitrate from the soil, winter oilseed rape (Brassica napus) is characterized by a very low N recovery in the reproductive tissues under field conditions. A significant part of the N taken up is lost to the soil in dead leaves during the growth cycle. An accurate description of N dynamics at the whole plant level in each compartment under field conditions should lead to a better understanding of N allocation in B. napus and improvements in the nitrogen harvest index. METHODS: An experiment was conducted in field conditions using sequential weekly 15N labelling to follow N uptake, partitioning and mobilization. Nitrogen labelling (2.5 kg N ha(-1); 10 % excess) was analysed weekly (from stem extension to harvest) to distinguish between uptake of new N (labelled) and mobilized N (unlabelled) in the different plant components. KEY RESULTS AND CONCLUSIONS: N requirements for seed filling were satisfied mainly by N mobilized from vegetative parts (about 73 % of the total N in pods). Determination of the endogenous N flow showed that there was net transfer of N to the pods by leaves (36 %), stem (34 %), inflorescences (22 %) and taproot (8 %). Precise study of N flow from leaves at different nodes revealed the existence of two main groups of leaves in terms of their apparent capacity to mobilize N; 30-60 % and 70-80 % of peak N content occurring during flowering and pod filling, respectively. Moreover, the latter group was found to be the main source of endogenous N from leaves. The mobilization of endogenous N from these leaves was prolonged and concomitant with N accumulation in the pods. A complex pattern of N mobilization from the leaves, to vegetative or reproductive tissues, was revealed. These results will be used to model N partitioning during the growth cycle.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1016/j.apsoil.2007.01.007URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2016.13.012URL [本文引用: 1]
【Objective】 The objective of this study is to research the effect of different nitrogen (N) application rates on soil labile N pools transformations (soil mineral N-SMN; soil soluble N-SSON; soil microbial biomass N-SMBN) and N use efficiency in soils after application of N fertilizer at wheat (Triticum aestivum L.) booting stage. 【Method】 A pot experiment with 15N isotopic tracer technique was conducted to study the soil labile N pools and the effect of supply N in different fertilization managements for 37 years (poor soil-NF: no application of fertilizer; low fertility soil-LF: inorganic fertilizer; moderate fertility soil-MF: low rate of organic fertilizer with inorganic fertilizer; high fertility soil-HF: high rate of organic fertilizer with inorganic fertilizer) after application of three different application rates of N (N0: 0, N1: 135 kg·hm-2, N2: 180 kg·hm-2) in soil and their relationships. 【Result】 SMN and SSON were the highest in the N1 treatment and then decreased with the application rate of N, but SMBN performed opposite tendency with the application rate of N, they were firstly decreased and then increased, and the highest in the N2 treatment. In the same application rate of N, SMN and SSON generally decreased in the order: high fertility soil>moderate fertility soil>low fertility soil>poor soil, while SMBN generally decreased in the order: high fertility soil>moderate fertility soil>poor soil>low fertility soil (P<0.05). The increased amplitude of SMN, SSON and SMBN after addition of N into soils with different fertilities were the highest in the low fertility soil treatments, and were the lowest in the high fertility soil treatments. The soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer generally decreased in the order: high fertility soil>moderate fertility soil>low fertility soil>poor soil (P<0.05), respectively. The percentage of N from ammonium sulfate fertilizer by wheat to total N uptake by wheat generally decreased in the order: low fertility soil>moderate fertility soil>high fertility soil>poor soil (P<0.05). In the same soil fertility, the soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer were firstly decreased and then increased with the application rate of N, and were the highest in the N1 treatment (P<0.05), as a whole, N from ammonium sulfate fertilizer by wheat/total N uptake ratio averaged 44%; meanwhile, the loss of 15N-labeled fertilizer generally decreased in the order: poor soil>low fertility soil>moderate fertility soil>high fertility soil (P<0.05). Furthermore, significant positive relationships were found between soil labile N pools and the soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer (P<0.05). 【Conclusion】 In this experiment, appropriate application rate of N fertilizer (N3, 135 kg·hm-2) in high fertility soil is beneficial to soil labile N pools transformations and has a high ability to synchronize the relationship between soil N supply and N requirements of crops, and increased the NUE, decreased the loss of fertilizer, so it may be an effective strategy for maintaining long-term soil fertility.
DOI:10.3864/j.issn.0578-1752.2016.13.012URL [本文引用: 1]
【Objective】 The objective of this study is to research the effect of different nitrogen (N) application rates on soil labile N pools transformations (soil mineral N-SMN; soil soluble N-SSON; soil microbial biomass N-SMBN) and N use efficiency in soils after application of N fertilizer at wheat (Triticum aestivum L.) booting stage. 【Method】 A pot experiment with 15N isotopic tracer technique was conducted to study the soil labile N pools and the effect of supply N in different fertilization managements for 37 years (poor soil-NF: no application of fertilizer; low fertility soil-LF: inorganic fertilizer; moderate fertility soil-MF: low rate of organic fertilizer with inorganic fertilizer; high fertility soil-HF: high rate of organic fertilizer with inorganic fertilizer) after application of three different application rates of N (N0: 0, N1: 135 kg·hm-2, N2: 180 kg·hm-2) in soil and their relationships. 【Result】 SMN and SSON were the highest in the N1 treatment and then decreased with the application rate of N, but SMBN performed opposite tendency with the application rate of N, they were firstly decreased and then increased, and the highest in the N2 treatment. In the same application rate of N, SMN and SSON generally decreased in the order: high fertility soil>moderate fertility soil>low fertility soil>poor soil, while SMBN generally decreased in the order: high fertility soil>moderate fertility soil>poor soil>low fertility soil (P<0.05). The increased amplitude of SMN, SSON and SMBN after addition of N into soils with different fertilities were the highest in the low fertility soil treatments, and were the lowest in the high fertility soil treatments. The soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer generally decreased in the order: high fertility soil>moderate fertility soil>low fertility soil>poor soil (P<0.05), respectively. The percentage of N from ammonium sulfate fertilizer by wheat to total N uptake by wheat generally decreased in the order: low fertility soil>moderate fertility soil>high fertility soil>poor soil (P<0.05). In the same soil fertility, the soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer were firstly decreased and then increased with the application rate of N, and were the highest in the N1 treatment (P<0.05), as a whole, N from ammonium sulfate fertilizer by wheat/total N uptake ratio averaged 44%; meanwhile, the loss of 15N-labeled fertilizer generally decreased in the order: poor soil>low fertility soil>moderate fertility soil>high fertility soil (P<0.05). Furthermore, significant positive relationships were found between soil labile N pools and the soil N supply, NUE, N uptake by wheat and assimilated 15N-labeled fertilizer (P<0.05). 【Conclusion】 In this experiment, appropriate application rate of N fertilizer (N3, 135 kg·hm-2) in high fertility soil is beneficial to soil labile N pools transformations and has a high ability to synchronize the relationship between soil N supply and N requirements of crops, and increased the NUE, decreased the loss of fertilizer, so it may be an effective strategy for maintaining long-term soil fertility.
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
DOI:10.1038/s41598-017-08164-xURLPMID:28798315 [本文引用: 1]
Evaluating the effects of agroclimatic constraints on winter oilseed rape (WOSR) yield can facilitate the development of agricultural mitigation and adaptation strategies. In this study, we investigated the relationship between the WOSR yield and agroclimatic factors using the yield data collected from Agricultural Yearbook and field experimental sites, and the climate dataset from the meteorological stations in Hubei province, China. Five agroclimatic indicators during WOSR growth, such as >/=0 degrees C accumulated temperature (AT-0), overwintering days (OWD), precipitation (P), precipitation at an earlier stage (EP) and sunshine hours (S), were extracted from twelve agroclimatic indices. The attainable yield for the five yield-limiting factors ranged from 2638 kg ha(-1) (EP) to 3089 kg ha(-1) (AT-0). Farmers (Y farm ) and local agronomists (Y exp ) have achieved 63% and 86% of the attainable yield (Y att ), respectively. The contribution of optimum fertilization to narrow the yield gap (NY exp ) was 52% for the factor P, which was remarkably lower than the mean value (63%). Overall, the precipitation was the crucial yield-limiting agroclimatic factor, and restricted the effect of optimizing fertilization. The integrated data suggest that agricultural strategies of mitigation and adaptation to climatic variability based on different agroclimatic factors are essential for improving the crop yield.
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
DOI:10.11674/zwyf.2011.0481URL [本文引用: 1]
为优化当季和下季作物的养分管理,采用田间试验研究了冬油菜品种:华双5号与中油杂12号叶片的干物质及氮、磷、钾的积累及转移规律,并比较了品种间的异同。结果表明,两个油菜品种的绿叶干物质量在苗后期基本达最大值,花后期迅速降低;苗期的落叶干物质量较小,蕾薹期后直线增加;叶片总干物质先增后减,花期达最大值。中油杂12号的落叶及叶片总干物质均高于华双5号,差异随生育期的推进逐渐明显。绿叶氮含量出苗后逐渐降低,后因越冬肥的施用又略有升高,蕾薹期后便迅速下降;落叶氮含量持续降低,苗后期降至最低点,其后一直保持稳定。绿叶磷含量在苗期缓慢增加,蕾薹期达到最大值,而后迅速下降;苗期落叶的磷含量逐渐降低,蕾薹期降至最低值,角果期后又略有升高。出苗50d后绿叶钾含量快速下降,70d达到最低值,其后保持稳定;落叶钾含量在蕾薹期达到最低值,其后波动较大。两品种叶片养分含量的变化趋势相似,但无论绿叶还是落叶,华双5号的养分含量总体略低于中油杂12号。绿叶的养分与叶片总养分积累的变化规律一致,即氮、磷、钾积累量均先增加后降低,分别在蕾薹期、苗后期和花期达到最高值。落叶的养分积累量在抽薹后迅速增加,收获期达最大值。华双5号叶片的干物质、N、P2O5、K2O转移率分别为25.5%、82.9%、75.4%、45.8%;中油杂12号则分别为8.4%、76.0%、60.2%、38.8%,品种间差异显著。
DOI:10.11674/zwyf.2011.0481URL [本文引用: 1]
为优化当季和下季作物的养分管理,采用田间试验研究了冬油菜品种:华双5号与中油杂12号叶片的干物质及氮、磷、钾的积累及转移规律,并比较了品种间的异同。结果表明,两个油菜品种的绿叶干物质量在苗后期基本达最大值,花后期迅速降低;苗期的落叶干物质量较小,蕾薹期后直线增加;叶片总干物质先增后减,花期达最大值。中油杂12号的落叶及叶片总干物质均高于华双5号,差异随生育期的推进逐渐明显。绿叶氮含量出苗后逐渐降低,后因越冬肥的施用又略有升高,蕾薹期后便迅速下降;落叶氮含量持续降低,苗后期降至最低点,其后一直保持稳定。绿叶磷含量在苗期缓慢增加,蕾薹期达到最大值,而后迅速下降;苗期落叶的磷含量逐渐降低,蕾薹期降至最低值,角果期后又略有升高。出苗50d后绿叶钾含量快速下降,70d达到最低值,其后保持稳定;落叶钾含量在蕾薹期达到最低值,其后波动较大。两品种叶片养分含量的变化趋势相似,但无论绿叶还是落叶,华双5号的养分含量总体略低于中油杂12号。绿叶的养分与叶片总养分积累的变化规律一致,即氮、磷、钾积累量均先增加后降低,分别在蕾薹期、苗后期和花期达到最高值。落叶的养分积累量在抽薹后迅速增加,收获期达最大值。华双5号叶片的干物质、N、P2O5、K2O转移率分别为25.5%、82.9%、75.4%、45.8%;中油杂12号则分别为8.4%、76.0%、60.2%、38.8%,品种间差异显著。
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D].
[本文引用: 1]