LCA-Based Assessment of Hulunber Ecological Grassland Technology Integration Demonstration
LIU XinChao1,2,3, WANG LuLu1,4, WU RuQun1,5, XIN XiaoPing1, SUN HaiLian2,3, JIANG MingHong6, LI XiaoShuang7, WANG Miao1,4, LIU Yun4, SHAO ChangLiang,11Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 2Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; 3Inner Mongolia Prataculture Research Center, Chinese Academy of Sciences, Hohhot 010031, China 4School of Biology, Resources and Environment, Beijing Agricultural College, Beijing 102206, China 5Center for Global Change and Earth Observations, Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA 6College of Primary Education, Hulunber University, Hulunber 021008, Inner Mongolia, China 7Inner Mongolia Hohhot Jingu Agricultural Commercial Bank Co., Ltd, Hohhot 010050, China
Received:2019-09-16Accepted:2020-02-19Online:2020-07-01 作者简介 About authors 刘欣超,E-mail: liuxinchao3211@126.com。
摘要 【目的】 对天然草场修复过程中的经济环境综合效益进行评估。【方法】 基于全生命周期分析(LCA)方法对内蒙古呼伦贝尔市谢尔塔拉牧场奶牛集约化养殖-牲畜粪便处理(包括菌剂发酵有机肥、蚯蚓养殖生成有机肥和蘑菇种植3种模式),利用谢尔塔拉农场奶牛集约化养殖、牲畜粪便处理利用、天然草场改良数据和当地畜牧生产经营物料投入数据相结合,建立不同养殖模式下牛奶生产的生命周期清单,从畜牧生产全生命周期的角度对牲畜饲养、粪便处理利用和草场修复这整个草原畜牧生产循环过程中每生产1 t标准牛奶(FPCM)的资源环境综合成本(温室气体排放、土地占用、耗水量和不可再生能源消耗)和总体经济效益进行定量分析。【结果】 牧户散养奶牛和集约化奶牛养殖场在出售牲畜和牛奶方面产生的毛收益分摊在每头成年母牛上分别为0.89和2.11万元,如扣除经营成本,两种乳牛饲养模式下每头成年母牛产生的净收益分别为0.42万元(牧户散养)和0.41万元(集约化养殖)。此外集约化养殖场每生产1 t FPCM造成的环境影响为:占用草场1.19 hm2、占用耕地0.15 hm2、耗水216.47 t、消耗化石燃料1 944.19 MJ、排放温室气体0.73 t二氧化碳当量(CO2eq)。当地散养牧户生产牛奶除去草场占用面积(3.25 hm2)外,造成的环境影响(占用耕地0.04 hm2、耗水70.70 t、消耗化石燃料892.80 MJ、排放温室气体0.55 t CO2eq)均小于集约化奶牛养殖场。开展天然打草场改良可显著增加每公顷草地牧草产出(增幅68.57%)和收益(增长10.71%),改良后生产1 t FPCM可降低40.50%的草场占用面积。但改良中施肥和燃料消耗的增加会造成温室气体排放(增加17.70倍)、燃料消耗(增加2.10倍)等环境问题。在牲畜粪便处理利用技术应用方面,集约化养殖场产生的牛粪通过发酵有机肥、蚯蚓处理牛粪和蘑菇种植等处理利用方式,在解决牲畜饲养中粪便污染问题的同时,创造的净收益相当于生产牛奶净收益的5%—12%,整体看带来的环境影响相对较少。【结论】 集约化养殖场在提高草原利用效率方面优势明显,在提升饲料能量转化效率、提升牛奶产量和质量方面具有很大的潜力,但是会增加苜蓿、燕麦等高蛋白饲草料的种植面积,在控制牛奶生产中的温室气体排放、水资源和能源消耗等方面会产生不利影响。此外,天然打草场改良和牲畜粪便处理利用技术在呼伦贝尔当地畜牧产业中具有较大的应用潜力。 关键词:全生命周期分析;集约化养殖;季节性放牧;环境影响
Abstract 【Objective】 This study evaluated the comprehensive environmental effect of the process of intensive cow breeding-livestock manure utilization-natural grassland improvement. 【Method】 At first, the life cycle inventory of the milk produced under different dairy cattle cultivation modes was established. Then the comprehensive environment effects (greenhouse gas emissions, land occupation, water consumption and non-renewable energy consumption) and overall economic benefits in the whole life cycle of milk production were quantitatively analyzed by combining the experimental data of intensive cow breeding, manure utilization (including microbial fermentation organic fertilizer, earthworm breeding organic fertilizer, and mushroom breeding) and natural grassland improvement with the input data of local animal production and management. The function unit was 1 ton of standard milk (FPCM) in this analysis. 【Result】 The results showed that the mean gross income of local herdsmen’s grazing farms and intensive dairy farms was 8 900 yuan and 211 yuan per adult cow, respectively. If the operating cost was deducted, the net income of each adult cow in the two modes was 4 200 yuan (herdsmen’s grazing farm) and 4 100 yuan (intensive farm), respectively. The environmental impact caused by the production of 1 ton FPCM in intensive farm was 1.19 hm2 of grassland, 0.15 hm2 of arable land, 216.47 t of water, 1 944.19 MJ of fossil fuel and 0.73 t of CO2eq of greenhouse gas. In addition to the grassland area (3.25 hm2), the environmental impact of milk production by herdsmen’s grazing farms were less than that of intensive dairy farms (0.04 hm2 of cultivated land, 70.70 t of water, 892.80 MJ of fossil fuel and 0.55 t of CO2eq greenhouse gas). Natural clipped grassland improvement could significantly increase the hay yield per hectare grassland (increased for 68.57%) and income (increased for 10.71%), it could reduce the grassland area occupied by 40.50%, but the increase of fertilization and fuel consumption in the improvement would cause environmental problems (such as more greenhouse gas emissions 17.70 times) and more fuel consumption (2.10 times). In terms of the application of livestock manure treatment and utilization technology, the cattle manure produced by intensive farms was treated and utilized through microbial fermentation, earthworm treatment and mushroom cultivation, the net income generated was equivalent to about 5%-12% of the net income generated by milk production, and the overall environmental impact was relatively small. 【Conclusion】 Intensive farms had obvious advantages in improving grassland utilization efficiency, and had great potential in improving feed energy conversion efficiency, as well as milk yield and quality. However, intensive dairy farming would increase the planting area of alfalfa, oats and other high protein forages, and cause adverse environmental effects such as more greenhouse gas emissions, more water and energy consumption. In addition, the technology of natural grassland improvement and livestock manure treatment and utilization had great application potential in Hulunber animal husbandry. Keywords:life cycle assessment;intensive farming;seasonal grazing;environmental impact
PDF (470KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 刘欣超, 王路路, 吴汝群, 辛晓平, 孙海莲, 姜明红, 李晓爽, 王淼, 刘云, 邵长亮. 基于LCA的呼伦贝尔生态草牧业技术集成示范效益评估[J]. 中国农业科学, 2020, 53(13): 2703-2714 doi:10.3864/j.issn.0578-1752.2020.13.018 LIU XinChao, WANG LuLu, WU RuQun, XIN XiaoPing, SUN HaiLian, JIANG MingHong, LI XiaoShuang, WANG Miao, LIU Yun, SHAO ChangLiang. LCA-Based Assessment of Hulunber Ecological Grassland Technology Integration Demonstration[J]. Scientia Acricultura Sinica, 2020, 53(13): 2703-2714 doi:10.3864/j.issn.0578-1752.2020.13.018
天然草地改良数据来自于中国农业科学院呼伦贝尔草原生态系统国家野外科学观测实验站2013—2018年在呼伦贝尔草甸草原地区开展的天然打草场改良试验。试验中物料投入和干草产出数据如表1所示,施肥周期为5年,其中第一年每hm2草场施加225 kg磷酸二铵底肥,并追施150 kg尿素,随后4年不施加肥料,每年8月中旬开始打草,每hm2草场打草消耗柴油6.6 L。本研究依据IPCC(2006)《国家温室气体清单指南》中的相关建议参数选择化肥氮输入N2O直接排放系数为:0.01(kg N2O-N/kg N),而农业机械柴油燃烧中温室气体排放因子为EFCO2:74 100 kg CO2-C/TJ,EFCH4:4.15 kg CH4/TJ,EFN2O:28.6 kg N2O/TJ。
Table 1 表1 表1集约化和牧户散养奶牛生产经营投入产出比较 Table 1Comparison of input and output of dairy cattle breeding between intensive and herdsman family farm
Table 2 表2 表2奶牛饲养温室气体排放计算参数 Table 2Greenhouse gas emissions of dairy cattle
JY1)
SY2)
JY+SY
肠道甲烷 Ruminant methane emission (kg CH4/head/year)
肠道甲烷 Ruminant methane emission (kg CH4/head/year)
粪便甲烷 Methane emission from manure (kg CH4/head/year)
泌乳奶牛Lactating cow
115.00
61.00
9.00
非泌乳奶牛Non lactating cow
53.00
47.00
1.00
牛犊Calf
11.70
10.40
1.00
育肥牛Finishing cow
40.56
36.15
1.00
1)根据饲养方式和产奶量,采用北美和欧洲奶牛建议值的均值,非泌乳母牛采用两地其他牛的均值,牛犊和育肥牛通过体重比值的0.75次方调整;2)根据饲养方式和产奶量,泌乳母牛采用亚洲奶牛建议值,非泌乳母牛采用亚洲其他牛的均值,牛犊和育肥牛通过体重比值的0.75次方调整 1) According to the feeding method and milk yield, the mean value of the recommended value of North American and European cows is used, the mean value of other cows in the two places is used for non lactating cows, and the calf and fattening cattle are adjusted by 0.75 power of the weight ratio; 2) According to the feeding method and milk yield, the recommended value of Asian cows is used for lactating cows, the mean value of other cows in Asia is used for non lactating cows, and the weight of calves and fattening cattle is used 0.75 power adjustment of the ratio
Table 3 表3 表3不同养殖模式下每头成年母牛产生的经济效益及生产1 t FPCM的环境成本 Table 3Economic benefits per cow and environmental costs per 1 ton FPCM
SY
JY
均值 Mean
最大值 Max
最小值 Min
经济效益(万元) Economic performance (10000 CNY)
毛收益Gross revenue
0.89
1.27
0.81
2.11
总投入Inputs
0.47
0.49
0.44
1.70
净收益Net profit
0.42
0.80
-0.34
0.41
草场占用面积(公顷) Grassland occupation (hm2)
牧户打草场Clipping pasture
0.83
2.73
0.00
0.00
牧户开垦饲料地Fodder farmland
0.00
0.01
0.00
0.00
买入干草所需草场Clipping pasture for purchased hay
2.42
7.86
0.29
1.19
草地占用合计Total grassland occupation
3.25
8.90
0.89
1.19
耕地占用(公顷) Arable land occupation (hm2)
买入本市饲草料所需耕地Arable land occupation in same city
0.02
0.06
0.00
0.08
买入市外饲草料所需耕地Arable land occupation in other city
0.02
0.04
0.00
0.07
耕地占用合计Total arable land occupation
0.04
0.10
0.01
0.15
用水情况 Water consumption (t)
买入本市饲草料灌溉水量Irrigation water consumption in same city
19.84
72.85
0.00
72.27
买入市外饲草料灌溉水量Irrigation water consumption in other city
45.15
85.16
0.00
138.62
牧户开垦草场灌溉水量Irrigation water consumption in farm
1.31
9.20
0.00
0.00
牧场牲畜需水量Water consumption for livestock
4.40
6.28
2.10
5.58
用水量合计Total water consumption
70.70
160.12
20.79
216.47
化石能源消耗Fossil energy consumption(MJ)
892.80
1675.85
305.41
1944.19
温室气体排放 Greenhouse gas emission (t CO2eq)
牲畜肠道甲烷排放Ruminant Methane Emission
0.45
0.62
0.20
0.52
牲畜粪便甲烷排放Methane emissions from manure
0.02
0.05
0.00
0.02
牧场燃料消耗Fuel burning emission
0.06
0.11
0.02
0.12
化肥排放Emissions from fertilizer applied
0.01
0.04
0.00
0.06
饲草料运输排放Emissions from transport
0.01
0.02
0.00
0.01
总量Total emissions
0.55
0.78
0.31
0.73
本表中数据来自于2018年呼伦贝尔市谢尔塔拉牧场牧民生产经营情况的问卷调查,按照FAO(2011)换算标准并根据中国奶业年鉴(2017)中数据将不同养殖模式下生产的牛奶矫正为4%乳脂和3.3%乳蛋白含量的FPCM标准牛奶 The data in this table are from the questionnaire survey on the production and operation of herdsmen in Xieertala ranch, Hulunber city in 2018. According to the FAO (2011) conversion standard and the data in China Dairy Yearbook (2017), the milk produced under different breeding modes is corrected to FPCM standard milk with 4% milk fat and 3.3% milk protein content
小规模牧户散养和大规模集约化养殖两种经营模式生产1 t FPCM所占用土地面积差异显著。当地小规模奶牛散养牧户所生产的牛奶主要通过私人流动奶贩转销,其售价远低于集约化养殖场。出于降低饲养成本的考虑,奶牛散养牧户夏季(6—9月)主要将奶牛驱赶至当地公共放牧场采食青草,在冬季舍饲阶段,散养牧户基本选择依靠自家打草场收获牧草并购买干草作为奶牛的主要食物,因此散养牧户生产1 t FPCM所需的草场面积为3.25 hm2,高于集约化养殖场1.19 hm2的草场占用面积。
集约化奶牛养殖厂牛奶主要供给当地乳品企业,对牛奶质量如乳脂、乳蛋白含量等指标要求较高,此外,集约化、标准化饲养模式下,需对饲料配方进行优化,提高了苜蓿、燕麦、青储玉米、精饲料等高质量饲草料的饲喂比例。生产以上饲料需要占用耕地资源,因此,集约化养殖场生产1 t FPCM占用的耕地面积(0.15 hm2)远高于散养牧户(0.04 hm2)。
水资源消耗方面,无论是集约化养殖场还是奶牛散养牧户,牛奶生产中耗水量最大的部分来自于饲草料种植过程,分别占总耗水量的97.42%(集约化养殖场)和93.78%(奶牛散养牧户)。集约化养殖场生产1 t FPCM消耗水资源总量为216.47 t,为散养牧户生产1 t FPCM耗水量的3.06倍,两者间的巨大差异主要是由于种植集约化养殖场所需饲草料耗水远高于小规模散养牧户所致。但值得注意的是,如果只考虑养殖场或牧户直接消耗的水资源,集约化养殖场耗水量还要略低于散养牧户,生产同样数量FPCM耗水量为后者的97.70%,因此,如从谢尔塔拉牧场当地水资源消耗的角度来看,两种奶牛养殖模式无明显差异。
不可再生能源消耗方面,集约化养殖场生产1 t FPCM消耗能源1 944.19 MJ,相当于散养牧户的2.18倍。相应的集约化养牛场能源消耗带来的温室气体排放也达到了散养牧户的两倍左右,分别占两种养殖模式温室气体总体排放的10.91%(散养牧户)和16.44%(集约化养殖场)。两种奶牛养殖模式下,牛肠道甲烷排放是主要排放源,分别达到了总体排放的81.80%(散养牧户)和71.23%(集约化养殖场)。
2.2 不同牲畜粪便处理利用模式的环境效应
3种牲畜粪便处理利用模式的经济效益和环境影响如表4所示,对于直接发酵有机肥(FJ)、蚯蚓处理牛粪(QY)和蘑菇种植(MG)来说,处理1 t牛粪经济收益分别为85、126和178元。耗水量分别为0.98 t(MG)、1.00 t(QY)和1.40 t(FJ),对于化石能源消耗和相应的温室气体排放来说,牛粪种植蘑菇处理模式消耗能源(193.29 MJ)和温室气体排放最高(14.88 kg CO2eq),养殖蚯蚓消耗最低(74.87 MJ),同时温室气体排放也最低(5.76 kg CO2eq)。
Table 4 表4 表4处理1 t干牛粪产生经济效益和环境影响 Table 4Economic benefits and environmental impact of 1 ton of dry cow manure
本研究根据集约化奶牛养殖场的牲畜粪便生成量和饲草消耗情况,将奶牛集约化养殖、天然打草场改良和牲畜粪便处理利用这3个呼伦贝尔生态草牧业关键技术环节集成起来,估算整个产业链条上的综合环境影响和经济效益(表7)。从净收益来看,每生产1 t FPCM,集约化养殖场净收益为686.19元,未改良打草场出售牧草净收益为499.80元,合计经济收益1 185.99元。当集约化养殖场与打草场改良技术集成后,每生产1 t FPCM为改良打草场带来的净收益为329.22元,相较未改良草场净收益下降34.13%,但改良后生产1 t FPCM所需打草场面积仅为0.71 hm2,节约40.50%的草场占用面积。除草地占用外,天然打草场改良增加了能源消耗的10.48%和温室气体排放的14.86%。在牲畜粪便处理利用技术应用方面,集约化养殖场生产1 t FPCM所产生的牛粪通过发酵有机肥、蚯蚓处理牛粪和蘑菇种植,分别可创造净收益40.72、60.78和85.36元,相当于生产牛奶产生净收益的5.93%、8.86%和12.44%,与此同时,整体来看以上3种粪便处理方式带来的环境影响相对较少,用水量增幅不到1%,消耗不可再生能源分别增加2.22%(发酵)、1.72%(蚯蚓)和4.45%(蘑菇)。但同时需要说明的是,由于本研究中对于不同牲畜粪便处理方式中温室气体排放的情况并不明确,因此本文对于牛粪发酵有机肥、蚯蚓处理和蘑菇种植过程中相应温室气体排放情况没有开展进一步评估。
Table 7 表7 表7呼伦贝尔生态草牧业技术集成生产1 t FPCM的综合环影响和经济效益 Table 7Comprehensive environmental impact and economic benefits of integrated production of 1 ton FPCM by Hulunber ecological grass and animal husbandry technology
WATTIAUX MA, UDDIN ME, LETELIERP, JACKSON RD, LARSON RA. Emission and mitigation of greenhouse gases from dairy farms: The cow, the manure, and the field , 2019,35(2):238-254. [本文引用: 1]
GERBER PJ, STEINFELDH, HENDERSONB, MOTTETA, OPIOC, DIJKMANJ, FALCUCCIA, TEMPIOG. Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities , 2013. [本文引用: 1]
PIRLOG, LOLLIS. Environmental impact of milk production from samples of organic and conventional farms in Lombardy (Italy) , 2019,211:962-971. [本文引用: 2]
WANG XQ, LEDGARDS, LUO JF, GUO YQ, ZHAO ZQ, GUOL, LIUS, ZHANG NN, DUAN XQ, MAL. Environmental impacts and resource use of milk production on the north China plain, based on life cycle assessment , 2018,625:486-495. [本文引用: 3]
HUANG WQ, DONG HM, ZHU ZP, LIUC, TAO XP, WANGY. Research progress and analysis of carbon footprint of livestock products Scientia Agricultura Sinica, 2015,48(1):93-111. (in Chinese) [本文引用: 1]
NIR. Dairy farm waste emissions and improvement of treatment mode and process of wastewater in Hohhot [D]. Hohhot:Inner Mongolia University, 2016. (in Chinese) [本文引用: 1]
JIANG MH, LIU XC, TANG HJ, XIN XP, CHEN JQ, DONGG, WU RQ, SHAO CL. Research progress and prospect of life cycle assessment in animal husbandry Scientia Agricultura Sinica, 2019,52(9):1635-1645. (in Chinese) [本文引用: 3]
NOTARNICOLAB, SALAS, ANTONA, MCLAREN SJ, SAOUTERE, SONESSONU. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges , 2017,140:399-409. [本文引用: 1]
MCCLELLAND SC, ARNDTC, GORDON DR, THOMAG. Type and number of environmental impact categories used in livestock life cycle assessment: A systematic review , 2018,209:39-45. [本文引用: 1]
HELLER MC, KEOLEIAN GA. Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States , 2011,45(5):1903-1910. [本文引用: 1]
CHATTERTONJ, GRAVESA, AUDSLEYE, MORRISJ, WILLIAMSA. Using systems-based life cycle assessment to investigate the environmental and economic impacts and benefits of the livestock sector in the UK , 2015,86:1-8.
ESTEVES E MM, HERRERA A MN, ESTEVES V PP, MORGADO RV. Life cycle assessment of manure biogas production: A review , 2019,219:411-423.
JOENSUUK, PULKKINENH, KURPPAS, YPY?J, VIRTANENY. Applying the nutrient footprint method to the beef production and consumption chain , 2019,24(1):26-36.
GROENESTEIN CM, HUTCHINGS NJ, HAENEL HD, AMONB, MENZIH, MIKKELSEN MH, MISSELBROOK TH, VAN BRUGGENC, KUPPERT, WEBBJ. Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe , 2019,211:1162-1170. [本文引用: 1]
BATTINIF, AGOSTINIA, BOULAMANTI AK, GIUNTOLIJ, AMADUCCIS. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley , 2014,481:196-208. [本文引用: 1]
LEDGARD SF, WEIS, WANG XQ, FALCONERS, ZHANG NN, ZHANG XY, MAL. Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations , 2019,213:155-163. [本文引用: 3]
WANG XQ, KRISTENSENT, MOGENSENL, KNUDSEN MT, WANG XD. Greenhouse gas emissions and land use from confinement dairy farms in the Guanzhong plain of China-Using a life cycle assessment approach , 2016,113:577-586. [本文引用: 2]
ZHANGJ, ZHUANG MH, SHANN, ZHAOQ, LIH, WANG LG. Substituting organic manure for compound fertilizer increases yield and decreases NH3 and N2O emissions in an intensive vegetable production system , 2019,670:1184-1189. [本文引用: 1]
XU XB, MAZ, CHEN YQ, GU XM, LIU QY, WANG YT, SUN MM, CHANG DH. Circular economy pattern of livestock manure management in Longyou, China , 2018,20(2):1050-1062. [本文引用: 1]
HUANG WQ. Carbon footprint assessment methodology of milk production in intensive dairy farm and case study [D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese) [本文引用: 1]
CAO ZG. Life cycle assessment of dairy farm in Heilongjiang province, China [D]. Harbin: Northeast Agricultural University, 2012. (in Chinese) [本文引用: 1]
LIU YN, SHI YH, YAN XB, WANG CZ, LIANG MG, ZHOUL. Effect of alfafa hay substituting for part of the concentrate, on the production of cows and economic profit Acta Pratculturae Sinica, 2013,22(6):190-197. (in Chinese) [本文引用: 1]
LVT. Emission characteristics and biogas production and emission reduction potential of livestock manure in Inner Mongolia , 2016. (in Chinese) [本文引用: 1]
SALOUT, LE MOU?LC, VAN DERWERF. Environmental impacts of dairy system intensification: The functional unit matters , 2017,140:445-454. [本文引用: 1]
ROYP, NEID, ORIKASAT, XUQ, OKADOMEH, NAKAMURAN, SHIINAT. A review of life cycle assessment (LCA) on some food products , 2009,90(1):1-10. [本文引用: 1]
CAPPER JL, CADY RA, BAUMAN DE. The environmental impact of dairy production: 1944 compared with 2007 , 2009,87(6):2160-2167. [本文引用: 3]
O′BRIEND, SHALLOOL, PATTONJ, BUCKLEYF, GRAINGERC, WALLACEM. A life cycle assessment of seasonal grass-based and confinement dairy farms , 2012,107:33-46. [本文引用: 2]
TICHENOR NE, PETERS CJ, NORRIS GA, THOMAG, GRIFFIN TS. Life cycle environmental consequences of grass-fed and dairy beef production systems in the Northeastern United States , 2017,142:1619-1628. [本文引用: 1]
KUMAR RR, PARK BJ, CHO JY. Application and environmental risks of livestock manure , 2013,56(5):497-503. [本文引用: 2]
JONES CS, DRAKE CW, HRUBY CE, SCHILLING KE, WOLTER CF. Livestock manure driving stream nitrate , 2019,48:1143-1153. [本文引用: 1]
XUP, KOLOUTSOU-VAKAKISS, ROOD MJ, LUAN SJ. Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios , 2017607-608:78-86. [本文引用: 1]
ZHUN. Research on pollution prevention of livestock scale farmers: A case study in layer [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) [本文引用: 1]
XU ZR, CHENG SK, GAO LW, CHEN YS. Yak dung use as fuel and nutrient loss in the Northern Tibetan Plateau Resources Science, 2015,37(1):94-101. (in Chinese) [本文引用: 1]
ZHU HS, DONG HM, ZUO FY, YUANF, RAOJ. Effect of covering on greenhouse gas emissions from beef cattle solid manure stored at different stack heights Transactions of the Chinese Society of Agricultural Engineering, 2014,30(24):225-231. (in Chinese) [本文引用: 1]
MAL, BAI ZH, WANGX, CAO YB, MA WQ, ZHANG FS. Significance and research priority of nutrient management in soil-crop-animal production system in China Scientia Agricultura Sinica, 2018,51(3):406-416. (in Chinese) [本文引用: 1]
ZHANG JJ, GUO CX, LI LF, ZHANGQ. Nutrient flow and environmental effects on crop-livestock system in farming-pastoral transition zone-A case study in Shanxi province Scientia Agricultura Sinica, 2018,51(3):456-467. (in Chinese) [本文引用: 1]
GU BJ, JU XT, CHANGJ, GEY, VITOUSEK PM. Integrated reactive nitrogen budgets and future trends in China , 2015,112(28):8792-8797. [本文引用: 1]
WANG JG, LINS, LI BG. Nitrogen cycling and management strategies in Chinese agriculture Scientia Agricultura Sinica, 2016,49(3):503-517. (in Chinese) [本文引用: 1]