Construction of Genetic Map and Mapping QTL for Flowering Time in A Summer Planting Soybean Recombinant Inbred Line Population
CAO YongCe1,2, LI ShuGuang2, ZHANG XinCao1, KONG JieJie2, ZHAO TuanJie,21 College of Life Science, Yan’an University/Shaanxi Key Laboratory of Chinese Jujube (Yan’an University), Yan’an 716000, Shaanxi 2 Soybean Research Institute, Nanjing Agricultural University/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General),Ministry of Agriculture/State Key Laboratory for Crop Genetic and Germplasm Enhancement/ Jiangsu Collaborative Innovation Center for Modern Crop Production,Nanjing 210095
Abstract 【Background】 Flowering time (FT) is an important agronomic trait, which determines the planting range of cultivars and has a significant influence on the yield and quality of soybean. The Chinese Jiang-Huai valley is an important soybean producing area. However, little is known about the genetic basis of flowering time in these genotypes. 【Objective】 The objectives of this study were to map mapping quantitative trait loci (QTLs) and identify stable and reliable loci that can be used for molecular marker-assisted selection (MAS) and map-based gene cloning, and then dissect the genetic basis of flowering time in summer planting soybean. 【Method】 A recombinant inbred lines (RIL) population containing 91 lines (F2:8) developed by crossing KF35 with NN1138-2 was planted in six environments to investigate phenotypic data. Restriction-site associated DNA sequencing (RAD-seq) technology was used to genotype all lines and their parents. And then bin markers were obtained by window sliding method based on the SNP markers and used to construct the genetic map. The mixed-model based composite interval mapping (MCIM) method in the software of QTL Network 2.2 and the composite interval mapping (CIM) method in the software of Windows QTL Cartographer V2.5_011 were used to reveal the effects of the QTLs of FT. 【Result】 A total of 36778 high-quality SNP markers were obtained in the whole soybean genome, and further divided into 1733 bin markers. A high-density genetic map with 1733 bin markers was constructed that spanned 2362.4 cM of the soybean genome with an average marker distance of 1.4 cM. Nine additive QTLs, two pairs of epistatic QTLs and one environmental interaction QTL were detected by MCIM method. The cumulative contribution of additive, epistatic and environmental interaction effects were 63.9%, 4.6% and 2.1%, respectively. Ten QTLs were detected by CIM method, and four of them, qFT-8-1, qFT-11-1, qFT-15-1 and qFT-16-1 could be detected in three or more environments. Altogether, 12 QTLs controlling FT were mapped using MCIM and CIM methods. Six of them, qFT-8-1, qFT-11-1, qFT-15-1, qFT-16-1, qFT-16-2, qFT-20-1 and qFT-20-2 could be detected by two methods. Six novel QTLs, qFT-5-1, qFT-8-1, qFT-8-2, qFT-13-1, qFT-15-1 and qFT-20-2 were detected in this study. 【Conclusion】 The genetic composition of FT in summer planting soybean is relatively complex. However, the additive effect was dominant, epistatic interaction and environmental interaction had little effect on FT. Four QTLs, qFT-8-1, qFT-11-1, qFT-15-1 and qFT-16-1 can be detected by two methods and in multiple environments, which are important loci for controlling FT in NJK3N-RIL population. Keywords:soybean;flowering time;genetic map;QTL
PDF (475KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 曹永策, 李曙光, 张新草, 孔杰杰, 赵团结. 夏大豆重组自交系群体遗传图谱构建及开花期QTL分析[J]. 中国农业科学, 2020, 53(4): 683-694 doi:10.3864/j.issn.0578-1752.2020.04.002 CAO YongCe, LI ShuGuang, ZHANG XinCao, KONG JieJie, ZHAO TuanJie. Construction of Genetic Map and Mapping QTL for Flowering Time in A Summer Planting Soybean Recombinant Inbred Line Population[J]. Scientia Acricultura Sinica, 2020, 53(4): 683-694 doi:10.3864/j.issn.0578-1752.2020.04.002
利用SPSS 20.0(SPSS Inc.,Chicago,IL,USA)软件对表型数据进行描述性统计,包括性状在环境下的变异范围、平均值、标准差、变异系数和正态分布检验等。使用SAS 9.3(SAS Institute Inc. 2011)软件的Proc GLM过程进行多环境联合方差分析,估计方差分量用来评估性状在群体中的广义遗传率。广义遗传率计算公式如下:
采用限制性酶切位点相关的DNA测序(restriction- site Associated DNA sequencing,RAD-Seq)技术,对NJK3N-RIL群体进行全基因组SNP开发,然后根据亲本和家系的基因型开发bin标记用于构建遗传图谱,具体方法参考HAN等[37]和HUANG等[38]方法。采用JoinMap 4.0软件构建遗传图谱,以标记间LOD值大于3进行连锁群划分,采用Regression mapping算法和Kosambi函数计算连锁群内标记的线性排列以及标记间的遗传距离(centiMorgan,cM)[39]。
Table 1 表1 表1不同环境下NJK3N-RIL群体及其亲本开花期(天)性状描述性统计 Table 1Results of descriptive statistics of flowering time (days) in NJK3N-RIL population grown in different environments
Table 3 表3 表3NJK3N-RIL群体开花期加性及QTL与环境互作效应的分析 Table 3Additive QTLs and QTL-by-environment interaction effect for flowering time in the NJK3N-RIL population
位点 QTL
染色体 Chromosome
两侧标记 Flank markers
位置 Position (cM)
QTL置信区间 Confidence interval (cM)
物理区间 1-LOD interval (Mb)
加性效应 A (d)
h2A (%)
加性与环境 互作效应 AE (d)
h2AE (%)
报道位点 Reported locus
qFT-8-1
8
bin670-bin671
98.2
95.6—102.2
36.6—41.3
0.4
3.2
新位点 Novel
qFT-10-1
10
bin875-bin876
123.3
122.0—123.3
48.6—49.3
-0.5
4.8
First flower 24-4
qFT-11-1
11
bin928-bin929
85.8
84.6—86.5
14.9—15.6
0.7
9.9
0.6**(2013FY) -0.8**(2014JP)
4.6
First flower 11-2
qFT-13-1
13
bin1093-bin1094
68.0
66.8—68.5
28.4—29.5
0.4
3.0
新位点 Novel
qFT-15-1
15
bin1289-bin1290
130.1
128.1—130.1
48.1—49.0
0.6
7.9
新位点 Novel
qFT-16-1
16
bin1313-bin1314
24.2
21.2—27.7
3.8—5.0
0.7
10.5
First flower 13-7
qFT-16-2
16
bin1357-bin1358
64.3
62.2—66.2
31.1—32.0
0.6
7.2
First flower 9-3
qFT-20-1
20
bin1688-bin1689
47.7
46.8—48.3
34.3—34.5
0.7
12.0
First flower 21-2
qFT-20-2
20
bin1727-bin1728
95.8
95.2—96.8
44.0—44.5
0.5
5.4
新位点 Novel
*表示P<0.05;**表示P<0.01。A:加性效应值为正,表示增效等位变异来自亲本南农1138-2。h2A:由加性效应解释的表型变异。h2AE:由加性QTL与环境互作效应解释的表型变异。报道位点:在SoyBase数据库中与本文报道QTL位置相邻或者重叠的位点。下同 *indicates P<0. 05; ** indicates P<0. 01. The positive value indicates that NN1138-2 contributed the allele to an increase in FT. h2A: Phenotypic variation explained by additive effects. h2AE: Phenotypic variation explained by additive QTL and environmental interaction effects. The reported locus indicates the QTLs name for flowering time in the SoyBase database. The same as below
方条的长度代表QTL置信区间。空白长条代表使用CIM方法在不同环境中定位到的QTL;黑色长条代表使用MCIM在联合环境中定位到的QTL;虚线代表相连的QTL间具有上位性互作 Fig. 3Locations of QTL for flowering time in soybean linkage map in NJK3N-RIL population
The length of the bar represents the confidence interval of the QTL. The blank bars represent the QTL detected by CIM method in different environment. The solid black bars represent the QTL detected by MCIM method in joint environment. Dotted lines represent epistatic interactions between connected QTLs
Table 5 表5 表5NJK3N-RIL群体不同环境中开花期QTL分析 Table 5Detection of QTL associated with flowering time in the NJK3N-RIL population grown in different environments
位点 QTL
染色体 Chromosome
遗传位置 Position (cM)
相邻标记 Flank markers
LOD
置信区间 Confidence interval (cM)
加性效应 Additive (d)
贡献率 R2 (%)
环境 Environment
报道位点 Reported locus
qFT-5-1
5
69.4
bin398-bin399
4.4
67.5—71.8
-0.6
9.9
2014JP
Novel
qFT-6-1
6
108.3
bin482-bin483
3.8
106.9—109.5
0.6
5.0
2013JP
First flower 1-1
qFT-8-1
8
105.2
bin670-bin671
4.5
99.2—108.2
0.8
9.1
2013FY
Novel
107.2
bin671-bin672
3.2
102.9—108.4
0.5
6.6
2012JP
106.2
bin670-bin671
4.6
100.9—111.3
0.6
9.0
2014YC
qFT-8-2
8
123.1
bin685-bin686
4.8
121.4—125.2
0.7
9.4
2012FY
Novel
123.1
bin685-bin686
3.8
121.3—125.2
0.6
5.9
2013JP
qFT-11-1
11
84.6
bin927-bin928
12.7
84.2—85.8
1.3
34.3
2012JP
First flower 11-2
84.5
bin927-bin928
14.2
83.6—87.5
1.5
39.6
2012FY
87.2
bin930-bin931
18.2
86.5—88.4
1.9
49.6
2013FY
88.2
bin930-bin931
8.6
86.8—89.2
1.0
18.5
2014YC
92.9
bin932-bin933
9.4
89.0—95.6
1.1
17.7
2013JP
qFT-15-1
15
130.1
bin1290-bin1291
9.3
127.4—133.5
0.9
23.0
2014JP
Novel
134.6
bin1291-bin1292
4.5
130.6—136.8
0.7
7.6
2013JP
134.6
bin1291-bin1292
4.6
131.0—138.3
0.6
8.3
2014YC
135.4
bin1292-bin1293
4.0
130.6—138.8
0.6
8.6
2012JP
qFT-16-1
16
21.3
bin1313-bin1314
5.6
17.2—26.1
0.9
10.8
2013FY
First flower 13-7
22.3
bin1313-bin1314
4.7
21.7—25.0
0.6
10.9
2014JP
23.3
bin1313-bin1314
7.9
21.1—26.3
0.9
18.1
2012FY
24.3
bin1313-bin1314
11.1
21.2—26.3
1.0
24.8
2014YC
26.7
bin1315-bin1316
13.9
23.9—28.0
1.3
28.9
2013JP
32.7
bin1320-bin1321
5.2
31.9—33.6
0.7
11.5
2012JP
qFT-16-2
16
66.2
bin1359-bin1360
3.4
65.9—69.6
0.7
6.2
2013FY
First flower 9-3
qFT-20-1
20
44.8
bin1682-bin1683
10.3
43.8—45.4
1.1
19.1
2013JP
First flower 21-2
qFT-20-2
20
97.3
bin1728-bin1729
5.3
94.7—99.0
0.7
11.9
2014JP
Novel
R 2:QTL在单个环境中的表型解释率 R 2: Phenotypic variation explained by QTL in single environment
XIAZ, WATANABES, YAMADAT, TSUBOKURAY, NAKASHIMAH, ZHAIH, ANAIT, SATOS, YAMAZAKIT, LUS, WUH, TABATAS, HARADAK . Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering , 2012,109(32):2155-2164. [本文引用: 2]
KONG FJ, NAN HY, CAOD, LIY, WU FF, WANG JL, LU SJ, YUAN XH, COBER ER, ABEJ, LIU BH . A new dominant gene conditions early flowering and maturity in soybean , 2014,54(6):2529-2535. [本文引用: 2]
JIA HC, JIANG BJ, WU CX, LU WC, HOU WS, SUNS, YAN HR, HAN TF . Maturity group classification and maturity locus geno-typing of early-maturing soybean varieties from high-latitude cold regions , 2014,9:e94139. [本文引用: 1]
COBER ER, MOLNAR SJ, CHARETTEM, VOLDENG HD . A new locus for early maturity in soybean , 2010,50(2):524-527. [本文引用: 2]
ZHANG WK, WANG YJ, LUO GZ, ZHANG JS, HE CY, WU XL, GAI JY, CHEN SY . QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers , 2004,108(6):1131-1139. [本文引用: 1]
LIUW, KIM MY, VANK, LEE YH, LI HL, LIU HL, LEE SH . QTL identification of yield-related traits and their association with flowering and maturity in soybean , 2011,14(1):65-70. [本文引用: 1]
COOPER RL . A delayed flowering barrier to higher soybean yields , 2003,82(1):27-35. [本文引用: 1]
KEIMP, DIERS BW, OLSON TC, SHOEMAKER RC . RFLP mapping in soybean: Association between marker loci and variation in quantitative traits , 1990,126(3):735-742. [本文引用: 1]
BERNARD RL . Two major genes for time of flowering and maturity in soybeans , 1971,11(2):242-244. [本文引用: 2]
BUZZELL RI . Inheritance of a soybean flowering response to fluorescent-daylength conditions , 1971,13(4):703-707. [本文引用: 1]
BUZZELL RI, VOLDENG HD . Inheritance of insensitivity to long daylength , 1980,7(1):26-29. [本文引用: 1]
MCBLAIN BA, BERNARD RL . A new gene affecting the time of flowering and maturity in soybeans , 1987,78(3):160-162. [本文引用: 1]
BONATO ER, VELLO NA . E6, a dominant gene conditioning early flowering and maturity in soybeans , 1999,22(2):229-232. [本文引用: 1]
COBER ER, VOLDENG HD . A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T , 2001,41(3):698-701. [本文引用: 1]
SAMANFARB, MOLNAR SJ, CHARETTEM, SCHOENROCKA, DEHNEF, GOLSHANIA, BELZILEF, COBER ER . Mapping and identification of a potential candidate gene for a novel maturity locus,E10, in soybean , 2017,130(2):377-390. [本文引用: 2]
RAY JD, HINSONK, MANKONOJ, MALO MF . Genetic control of a long-juvenile trait in soybean , 1995,35(4):1001-1006. [本文引用: 1]
WANG FF, NAN HY, CHEN LY, FANGC, ZHANG HY, SUT, LI SC, CHENGQ, DONG LD, LIU BH, KONG FJ, LU SJ . A new dominant locus,E11, controls early flowering time and maturity in soybean , 2019,39(5):70. [本文引用: 1]
WATANABES, XIAZ, HIDESHIMAR, TSUBOKURAY, SATOS, YAMANAKAN, TAKAHASHIR, ANAIT, TABATAS, KITAMURAK, HARADAK . A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering , 2011,188(2):395-407. [本文引用: 1]
WATANABES, HIDESHIMAR, XIAZ, TSUBOKURAY, SATOS, NAKAMOTOY, YAMANAKAN, TAKAHASHIR, ISHIMOTOM, ANAIT, TABATAS, HARADAK . Map-based cloning of the gene associated with the soybean maturity locus E3 , 2009,182(4):1251-1262. [本文引用: 1]
LIUB, KANAZAWAA, MATSUMURAH, TAKAHASHIR, HARADAK, ABEJ . Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene , 2008,180(2):995-1007. [本文引用: 1]
ZHAOC, TAKESHIMAR, ZHUJ, XUM, SATOM, WATANABES, KANAZAWAA, LIU BH, KONG FJ, YAMADAT, ABEJ . A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog , 2016,16:20. [本文引用: 1]
LU SJ, ZHAO XH, HU YL, LIU SL, NAN HY, LI XM, FANGC, CAOD, SHI XY, KONG LP, SUT, ZHANG FG, LI SC, WANGZ, YUAN XH, COBER ER, WELLER JL, LIU BH, HOU XL, TIAN ZX, KONG FJ . Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield , 2017,49(5):773-779. [本文引用: 1]
DISSANAYAKAA, RODRIGUEZ TO, DIS, YANF, GITHIRI SM, RODAS FR, ABEJ, TAKAHASHIR . Quantitative trait locus mapping of soybean maturity gene E5 , 2016,66(3):407-415. [本文引用: 1]
XIANG SH, WANG WB, HE QY, YANG HY, LIUC, XING GN, ZHAO TJ, GAI JY . Identification of QTL/segments related to agronomic traits using CSSL population under multiple environments Scientia Agricultura Sinica, 2015,48(1):10-22. (in Chinese) URL [本文引用: 1]
SONG XY, MAO TT, WANG LW, LIU LF, LI XN, SUNS, HAN TF . Genome–wide association analysis of soybean flowering time under different sowing dates. Chinese Journal of Oil Crop Sciences, 2018, 40(4):459.(in Chinese) [本文引用: 1]
ZHANG YJ, CAO YC, LI SG, CHANG FG, KONG JJ, GAI JY, ZHAO TJ . Mapping QTL for flowering time and plant height in a summer-sowing soybean RIL population NJRIMN Soybean Science, 2018, 37(6):860-865. (in Chinese) [本文引用: 1]
ORF JH, CHASEK, JARVIKT, MANSURC LM, CREGAN PB, ADLER FR, LARK KG . Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations , 1999,39(6):1642-1651. [本文引用: 1]
YAMANAKAN, NINOMIYAS, HOSHIM, TSUBOKURAY, YANOM, NAGAMURAY, SASAKIT, HARADAK . An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion , 2001,8(2):61-72. [本文引用: 1]
LEES, JUN TH, MICHEL AP, MIAN MA R . SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean , 2015,203(3):521-532. [本文引用: 2]
MAO TT, LI JY, WEN ZX, WU TT, WU CX, SUNS, JIANG BJ, HOU WS, LI WB, SONG QJ, WANG DC, HAN TF . Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions , 2017,18(1):415. [本文引用: 1]
WATANABES, TSUKAMOTOC, OSHITAT, YAMADAT, ANAIT, KAGAA . Identification of quantitative trait loci for flowering time by a combination of restriction site-associated DNA sequencing and bulked segregant analysis in soybean , 2017,67(3), 277-285. [本文引用: 1]
KONG LP, LU SJ, WANG YP, FANGC, WANG FF, NAN HY, SUT, LI SC, ZHANG FG, LI XM, ZHAO XH, YUAN XH, LIU BH, KONG FJ . Quantitative trait locus mapping of flowering time and maturity in soybean using next-generation sequencing-based analysis , 2018,9:995. [本文引用: 1]
KIM MY, SHIN JH, KANG YJ, SHIM SR, LEE SH . Divergence of flowering genes in soybean , 2012,37(5):857-870. [本文引用: 1]
ZHAIH, Lü SX, WANG YQ, CHENX, REN HX, YANG JY, CHENGW, ZONG CM, GU HP, QIU HM, WU HY, ZHANG XZ, CUI TT, XIA ZJ . Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars , 2014,9(5):e97636. [本文引用: 1]
QIU LJ, CHANG RZ. Descriptors and data standard for soybean (Glycine spp) Beijing:China Agriculture Press, 2006. (in Chinese) [本文引用: 1]
NYQUIST WE, BAKER RJ . Estimation of heritability and prediction of selection response in plant-populations , 1991,10.3:235-322. [本文引用: 1]
HANK, JEONG HJ, YANG HB, KANG SM, KWON JY, KIMS, CHOID, KANG BC . An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum) , 2016,23(2):81-91. [本文引用: 1]
GUTIERREZ-GONZALEZ JJ, VUONG TD, ZHONGR, YUO, LEE JD, SHANNONG, ELLERSIECKM, NGUYEN HT, SLEPER DA . Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds , 2011,123(8):1375-1385. [本文引用: 1]
ZOU GH, ZHAI GW, FENGQ, YANS, WANGA, ZHAOQ, SHAO JF, ZHANG ZP, ZOU JQ, HANB, TAO YZ . Identification of QTLs for eight agronomically important traits using an ultra-high- density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods , 2012,63(15):5451-5462. [本文引用: 1]
ZHANGD, LIH, WANGJ, ZHANGH, HUZ, CHUS, LVH, YUD . High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean , 2016,7:372. [本文引用: 1]
JIANGN, SHIS, SHIH, KHANZADAH, WASSAN GM, ZHUC, PENGX, YUQ, CHENX, HEX, FUJ, HUL, XUJ, OUYANGL, SUNX, ZHOUD, HEH, BIANJ . Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice , 2017,8:1223. [本文引用: 1]
ARDISSONM, RANWEZV, BESNARDA, BESNARDA, LEROYP, POUXG, ROUMETP, VIADERV, SANTONIS, DAVIDJ . Genotyping by sequencing using specific allelic capture to build a high-density genetic map of durum wheat , 2016,11(5):e0154609. [本文引用: 1]
ZHANG CL, JIAN JT, FENGJ, CUI ZX, XU XW, SUN DJ . QTL Identification for awn length based on 90K array mapping in wheat Scientia Agricultura Sinica, 2018,51(1):17-25. (in Chinese) URL [本文引用: 1]
WANG WB, LIU MF, WANG YF, LI XL, CHENG SX, SHU LP, YU ZP, KONG JJ, ZHAO TJ, GAI JY . Characterizing two inter-specific bin maps for the exploration of the QTLs/genes that confer three soybean evolutionary traits , 2016,7:1248. [本文引用: 1]
CHENG YB, MA QB, REN HL, XIA QJ, SONG EL, TAN ZY, LI SX, ZHANG GY, NIANH . Fine mapping of a Phytophthora- resistance gene RpsWY in soybean(Glycine max L.) by high- throughput genome-wide sequencing , 2017,130(5):1041-1051. [本文引用: 1]
WANGL, CHENGY, MAQ, MUY, HUANGZ, XIAQ, ZHANGG, NIANH . QTL fine-mapping of soybean (Glycine max L.) leaf type associated traits in two RILs populations , 2019,20(1):260. [本文引用: 1]
XUY, CROUCH JH . Marker-assisted selection in plant breeding: From publications to practice , 2008,48(2):391-407. [本文引用: 1]
WANG DL, ZHUJ, LI ZK L, PATERSON AH . Mapping QTLs with epistatic effects and QTL× environment interactions by mixed linear model approaches , 1999,99(7/8):1255-1264. [本文引用: 1]
YANGJ, ZHUJ . Methods for predicting superior genotypes under multiple environments based on QTL effects , 2005,110(7):1268-1274. [本文引用: 1]
CHENX . A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development , 2004,303(5666):2022-2025. [本文引用: 1]
ABEM, KAYAH, WATANABE-TANEDAA, SHIBUTAM, YAMAGUCHIA, SAKAMOTOT, KURATAT, AUSINI, ARAKIT, ALONSO‐BLANCOC . FE, a phloem specific Myb related protein, promotes flowering through transcriptional activation of FLOWERING LOCUS T and FLOWERING LOCUS T INTERACTING PROTEIN 1 , 2015,83(6):1059-1068. [本文引用: 1]
HU RB, QIG, KONG YZ, KONG DJ, GAOQ, ZHOU GK . Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa , 2010,10(1):145. [本文引用: 1]
KIM SG, KIM SY, PARK CM . A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis , 2007,226(3):647-654. [本文引用: 1]
KONG FJ, LIU BH, XIA ZJ, SATOS, KIM BM, WATANABES, YAMADAT, TABATAS, KANAZAWAA, HARADAK, ABEJ . Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean , 2010,154(3):1220-1231. [本文引用: 1]