

2
3
4
A Survey on Distribution of Manganese Contents in Feedstuffs for Livestock and Poultry in China
WANG ChuanLong1, ZHANG LiYang1, LIU GuoQing1, WANG LiSai1,2, YANG Liu1,2, XING GuanZhong1,2, SHAO YuXin1, MA XueLian1, LI SuFen2, WANG LiangZhi1,3, LIU YuanDong4, Lü Lin1, LIAO XiuDong

2
3
4
通讯作者:
责任编辑: 林鉴非
收稿日期:2019-03-7接受日期:2019-05-8网络出版日期:2019-06-01
基金资助: |
Received:2019-03-7Accepted:2019-05-8Online:2019-06-01
作者简介 About authors
王传龙,E-mail:wangchuanlong1994@163.com。

摘要
关键词:
Abstract
Keywords:
PDF (380KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
王传龙, 张丽阳, 刘国庆, 王丽赛, 杨柳, 邢冠中, 邵玉新, 马雪莲, 李素芬, 王良治, 刘元东, 吕林, 廖秀冬, 罗绪刚. 我国畜禽饲料资源中微量元素锰含量分布的调查[J]. 中国农业科学, 2019, 52(11): 1993-2001 doi:10.3864/j.issn.0578-1752.2019.11.014
WANG ChuanLong, ZHANG LiYang, LIU GuoQing, WANG LiSai, YANG Liu, XING GuanZhong, SHAO YuXin, MA XueLian, LI SuFen, WANG LiangZhi, LIU YuanDong, Lü Lin, LIAO XiuDong, LUO XuGang.
0 引言
【研究意义】饲料成本约占畜禽养殖成本的60%—70%,在畜牧业发展中起着重要作用。随着畜禽养殖业的迅速发展,我国饲料资源短缺状况尤为突出,严重制约了畜牧业的发展。研究不同地区畜禽饲料资源锰含量和分布规律,可为合理高效利用我国现有饲料原料提供科学依据。【前人研究进展】锰是畜禽必需的微量元素之一,尤其对肉仔鸡等家禽具有特殊的重要性[1,2,3,4]。畜禽缺锰时会造成生长受阻、骨骼畸形、生长紊乱及营养物质代谢异常等[5,6,7],但在饲料中添加外源锰超出了机体正常需要量时,会随粪便排出,引起环境污染[8]。【本研究切入点】我国一直未对畜禽饲料资源中微量元素锰含量分布进行系统、专门的调研,这在很大程度上限制了畜禽饲料资源中锰的有效利用。【拟解决的关键问题】本研究对全国不同区域主要畜禽饲料中微量元素锰含量进行测定,以研究不同地区各种饲料中锰含量的分布以及全国各地猪、鸡常用配方中基础饲粮的锰水平,为畜禽饲料中合理添加锰提供科学依据。1 材料与方法
1.1 样品采集
1.1.1 采样 根据我国不同区域主要畜禽饲料资源的分布情况,结合各省(市、区)的2013年各原料总产量及其在各县(市)或企业总产量占全省合计总产量的比例,以确定各省(市、区)及其各县(市)或代表性企业的样品数;同时还根据谷物籽实、牧草或秸秆饲料在各县(市)的镇(乡)分布情况,确定各县(市)的代表性镇(乡)及其样品数。2016年1月至2018年6月期间,共采集我国除港澳台外的31个省、直辖市和自治区,包括东北和西北(黑龙江、吉林、辽宁、陕西、甘肃、宁夏、新疆、青海,共8个省(区))、华北(北京、天津、河北、山西、内蒙,共5个省(市、区))、华东和华中(上海、山东、江苏、安徽、江西、浙江、福建、湖北、湖南、河南,共10个省(市))及西南和华南(重庆、四川、贵州、云南、西藏、广东、广西、海南,共8个省(市、区)),7大类37种共3 922个饲料样品。样品均采自当地农户、农场或饲料原料加工企业,且饲料原料加工企业的原料也产自当地。采样时应用GPS定位并拍照,并进行编码和标示条形码后,带回实验室以备分析。1.1.2 样品种类 主要调查我国不同地区的七大类型饲料原料,包括谷物籽实(玉米、小麦、稻谷、大麦)及其加工副产品(碎米、次粉、小麦麸、米糠、玉米DDGS、小麦DDGS、玉米胚芽粕、玉米蛋白粉)、植物性蛋白饲料(膨化大豆、豆粕、菜籽粕、棉籽粕、花生粕、亚麻粕、葵花粕)、动物性蛋白饲料(鱼粉、肉粉、水解羽毛粉、肠膜蛋白粉、血浆蛋白粉、血球蛋白粉)、秸秆类饲料(玉米秸、甘薯藤、稻秸、小麦秸)、牧草类饲料(羊草、黑麦草、苜蓿、青贮玉米)和矿物质饲料(石粉、磷酸氢钙、骨粉、贝壳粉),以便较全面地了解饲料中的锰水平。
1.2 样品处理及分析方法
1.2.1 样品处理 为保证分析结果的一致性和可靠性,2016年1月至2018年10月,所采样品均集中于中国农业科学院北京畜牧兽医研究所统一处理。样品经过挑选、清洁、风干、混合均匀后以四分法缩减分取试样,于不锈钢小型高速粉碎机(IL-04BL)粉碎后,分装入自封袋,注明样品名称、编号、条形码等后冷库保存。1.2.2 分析方法 称取0.5 g饲料样品于消化管中,加入5 mL浓硝酸和2 mL双氧水浸泡2 h后,在高通量密闭微波消解仪(CEM,美国)上消化,然后使用IRIS IntrepidⅡ等离子体发射光谱仪(TE,美国)测定饲料原料中锰含量[9,10],同时用国家标准物质猪肝粉(GBW10051)或黄豆粉(GBW10013)作为对照[11],检查分析的可靠性。
1.2.3 数据处理 所有数据均采用SAS 9.4[12]中的一般线性模型(GLM)程序进行单因素方差分析,差异显著者,以最小显著差异(LSD)法比较各组间的差异显著性。数据以平均值±标准差表示,以P<0.05作为各项数据的差异显著性检验水平。
2 结果
2.1 各种饲料原料中锰含量分布
为获得对全国具有一定代表性的结果,共采集了我国除港澳台外的31个省、直辖市和自治区的3 922个饲料原料样品,测定了其中锰的含量。结果分类列于表1—6中。Table 1
Table 1Distribution of Mn contents in cereals and cereal by-products (air-dry basis)
样品名 Name of samples | 省(市、区)数 No. of provinces (municipalities, regions) | 样品数 No. of samples | 锰含量 Mn contents (mg·kg-1) |
---|---|---|---|
玉米 Corn | 30 | 1191 | 5.7±0.4D |
小麦 Wheat | 28 | 251 | 40.0±1.6B |
稻谷 Rice | 30 | 207 | 77.7±4.3A |
大麦 Barley | 15 | 28 | 21.5±1.4C |
P值P value | <0.0001 | ||
总体平均值 Total average | 38.7 | ||
碎米 Broken rice | 20 | 54 | 11.2±1.1c |
次粉 Wheat middling | 20 | 50 | 77.7±7.3b |
小麦麸 Wheat bran | 24 | 112 | 146.8±6.8c |
米糠 Rice bran | 22 | 122 | 166.0±12.4a |
玉米DDGS Corn DDGS | 13 | 96 | 18.2±0.7c |
小麦 DDGS Wheat DDGS | 4 | 16 | 67.1±19.1b |
玉米胚芽粕 Corn germ meal | 7 | 49 | 13.8±1.9c |
玉米蛋白粉 Corn gluten meal | 17 | 90 | 4.6±0.7c |
P值 P value | <0.0001 | ||
总体平均值Total average | 75.9 |
Means lacking a common capital letter within the same columns are significant difference among the Mn contents in the feedstuffs of cereals (P<0.05). Means lacking a common small letter within the same columns are significant difference among the Mn contents in the feedstuffs of cereal by-products (P<0.05). Results are expressed as mean ± standard deviation
新窗口打开|下载CSV
Table 2
Table 2Distribution of Mn contents in plant protein feeds (air-dry basis)
样品名 Name of samples | 省(市、区)数 No. of provinces (municipalities, regions) | 样品数 No. of samples | 锰含量 Mn contents (mg·kg-1) |
---|---|---|---|
膨化大豆 Extruded soybean | 13 | 109 | 31.4±0.8d |
豆粕 Soybean meal | 23 | 338 | 38.4±0.9bc |
菜籽粕 Rapeseed meal | 16 | 164 | 68.0±2.0a |
棉粕 Cottonseed meal | 13 | 105 | 27.0±4.2d |
花生粕 Peanut meal | 11 | 48 | 48.4±3.8bc |
亚麻粕 Linseed meal | 3 | 18 | 59.5±20.8ab |
葵花粕 Sunflower seed meal | 3 | 14 | 35.8±5.7d |
P值P value | <0.0001 | ||
总体平均值Total average | 44.5 |
Means lacking a common small letter within the same column are significant difference (P<0.05). Results are expressed as mean ± standard deviation. The same as below
新窗口打开|下载CSV
Table 3
表3
表3动物性蛋白饲料中锰含量分布(风干基础)
Table 3
样品名 Name of samples | 省(市、区)数 No. of provinces (municipalities, regions) | 样品数 No. of samples | 锰含量 Mn contents (mg·kg-1) |
---|---|---|---|
鱼粉 Fish meal | 14 | 57 | 48.5±14.3a |
肉粉 Meat meal | 12 | 24 | 20.9±7.5b |
水解羽毛粉 Hydrolyzed feather meal | 15 | 34 | 28.2±5.0ab |
肠系膜蛋白粉 Dried porcine soluble | 3 | 9 | 15.4±2.3b |
血浆蛋白粉 Plasma protein powder | 16 | 32 | 5.4±2.1b |
血球蛋白粉 Dried blood cells | 16 | 28 | 0.4±0.1b |
P值P value | <0.0001 | ||
总体平均值Total average | 19.6 |
新窗口打开|下载CSV
Table 4
表4
表4秸秆类饲料中锰含量分布(风干基础)
Table 4
样品名 Name of samples | 省(市、区)数 No. of provinces (municipalities, regions) | 样品数 No. of samples | 锰含量 Mn contents (mg·kg-1) |
---|---|---|---|
玉米秸 Corn straw | 30 | 84 | 52.0±6.0b |
小麦秸 Wheat straw | 23 | 55 | 37.8±5.6b |
稻秸 Rice straw | 29 | 84 | 458.1±56.0a |
甘薯藤 Sweet potato vine | 12 | 21 | 107.2±17.7b |
P值P value | <0.0001 | ||
总体平均值Total average | 180.8 |
新窗口打开|下载CSV
Table 5
表5
表5牧草类饲料中锰含量分布(风干基础)
Table 5
样品名 Name of samples | 省(市、区)数 No. of provinces (municipalities, regions) | 样品数 No. of samples | 锰含量 Mn contents (mg·kg-1) |
---|---|---|---|
羊草 Leymus chinensis | 7 | 35 | 89.1±32.7a |
黑麦草 Ryegrass | 16 | 72 | 86.5±15.7a |
苜蓿 Alfalfa | 25 | 93 | 33.0±2.5b |
青贮玉米 Corn silage | 23 | 88 | 41.4±3.9b |
P值P value | 0.0002 | ||
总体平均值Total average | 53.3 |
新窗口打开|下载CSV
Table 6
表6
表6矿物质饲料中锰含量分布(风干基础)
Table 6
样品名 Name of samples | 省(市、区)数 No. of provinces (municipalities, regions) | 样品数 No. of samples | 锰含量 Mn contents (mg·kg-1) |
---|---|---|---|
石粉 Limestone | 18 | 64 | 118.3±21.6b |
磷酸氢钙 Dicalcium phosphate | 13 | 44 | 1104.8±240.2a |
骨粉 Bone meal | 15 | 27 | 16.9±2.0b |
贝壳粉 Oyster shell meal | 5 | 9 | 71.5±20.8b |
P值P value | <0.0001 | ||
总体平均值Total average | 335.4 |
新窗口打开|下载CSV
由表中结果可以看出,在同一类别中的不同种饲料平均锰含量均存在显著差异(P<0.0003)。谷类籽实中的平均锰含量为38.7 mg·kg-1,其中稻谷中的锰含量最高(77.7 mg·kg-1),玉米中最低(5.7 mg·kg-1);谷物籽实加工副产品中的平均锰含量为75.9 mg·kg-1,其中米糠中的锰含量最高(166.0 mg·kg-1),玉米蛋白粉最低(4.6 mg·kg-1);植物性蛋白饲料中的平均锰含量为44.5 mg·kg-1,其中菜籽粕中的锰含量最高(68.0 mg·kg-1),棉粕中最低(27.0 mg·kg-1),其中亚麻粕、葵花粕样本只来源于3个省,且样本之间的变异较大,因此其锰含量可能不具备代表性;动物性蛋白饲料中的平均锰含量为19.6 mg·kg-1,其中鱼粉中的锰含量最高(48.5 mg·kg-1),血球蛋白粉中最低(0.4 mg·kg-1);秸秆类饲料中的平均锰含量为180.8 mg·kg-1,其中稻秸中的锰含量最高(458.1 mg·kg-1),小麦秸中最低(37.8 mg·kg-1);牧草类饲料中的平均锰含量为53.3 mg·kg-1,其中羊草中的锰含量最高(89.1 mg·kg-1),苜蓿锰含量最低(33.0 mg·kg-1);矿物质饲料中的平均锰含量为335.4 mg·kg-1,其中磷酸氢钙中的锰含量最高(1 104.8 mg·kg-1),骨粉中最低(16.9 mg·kg-1)。由以上结果可以看出,这37种饲料原料的平均锰含量范围为0.4—1 104.8 mg·kg-1,各类饲料原料锰含量分布规律是:矿物质饲料(335.4 mg·kg-1)>秸秆类饲料(180.8 mg·kg-1)>谷类籽实加工副产品(75.9 mg·kg-1)>牧草类饲料(53.3 mg·kg-1)>植物性蛋白饲料(44.5 mg·kg-1)>谷类籽实(38.7 mg·kg-1)>动物性蛋白饲料(19.6 mg·kg-1)。
2.2 不同地区饲料原料中锰含量分布
为了明确各地区自然条件对饲料原料锰含量的影响程度,选择了3种较常见而且采样面较广的玉米、小麦和豆粕,根据玉米、小麦和豆粕的主产地及主要畜禽养殖区域分布情况,进行以省(区)为单位的平均锰含量的比较(表7)。可见,18个主要省(区)玉米中锰含量差异显著(P<0.0004),其中以内蒙古玉米平均锰含量最低,为4.2 mg·kg-1,而贵州省玉米平均锰含量最高,为7.9 mg·kg-1,相差3.7 mg·kg-1;11个主要省(区)的小麦平均锰含量为39.2 mg·kg-1,其中河北省的小麦平均锰含量最低,为30.7 mg·kg-1,湖北省最高,为51.0 mg·kg-1,相差20.3 mg·kg-1;14个主要省(区)的豆粕平均锰含量具有显著差异(P<0.0001),其中广东省的豆粕平均锰含量最低,为34.4 mg·kg-1,浙江省最高,为48.3 mg·kg-1,相差13.9 mg·kg-1。Table 7
表7
表7我国部分省(区)玉米、小麦及豆粕中锰含量分布(风干基础)
Table 7
省(区)名 Name of provinces (Regions) | 玉米锰含量 Mn contents of corn (mg·kg-1) | 省(区)名 Name of provinces (Regions) | 小麦锰含量 Mn contents of wheat (mg·kg-1) | 省(区)名 Name of provinces (Regions) | 豆粕锰含量 Mn contents of soybean meal (mg·kg-1) | ||
---|---|---|---|---|---|---|---|
贵州 Guizhou | 7.9±2.3(39)a | 湖北 Hubei | 51.0±5.0(8) | 浙江 Zhejiang | 48.3±5.7(12)a | ||
山东 Shandong | 6.1±0.2(54)b | 新疆 Xinjiang | 45.7±1.9(10) | 陕西 Shaanxi | 42.2±1.7(15)b | ||
广西 Guangxi | 5.8±0.2(36)b | 陕西 Shaanxi | 44.8±2.4(9) | 河南 Henan | 40.1±1.3(15)bc | ||
安徽 Anhui | 5.7±0.2(44)bc | 河南 Henan | 43.2±5.7(26) | 内蒙古Inner Mongolia | 39.2±1.4(30)bcd | ||
黑龙江 Heilongjiang | 5.6±0.2(78)bc | 甘肃 Gansu | 41.7±2.5(9) | 河北 Hebei | 38.9±0.8(27)bcd | ||
河北 Hebei | 5.5±0.2(55)bc | 山东 Shandong | 37.7±2.8(14) | 辽宁 Liaoning | 38.1±0.9(22)bcd | ||
湖北 Hubei | 5.3±0.2(38)bc | 山西 Shanxi | 37.6±2.1(14) | 吉林 Jilin | 38.1±1.9(11)bcd | ||
甘肃 Gansu | 5.3±0.7(42)bc | 安徽 Anhui | 36.9±2.9(14) | 山东 Shandong | 37.9±1.0(20)bcd | ||
山西 Shanxi | 5.2±0.1(83)bc | 江苏 Jiangsu | 36.2±2.9(16) | 福建 Fujian | 37.5±1.2(17)bcd | ||
吉林 Jilin | 5.2±0.1(60)bc | 四川 Sichuan | 31.9±2.1(8) | 安徽 Anhui | 37.0±1.0(18)cd | ||
四川 Sichuan | 5.1±0.1(44)bc | 河北 Hebei | 30.7±1.8(19) | 湖北 Hubei | 36.4±1.4(10)cd | ||
新疆 Xinjiang | 5.1±0.2(48)bc | 黑龙江 Heilongjiang | 35.5±0.6(50)cd | ||||
陕西Shaanxi | 5.0±0.1(41)bc | 江苏 Jiangsu | 35.2±0.1(15)cd | ||||
辽宁 Liaoning | 4.8±0.1(53)bc | 广东 Guangdong | 34.4±0.9(20)d | ||||
云南 Yunnan | 4.7±0.1(27)bc | ||||||
河南 Henan | 4.7±0.1(54)bc | ||||||
江苏 Jiangsu | 4.6±0.1(46)bc | ||||||
内蒙古Inner Mongolia | 4.2±0.1(52)c | ||||||
P值P value | 0.0003 | P值P value | 0.0600 | P值P value | <0.0001 | ||
总体平均值Total average | 5.3 | 总体平均值Total average | 39.2 | 总体平均值Total average | 38.0 |
新窗口打开|下载CSV
2.3 我国猪、鸡基础饲粮中的锰含量状况
根据章世元编著的《动物饲料配方设计》[13],并参考各地现行的一般较合理的商品猪、肉仔鸡配方,初步归纳为4种饲料类型,即以玉米和豆粕为主配制的玉米-豆粕型;以玉米和各种植物油籽粕类,如大豆,菜粕,棉粕,花生粕榨油后的副产品配制的玉米-油籽粕型;以多种谷类籽实,如玉米、小麦、稻谷、大麦等为能量饲料,豆粕为蛋白饲料配制的多谷-豆粕型;以多种谷类籽实和多种植物油籽粕类配制的多谷-油籽粕型。按各品种的实测值进行基础饲料中锰含量的计算,结果列于表8。Table 8
表8
表8我国猪、鸡一般基础饲粮中的锰含量状况(风干基础)
Table 8
饲料类型 Type of diet | 猪Pigs | 鸡Chickens | |||
---|---|---|---|---|---|
配方数 No. of formulas | 含锰量 Mn contents (mg·kg-1) | 配方数 No. of formulas | 含锰量 Mn contents (mg·kg-1) | ||
玉米-豆粕 Corn-soybean meal | 25 | 23.7±1.6 | 22 | 17.2±0.3 | |
玉米-油籽粕 Corn-oilseed meals | 15 | 17.3±1.2 | 20 | 14.4±0.7 | |
多谷-豆粕 Cereals-soybean meal | 23 | 32.1±2.3 | 16 | 24.5±2.1 | |
多谷-油籽粕 Cereals-oilseed meals | 16 | 27.4±1.1 | 15 | 19.8±1.8 |
新窗口打开|下载CSV
由表8可见,各种类型的猪、鸡基础饲粮锰含量都较接近,根据全国各地猪、鸡常用的152个饲料配方中所计算出的基础饲料中猪4种基础饲料中锰含量水平在17.3—32.1 mg·kg-1之间,平均值为25.7 mg·kg-1,鸡4种基础饲料中锰含量水平在14.4—24.5 mg·kg-1之间,平均值为18.6 mg·kg-1。根据我国猪、鸡饲养标准和美国NRC中商品猪、肉仔鸡锰营养需要量[14,15,16,17],猪按3 mg·kg-1,鸡按80 mg·kg-1计算,则基础饲粮中锰含量可提供鸡约1/4的锰营养需要,提供猪全部的锰营养需要。
3 讨论
调查中发现小麦麸中的锰含量是全麦粒的3.7倍,玉米胚芽粕中的锰含量是玉米的2.4倍,米糠中的锰含量是全稻谷籽粒的2.1倍,谷物籽实加工副产品中,除玉米蛋白粉外,均对锰有富集作用,这同之前的研究结果矿物元素多沉积于籽实的表皮层一致[18]。我们还发现玉米秸秆中锰含量是玉米的9.1倍,水稻秸秆的锰含量是稻谷的5.9倍,这表明锰在植物不同器官分布不同[19]。此外,调查的7大类饲料中以矿物质饲料锰含量最高,但在配制饲料过程中我们经常忽略磷酸氢钙中的锰含量,因此,制定饲料配方应考虑其中的锰含量,合理配制动物饲粮,避免饲料资源浪费及环境污染。土壤是陆生植物赖以生长发育的基地,土壤锰含量分布及其形态直接影响作物锰含量[20],全国各地区土壤中锰含量基本呈南高北低趋势[21],本次调查的玉米锰含量与这一趋势基本相同,但豆粕和小麦锰含量与南高北低规律不符,且同一种原料不同地区的锰含量也有明显不同,这可能与不同地区的土壤类型、气候条件、作物品种和遗传差异及其加工方式有关[22,23]。因此,对于不同地区来源的饲料原料,应测定其锰含量,根据饲料原料中锰含量的实测值制定合理的饲料配方。
根据我国猪、鸡饲养标准和美国NRC中猪、鸡锰营养需要量,本研究发现4种基础饲粮可提供鸡约1/4的锰营养需要,提供猪全部的锰营养需要。虽然锰在畜禽生产中有着不可或缺作用[24,25,26],但在实际生产猪、鸡饲粮时,由于微量元素锰添加成本较低,生产者一般不考虑基础饲粮中锰的含量,而参照锰营养需要量额外或超量添加锰添加剂配制饲粮,这不仅造成了饲料资源的浪费,还加剧了锰排放对环境的污染[27]。不同畜禽品种 [28,29]、不同生产阶段、不同生理状态下的锰需要量均不同[30,31],因此,动物饲粮中锰的添加量应充分考虑不同品种及不同地区饲料原料中锰的含量及其利用率,精准配制饲粮,以减少饲粮中锰的添加及其排放对环境的污染[32]。
本次对我国不同地区间饲料原料的锰含量分布的调查研究,可为我国畜禽饲料资源的合理开发利用提供数据基础,为实际饲料生产合理添加锰降低饲料生产成本提供科学依据。
4 结论
我国畜禽不同饲料原料中锰含量分布不同,各省(区)玉米和豆粕中锰含量存在差异。全国各地常用配方中的基础饲粮锰含量可提供鸡部分锰营养需要量及猪全部锰营养需要量。因此,在实际生产中,应充分考虑不同地区基础饲粮中的总锰含量及其利用率,精准配制饲粮,以满足畜禽高效生产需要,同时减少锰的添加和排放对环境的污染。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
[D].
[本文引用: 1]
[D].
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOI:10.2527/jas.2008-1212URL [本文引用: 1]
DOI:10.1007/s12011-015-0252-4URL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
Magsci [本文引用: 1]

本实验用形态学方法研究6例小型猪脑硬膜外异网的形态构造,并追踪了进入和传出硬膜外异网的血管。小型猪硬膜外异网发达,分前异网和后异网。前异网位于海绵窦内,包括颅内部和颅外部,由颈内动脉和脑膜中动脉、眼外动脉、上颌动脉的异网支共同形成,在异网的前内侧部这些吻合支又聚集形成颈内动脉颅内段自海绵窦传出,并参与组成大脑动脉环。后异网由髁动脉、枕动脉和椎动脉共同形成,通过基底动脉与大脑动脉环连接,但与同侧前异网未见直接联系。异网的血管支都是具有内、外两弹性层的肌型中小动脉。异网血管支的外层是海绵窦的内膜层。
Magsci [本文引用: 1]

本实验用形态学方法研究6例小型猪脑硬膜外异网的形态构造,并追踪了进入和传出硬膜外异网的血管。小型猪硬膜外异网发达,分前异网和后异网。前异网位于海绵窦内,包括颅内部和颅外部,由颈内动脉和脑膜中动脉、眼外动脉、上颌动脉的异网支共同形成,在异网的前内侧部这些吻合支又聚集形成颈内动脉颅内段自海绵窦传出,并参与组成大脑动脉环。后异网由髁动脉、枕动脉和椎动脉共同形成,通过基底动脉与大脑动脉环连接,但与同侧前异网未见直接联系。异网的血管支都是具有内、外两弹性层的肌型中小动脉。异网血管支的外层是海绵窦的内膜层。
[本文引用: 1]
[本文引用: 1]
DOI:10.3969/j.issn.1002-2090.2005.03.010URL [本文引用: 1]

就土壤锰含量、分布及其形态,锰有效性因素,锰毒及其矫正方法及与植物营养元素间的关系及其现状等方面进行综合论述。
DOI:10.3969/j.issn.1002-2090.2005.03.010URL [本文引用: 1]

就土壤锰含量、分布及其形态,锰有效性因素,锰毒及其矫正方法及与植物营养元素间的关系及其现状等方面进行综合论述。
[本文引用: 1]
[本文引用: 1]
[D].
[本文引用: 1]
[D].
[本文引用: 1]
[D].
[本文引用: 1]
[D].
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
DOI:10.2527/jas.2006-229URLPMID:17040939 [本文引用: 1]

An experiment was conducted using a total of 336 one-day-old, Arbor Acres commercial male broilers to investigate the effect of dietary Mn supplementation on carcass traits, meat quality, lipid oxidation, relative enzyme activities in abdominal fat and meat, and Mn-containing superoxide dismutase (MnSOD) mRNA level in meat. Broilers were randomly allotted by BW to 1 of 8 replicate cages (6 chicks per cage) for each of 7 treatments in a completely randomized design involving a 2 x 3 factorial + 1 arrangement of treatments. Dietary treatments included the corn-soybean meal-based diet (control) and the basal diet supplemented with 100 or 200 mg of Mn/kg as MnSO(4) x H(2)O, Mn AA A with a chelation strength of 26.3 formation quotient (8.34% Mn), or Mn AA B with a chelation strength of 45.3 formation quotient (6.48% Mn). Birds fed supplemental Mn had lower (P < 0.10) percentages of abdominal fat, lipoprotein lipase (LPL), and malate dehydrogenase activities and greater (P < 0.07) hormone-sensitive lipase activities in abdominal fat than birds fed a control diet. Birds fed supplemental Mn from Mn AA A or Mn AA B had lower (P < 0.05) LPL activities in abdominal fat than those fed supplemental MnSO(4) x H(2)O. Birds fed supplemental Mn had lower (P < 0.03) malondialdehyde content in leg muscle and greater (P < 0.02) MnSOD activities and MnSOD mRNA level in breast or leg muscle than those fed the control diet. Birds fed supplemental Mn from Mn AA A had a greater (P < 0.02) MnSOD mRNA level in leg muscle than those fed supplemental MnSO(4) x H(2)O. Results from this study indicated that organic Mn was more available than inorganic Mn for decreasing LPL activity in abdominal fat of broilers, and dietary Mn might reduce abdominal adipose deposition by decreasing LPL and malate dehydrogenase activities or increasing hormone-sensitive lipase activity in abdominal adipose tissue. The results also indicated that dietary Mn upregulated muscle MnSOD gene expression pretranslationally in association with increased MnSOD activity, which might explain the decrease of malondialdehyde content in leg muscle.
DOI:10.3382/ps.2008-00117URLPMID:19038816 [本文引用: 1]

Two experiments were conducted with 28-day-old male commercial broilers to study mechanisms of Mn absorption and the effect of Mn treatment on divalent metal transporter 1 (DMT1) mRNA levels in ligated segments from different intestinal regions of broilers. The results from experiment 1 showed that the amount of Mn absorption was asymptotic with respect to time within 40 min after perfusion of the duodenal, jejunal, and ileal segments of broilers with 2.18 mmol/L of Mn as MnSO(4). In experiment 2, a kinetic study of Mn absorption was performed with duodenal, jejunal, and ileal loops perfused with solutions containing 0, 0.13, 0.27, 0.54, 1.09, 2.18, 4.37, or 8.74 mmol/L of Mn as MnSO(4). Manganese concentrations in perfusates were determined at 5 min after perfusion. In the control group and in the group treated with 2.18 mmol/L Mn as MnSO(4), DMT1 mRNA levels of ligated intestinal regions at 30 min after perfusion were analyzed by real-time reverse transcription PCR. The kinetic curves of Mn absorption showed that Mn absorption was a carrier-mediated process in the duodenum and jejunum. The maximum absorption rate (J(max)) in duodenal segments was greater (P < 0.05) than that in the jejunum (94.08 vs. 81.17 nmol/cm per min). There was no significant difference (P = 0.85) in the Michaelis-Menten constant (K(m)) values between the duodenum and jejunum (3.41 vs. 3.60 mmol/L). In the ileum of Mn-deficient broilers, the most probable mechanism of Mn absorption was a nonsaturable diffusion process, and the diffusive constant (P; means +/- SE) was 2.42 x 10(-2) +/- 5.22 x 10(-4) cm(2)/min. The DMT1 mRNA levels in the duodenum and jejunum of broilers were greater (P < 0.001) than the level in the ileum. The DMT1 mRNA level in the small intestine of broilers in the Mn treatment group decreased significantly (P < 0.001) compared with that of the control. The different mechanisms of Mn absorption found in different intestinal segments suggest that the ileum is the main site of Mn absorption in the small intestine of broilers.
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[D].
[本文引用: 1]
[D].
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]

应用5因子5水平部分实施的2次回归几乎正交旋转组合设计,采用玉米-豆粕型口粮,对432只AA(ArborAcres)公雏日粮中锰(Mn)、锌(Zn)、钙(Ca)、磷(P)、维生素D3(VD3)5因素进行研究,通过建立肉仔鸡体重、不同组织中锰浓度以及生化指标与5因子间的多元二次回归模型,预测0~2周龄肉仔鸡生产性能最佳、各组织中锰浓度和锰超氧化物歧化酶(Mn-SOD)活性最大时,日粮中锰的适宜添加量。统计分析结果表明,肾脏、脾脏中锰浓度分别与5因子建立的预测回归方程达到极显著(P<0.01)和显著(P<0.05)。获得最大体重、肾脏和胰脏的锰浓度的锰适宜添加量为79~83mg/kg,获得最大Mn-SOD活性的锰适宜添加量为98mg/kg,获得最大肝脏、脾脏锰浓度和最高饲料转化效率(F/G)的锰适宜添加量为118~127mg/kg,以生产性能为目标的锰需要量低于生理需要量。根据本研究结果作者推荐0一2周龄肉仔鸡口粮锰的适宜添加量为79~127mg/kg。
[本文引用: 1]

应用5因子5水平部分实施的2次回归几乎正交旋转组合设计,采用玉米-豆粕型口粮,对432只AA(ArborAcres)公雏日粮中锰(Mn)、锌(Zn)、钙(Ca)、磷(P)、维生素D3(VD3)5因素进行研究,通过建立肉仔鸡体重、不同组织中锰浓度以及生化指标与5因子间的多元二次回归模型,预测0~2周龄肉仔鸡生产性能最佳、各组织中锰浓度和锰超氧化物歧化酶(Mn-SOD)活性最大时,日粮中锰的适宜添加量。统计分析结果表明,肾脏、脾脏中锰浓度分别与5因子建立的预测回归方程达到极显著(P<0.01)和显著(P<0.05)。获得最大体重、肾脏和胰脏的锰浓度的锰适宜添加量为79~83mg/kg,获得最大Mn-SOD活性的锰适宜添加量为98mg/kg,获得最大肝脏、脾脏锰浓度和最高饲料转化效率(F/G)的锰适宜添加量为118~127mg/kg,以生产性能为目标的锰需要量低于生理需要量。根据本研究结果作者推荐0一2周龄肉仔鸡口粮锰的适宜添加量为79~127mg/kg。
DOI:10.1093/jas/sky434URL [本文引用: 1]