删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响

本站小编 Free考研考试/2021-12-26

董二伟,1,2, 王劲松1,2, 武爱莲1,2, 王媛1,2, 王立革1,2, 韩雄1,2, 郭珺1,2, 焦晓燕,1,2,*1山西农业大学资源环境学院, 山西太原 030031
2山西省农业科学院农业环境与资源研究所, 山西太原 030031

Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle

DONG Er-Wei,1,2, WANG Jin-Song1,2, WU Ai-Lian1,2, WANG Yuan1,2, WANG Li-Ge1,2, HAN Xiong1,2, GUO Jun1,2, JIAO Xiao-Yan,1,2,*1College of Resources & Environment, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
2Institute of Agricultural Environment and Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China

通讯作者: * 焦晓燕, E-mail:xiaoyan_jiao@126.com

收稿日期:2020-11-23接受日期:2021-03-19网络出版日期:2021-04-16
基金资助:山西省重点研发计划项目(201803D221003-1)
国家现代农业产业技术体系建设专项(CARS-06-13.5A20)


Corresponding authors: * E-mail:xiaoyan_jiao@126.com
Received:2020-11-23Accepted:2021-03-19Published online:2021-04-16
Fund supported: Key Research and Development Program of Shanxi Province(201803D221003-1)
China Agriculture Research System(CARS-06-13.5A20)

作者简介 About authors
E-mail:erwei_dong@163.com



摘要
行距与株距影响植株表型和农田生态, 也影响籽粒灌浆特性和产量。本试验于2018—2019进行, 设30、50和60 cm行距, 13.5、16.5、19.5、22.5万株 hm-2四个密度, 研究行距及密度对辽夏粱1号产量及产量构成的影响。结果表明, 50 cm行距16.5万株 hm-2优化产量结构, 籽粒产量最高; 与中下部比较, 上部单穗籽粒重最小, 但单粒重及单粒淀粉累积量最高、灌浆好; 50 cm行距16.5万株 hm-2各部位单穗籽粒重最高, 且延长了上部籽粒的灌浆活跃天数, 提高了下部籽粒最大灌浆速率并缩短了灌浆活跃期。50 cm和60 cm行距提高了上、中、下各部位单粒淀粉累积量、下部籽粒淀粉含量及其淀粉累积速率, 而行距30 cm延长了下部籽粒的灌浆活跃期并降低灌浆速率, 为此宽行距促进下部籽粒的灌浆提早成熟。单粒氮磷累积量随灌浆期延长而增加, 单粒钾累积量在灌浆后30~40 d最大然后下降, 为此籽粒成熟过程中钾会流失。上部单粒中较高的氮磷钾及淀粉累积量说明上部籽粒库容量较大, 宽行距也提高了各部位单粒氮磷钾累积量。综上, 宽行距结合适宜密度能提高高粱籽粒库容量, 促进淀粉累积, 提高下部籽粒(弱势粒)的灌浆速率和提早熟期, 降低气候灾害(早霜)对高粱生产的影响。
关键词: 高粱;行距;密度;灌浆速率;灌浆活跃期;淀粉累积;养分累积

Abstract
Row space and plant density not only affect plant phenotype and field ecological environment but also regulate grain yield and the characteristics of grain-filling. The experiments were conducted for two years from 2018 to 2019 to investigate the effects of row space and plant density on grain yield and its composition using ‘Liaoxialiang 1’ as materials, which was bred by Liaoning Academy of Agricultural Sciences. In 2019, the effects of row space and plant density on grain filling characteristics, starch and NPK accumulation per grain of different (upper, middle, and lower) parts of panicles were explored. There were 12 treatments, including three row spaces such as 30, 50, and 60 cm and four plant densities of 135, 165, 195, and 225 thousand-plant hm-2 with each row space. The highest grain yield per hectare and grain yield of three parts of per panicle were produced by the 50 cm row space with 165 thousand-plant hm-2density for 12 treatments. The yield of upper part per panicle was lower than those of other two parts; whereas it had relative high values of weight and starch per grain. Row space 50 cm with density of 165 thousand-plant hm-2 prolonged active grain-filling period of upper part of panicle. It also increased the maximum grain-filling rate and shortened active grain-filling period of lower part of panicle. Both row spaces of 50 cm and 60 cm promoted starch accumulation per grain of three parts of panicle during grain development; whereas 30 cm resulted in a prolonged active grain-filling period of lower part of panicle, which was associated with a reduced grain-filling rate. This might illustrate that relative wide row space accelerate lower part grain maturity and refrain from the effect of early frost on yield, brought about a higher grain-filling rate. Both N and P accumulation per grain increased during grain filling process; Meanwhile K accumulation reached ceiling at 30-40 days after anthesis and declined afterwards, because of K leakage from grain during its maturation. NPK and starch accumulation per grain in upper part of panicle were relatively high than those of other two parts of panicle. It implied the grain of upper panicle had a larger seed size as well. Compared with 30 cm row space, 50 cm and 60 cm row spaces increased NPK accumulation per grain of three parts. High NPK accumulation per grain was produced by the treatment of 50 cm row space with the density of 165 thousand-plant hm-2. In conclusion, wide row space can promote seed size of grain and starch accumulation. The increased grain-filling rate of lower part of panicle (inferior kernels) by wide row space can diminish the risk of natural calamity of early frost.
Keywords:sorghum;row space;density;grain-filling rate;active grain-filling period;starch accumulation;NPK accumulation


PDF (842KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响. 作物学报, 2021, 47(12): 2459-2470 DOI:10.3724/SP.J.1006.2021.04252
DONG Er-Wei, WANG Jin-Song, WU Ai-Lian, WANG Yuan, WANG Li-Ge, HAN Xiong, GUO Jun, JIAO Xiao-Yan. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle. Acta Agronomica Sinica, 2021, 47(12): 2459-2470 DOI:10.3724/SP.J.1006.2021.04252


谷物产量由单位面积穗数、穗粒数和单粒重决定[1], 灌浆持续期和灌浆速率影响籽粒单粒重。谷物籽粒的灌浆特性不仅受作物品种自身基因型的控制[2,3], 也受外界环境和栽培管理措施等因素影响, 增密减氮提高了小麦强势粒和弱势粒的最大粒重[4], 早播提高了夏玉米的灌浆速率[5]; 适当低密结合化肥减量能够促进夏玉米籽粒的后期灌浆, 延长灌浆时间, 促进植株干物质向籽粒的转运[6]; CO2浓度提高了水稻籽粒的最大灌浆速率, 延迟了灌浆速率峰值出现的时间[7]; 水稻和陆稻覆膜及裸地旱种后, 提高了水稻籽粒的平均灌浆速率, 缩短灌浆活跃期[8]

栽培模式(行距和株距)影响农田生态环境, 优化行距能构建较好的植物冠层结构, 提高作物产量。扩行能够提高玉米下层的透光率, 延缓叶片衰老, 提高玉米产量[9]; 错株种植改善玉米群体冠层结构, 优化群体的光照条件, 增强其光合性能及物质生产能力, 提高玉米产量[10]; 种植模式亦可调控土壤根系生长空间而调节根系生长[11]; 密度过高会降低高粱单穗籽粒重, 宽行距有利于叶片较好向两边伸展而提高了高粱籽粒千粒重[12]。种植模式也会调控和影响籽粒的灌浆特性, 增加玉米种植密度导致不同熟期玉米不同穗位的籽粒灌浆速率降低和灌浆活跃期缩短, 最大灌浆速率提前, 粒重降低[13]

高粱是第五大谷类作物, 综合抗旱能力强, 具有低耗水、高水分利用效率特性, 是一种典型的模式抗旱作物[14], 主要种植在干旱和半干旱的欠发达地区[15], 为起源于热带非洲的C4作物, 积温不足会影响籽粒产量[16]。在我国吉林、内蒙古、黑龙江、山西等冷凉区域是高粱的主要种植区域[17], 北方秋季霜冻频发造成叶片枯黄、影响光合作用和籽粒灌浆, 对产量和品质造成影响[18]。适宜密度能够提高高粱籽粒的平均灌浆速率和最大灌浆速率, 延长灌浆期, 提高产量[19], 宽行距改变农田生态系统, 促进高粱植株和籽粒中氮吸收累积, 提高了千粒重、穗粒数和产量[12,20], 但行距及密度对不同穗位籽粒灌浆特性和籽粒形成影响的研究鲜见报道, 为此十分必要明确行距、株距对高粱不同穗位籽粒灌浆特性及熟期的影响, 通过栽培模式协调高粱籽粒灌浆速率、灌浆持续时间与籽粒产量品质的关系。

1 材料与方法

1.1 研究地概况

山西省朔州市山西省农业科学院试验基地(39°33′N、112°43′E, 海拔高1000 m)属温带寒冷半干旱气候区, 年平均气温6.9℃, ≥10℃积温2862℃, 无霜期120 d, 多年平均降水量435~438 mm, 早霜冻对当地农业生产影响较大。2018—2019年5月至9月的气象资料如图1所示, 2年生育期降水量分别为441.2 mm和253.8 mm。供试土壤为褐土, 土壤质地为沙壤土; 2018年前茬作物玉米, 0~20 cm土壤pH 8.58, EC 85.33 µS cm-1、有机质11.48 g kg-1、全氮0.81 g kg-1、有效磷6.36 mg kg-1、速效钾90.47 mg kg-1; 2019年前茬作物燕麦, 0~20 cm土壤pH 8.60, EC 89.65 µS cm-1、有机质14.62 g kg-1、全氮0.69 g kg-1、有效磷7.97 mg kg-1、速效钾90.00 mg kg-1

图1

新窗口打开|下载原图ZIP|生成PPT
图12018-2019年高粱生育期月降雨量和月均气温

Fig. 1Monthly precipitation and average temperature at growing stages in sorghum from 2018 to 2019



1.2 试验设计

试验设30、50和60 cm 3个行距, 每行距处理设13.5 (13.5)、16.5 (16.5)、19.5 (19.5)、22.5万株 hm-2 (22.5) 4个密度, 共12个处理, 每个处理3个重复, 小区随机排列。小区面积35 m2 (7 m×5 m), 一半用于生育期采样, 另外一半用于收获测产。播种整地前施氮187.5 kg hm-2、P2O5 112.5 kg hm-2、K2O 75.0 kg hm-2, 氮肥为缓效尿素, 生育期不再追肥; 2年均在播后灌溉, 灌溉量为600 m3 hm-2, 2019年花期灌溉600 m3 hm-2。供试品种为辽宁省农业科学院高粱研究所选育的‘辽夏粱1号’, 生育期100 d, 株高147 cm, 单宁含量约0.12%, 为饲用低单宁品种。2018年5月5日播种, 5月15日出苗, 5月17日定苗, 9月28日收获; 2019年5月13日播种, 5月21日出苗, 5月24日定苗, 10月4日收获。

1.3 采样时间及方法

1.3.1 产量构成 收获时测产区去除小区2行边行和两端0.5 m后采收测产。取具有代表性的10穗风干考种, 测定千粒重、单穗粒重, 计算单穗粒数。

1.3.2 籽粒灌浆速率、淀粉及氮磷钾累积动态

2019年抽穗期在采样区选择具有代表性、大小基本一致的穗子(穗顶至旗叶叶鞘5 cm左右)挂牌标记, 每小区标记100穗, 从开花后5、10、19、29、39、50 d分别采集标记的穗子5穗, 将穗轴(从穗轴顶部到穗轴基部)分上、中、下三等份, 在105℃杀青30 min后65℃烘至恒重; 去壳称重测定各部位籽粒千粒重、穗粒重, 按照朱庆森等[21]和Wang等[22]的方法用Richards方程对籽粒灌浆过程进行拟合; 籽粒粉碎后测定粗淀粉、氮、磷和钾含量。

1.4 测定项目及方法

按照GB 5006-1985 (谷物籽粒粗淀粉测定法) [23]的方法测定籽粒粗淀粉, 采用浓H2SO4消煮凯氏定氮仪测定全氮; 浓HClO4和浓HNO3 (比例1:3)消煮钒钼黄显色紫外可见分光度计测定全磷, 火焰分光光度计测定全钾[24]

1.5 数据处理与分析

相关参数采用以下公式计算:

拟合Richards单籽粒干重方程为:

$W=\frac{A}{\left( {{\left( 1+B{{\text{e}}^{-kt}} \right)}^{\frac{1}{N}}} \right)}$
计算导出相应灌浆特征参数, 灌浆速率(R)计算为公式(1)的导数

$R=\frac{\left( AkB{{\text{e}}^{-kt}} \right)}{N\left( {{\left( 1+B{{\text{e}}^{-kt}} \right)}^{\frac{\left( N+1 \right)}{N}}} \right)}$
平均灌浆速率G与活跃灌浆期T对(2)积分得到:

$G=\frac{1}{A}\int_{W\infty 0}^{W\infty A}{\frac{\text{d}W}{\text{d}t}}\cdot \text{d}t=\frac{Ak}{2(N+2)}$
灌浆活跃期T为灌浆终值量A除以G得到:

$T=\frac{A}{G}=\frac{2(N+2)}{k}$
式中, W为粒重, A为最大粒重, t为穗花后的时间(d), BkN是通过回归确定的系数, G为平均灌浆速率(mg grain-1 d-1), T为灌浆活跃期(d)。对籽粒进行灌浆速率、灌浆活跃时间和籽粒平均灌浆速率、淀粉变化进行模拟计算。

灌浆期籽粒氮、磷、钾累积量(µg grain-1) = 籽粒氮、磷、钾含量×单籽粒重[25,26,27]
采用Microsoft Excel 2010软件分析数据和制作图表; 采用DPS软件进行灌浆过程方程拟合, SPSS软件进行two-way方差分析, 不同处理间的差异显著性比较(P<0.01或P<0.05)采用q检验。

2 结果与分析

2.1 对高粱籽粒产量及产量构成的影响

图2可知, 与30 cm行距比较, 行距50 cm和60 cm显著提高了籽粒产量(P<0.01), 行距50 cm结合密度16.5万株 hm-2产量最高, 2年分别为10,813.97 kg hm-2和12,433.96 kg hm-2, 行距30 cm密度13.5万株 hm-2和16.5万株 hm-2产量最低; 行距也显著影响籽粒千粒重(P<0.01), 30 cm行距千粒重最低, 50 cm和60 cm行距千粒重相当, 行距60 cm密度16.5万株 hm-2千粒重最高, 2年分别为27.19 g和28.63 g。行距对穗粒数没有显著影响, 同一行距时随密度增加穗粒数降低(P<0.05), 2018年和2019年最高穗粒数分别为3395.5和2764.2。

图2

新窗口打开|下载原图ZIP|生成PPT
图2行距和密度对籽粒产量、千粒重和穗粒数的影响

13.5: 密度13.5万株 hm-2; 16.5: 密度16.5万株 hm-2; 19.5: 密度19.5万株 hm-2; 22.5: 密度22.5万株 hm-2。不同小写字母表示处理间差异达0.05显著水平。
Fig. 2Effects of row space and planting densities on grain yield, 1000-grain weight, and grains per panicle

13.5: 135 thousand plants hm-2; 16.5: 165 thousand plants hm-2; 19.5: 195 thousand plants hm-2; 22.5: 225 thousand plants hm-2. Values marked with different lowercase letters are significantly different among treatments at P < 0.05.


2.2 对高粱籽粒灌浆特性的影响

上中下穗部的籽粒重对产量的贡献不同, 上部籽粒产量最低, 其次为中部, 下部最高。行距、密度及行距与密度交互效应显著影响了灌浆期各部位的籽粒重(P<0.01), 与行距30 cm比较, 50 cm和60 cm行距提高了各相应部位籽粒产量; 随密度增加各部位单穗籽粒重降低, 行距30 cm密度22.5万株 hm-2最低, 行距50 cm密度16.5万株 hm-2最高(图3)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3行距和密度对各部位单穗籽粒重的影响

30-13.5: 行距30 cm, 密度13.5万株 hm-2; 30-16.5: 行距30 cm, 密度16.5万株 hm-2; 30-19.5: 行距30 cm, 密度19.5万株 hm-2; 30-22.5: 行距30 cm, 密度22.5万株 hm-2; 50-13.5: 行距50 cm, 密度13.5万株 hm-2; 50-16.5: 行距50 cm, 密度16.5万株 hm-2; 50-19.5: 行距50 cm, 密度19.5万株 hm-2; 50-22.5: 行距50 cm, 密度22.5万株 hm-2; 60-13.5: 行距60 cm, 密度13.5万株 hm-2; 60-16.5: 行距60 cm, 密度16.5万株 hm-2; 60-19.5: 行距60 cm, 密度19.5万株 hm-2; 60-22.5: 行距60 cm, 密度22.5万株 hm-2。a: 上部穗位; b: 中部穗位; c: 下部穗位。
Fig. 3Effects of row space and planting densities on grain weight of different portions per panicle

30-13.5: row space 30 cm, density 135 thousand plants hm-2; 30-16.5: row space 30 cm, density 165 thousand plants hm-2; 30-19.5: row space 30 cm, density 195 thousand plants hm-2; 30-22.5: row space 30 cm, density 225 thousand plants hm-2; 50-13.5: row space 50 cm, density 135 thousand plants hm-2; 50-16.5: row space 50 cm, density 165 thousand plants hm-2; 50-19.5: row space 50 cm, density 195 thousand plants hm-2; 50-22.5: row space 50 cm, density 225 thousand plants hm-2; 60-13.5: row space 60 cm, density 135 thousand plants hm-2; 60-16.5: row space 60 cm, density 165 thousand plants hm-2; 60-19.5: row space 60 cm, density 195 thousand plants hm-2; 60-22.5: row space 60 cm, density 225 thousand plants hm-2. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle.


灌浆好、粒重高籽粒称为强势粒, 灌浆差、粒重低的籽粒称弱势粒。穗上部籽粒灌浆程度好于中部, 下部最差, 成熟时上部籽粒的单粒重为24.27~ 30.00 mg, 中部为22.20~28.17 mg, 下部为18.66~ 26.18 mg, 上部为强势粒, 中部为中势粒, 下部为弱势粒。行距明显调控了3个部位灌浆期的单粒重, 50 cm和60 cm行距的单粒重明显高于30 cm行距, 30 cm行距13.5万株 hm-2密度单粒重最低, 50 cm和60 cm行距密度为16.5万株 hm-2强势粒和中势粒的单粒重最高, 50 cm行距密度为13.5万株 hm-2和16.5万株 hm-2的弱势粒单粒重最高(图4)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4行距和密度对籽粒增重的影响

处理同图3。a: 上部穗位; b: 中部穗位; c: 下部穗位。
Fig. 4Effects of row space and planting densities on grain weight of different portions of panicle at grain-filling stage

Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle.


行距和密度显著影响了上部籽粒前期的灌浆速率(P<0.05), 50 cm和60 cm行距灌浆速率明显高于30 cm行距(P<0.05), 30 cm行距13.5万株 hm-2灌浆速率最低(图5), 30、50和60 cm行距在花后16.43~18.31、14.47~15.33和13.77~16.27 d达最大灌浆速率, 其分别为0.93~1.14、1.08~1.28和1.15~1.20 mg grain-1 d-1; 在灌浆后期, 行距50 cm密度13.5万株 hm-2和16.5万株 hm-2也提高了上部籽粒的灌浆速率。行距50 cm和60 cm中部和下部籽粒前期灌浆速率和最大灌浆速率显著高于行距30 cm (P<0.01), 且最大灌浆速率早于30 cm行距(图5); 30、50和60 cm行距中部籽粒分别在花后18.12~20.18、17.17~18.55和16.99~18.13 d达最大灌浆速率, 其分别为0.84~0.90、0.93~1.07和0.82~0.94 mg grain-1 d-1; 下部籽粒3个行距分别在花后20.91~23.41、19.13~20.86和18.21~19.42 d达最大灌浆速率, 最大灌浆速率分别为0.67~0.76、0.93~1.06和0.90~ 1.06 mg grain-1 d-1 (图5)。由表1可知, 50 cm和60 cm行距提高了最大灌浆速率, 行距50 cm密度13.5万株 hm-2和16.5万株 hm-2延长了上部籽粒灌浆活跃期, 缩短了下部籽粒灌浆活跃期; 60 cm行距延长了中部籽粒的灌浆活跃期, 缩短了下部籽粒灌浆活跃期; 为此宽行距有利于下部籽粒灌浆。

图5

新窗口打开|下载原图ZIP|生成PPT
图5行距和密度对籽粒灌浆速率的影响

处理同图3。a: 上部穗位; b: 中部穗位; c: 下部穗位。
Fig. 5Effects of row space and planting densities on grain filling rate of different portion of panicle at grain-filling stage

Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle.


Table 1
表1
表1栽培模式籽粒饲用高粱籽粒不同部位灌浆活跃天数和平均灌浆速率
Table 1Active grain-filling period and average grain-filling rate of different parts of sorghum grain
行距
Row space
(cm)
密度
Planting density
(×104 hm-2)
上部籽粒
Upper part of panicle
中部籽粒
Middle part of panicle
下部籽粒
Lower part of panicle
T
(d)
G
(mg grain-1 d-1)
T
(d)
G
(mg grain-1 d-1)
T
(d)
G
(mg grain-1 d-1)
3013.519.71 b0.61 c40.69 cde0.58 de43.25 ab0.51 e
16.518.87 b0.77 b38.41 e0.58 de44.64 a0.46 f
19.518.86 b0.78 b40.07 de0.61 cd43.82 ab0.47 f
22.519.82 b0.72 d40.55 cde0.57 e41.64 bc0.45 f
5013.522.19 a0.73 d43.15 bc0.63 c39.26 d0.64 cd
16.522.84 a0.78 b38.66 de0.72 a40.65 cd0.64 cd
19.518.90 b0.79 b38.76 de0.68 b38.03 de0.63 d
22.514.88 c0.85 a35.46 f0.71 ab33.85 f0.72 a
6013.519.67 b0.79 b45.60 ab0.59 de33.82 f0.72 a
16.518.85 b0.77 b42.98 c0.63 c34.12 f0.70 a
19.518.68 b0.81 ab46.46 a0.55 e35.85 ef0.67 bc
22.519.16 b0.77 b41.10 cd0.64 c39.40 d0.61 d
F
F-value
行距Row spacens**********
密度Density********ns*
行距×密度
Row space×Density
************
T: 籽粒灌浆活跃天数; G: 籽粒平均灌浆速率。同列不同小写字母表示处理间差异显著(P < 0.05)。ns表示差异性不显著, *表示在P < 0.05水平上显著, **表示在P < 0.01水平上显著。
T: active grain-filling days; G: average grain-filling rate. Values within the same column followed by different lowercase letters are significant difference at P < 0.05 among different treatments. ns: not significant; * and ** indicate significant difference at P < 0.05 and P < 0.01, respectively.

新窗口打开|下载CSV

2.3 对高粱籽粒淀粉累积的影响

上部籽粒单粒淀粉累积量最高, 其次为中部籽粒, 下部籽粒淀粉累积量最低(图6)。行距、密度及其交互显著影响各部位单粒淀粉累积量(P<0.01)。随密度增加单粒淀粉累积量下降; 与行距50 cm和60 cm比较, 30 cm行距明显降低了单粒淀粉累积量。整体来看行距50 cm密度16.5万株 hm-2 3个部位单粒淀粉累积量均较高, 收获时上、中、下单粒淀粉累积量分别为21.59、20.85和19.31 mg grain-1, 相应地行距30 cm密度22.5万株 hm-2单粒淀粉累积量最小, 分别为17.89、16.90和14.38 mg grain-1 (图6)。

图6

新窗口打开|下载原图ZIP|生成PPT
图6行距和密度对单粒淀粉累积的影响

处理同图3。a: 上部穗位; b: 中部穗位; c: 下部穗位。
Fig. 6Effects of row space and planting densities on starch accumulation per grain at grain-filling stage

Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle.


行距影响籽粒淀粉累积速率, 30、50和60 cm行距上部籽粒单粒淀粉最大累积活跃期分别在花后17.98~18.59、15.98~16.32和14.95~16.10 d, 单粒淀粉最大增加速率分别为0.83~0.97、0.87~0.91、0.86~0.93 mg grain-1 d-1。30、50和60 cm行距中部单粒淀粉最大累积活跃期分别在花后20.23~21.01、17.83~19.01和17.06~20.31 d, 单粒淀粉最大增加速率分别为0.78~0.81、0.78~0.87、0.68~0.77 mg grain-1 d-1。行距30、50和60 cm下部单粒淀粉最大累积活跃期分别在花后23.25~24.73、20.11~21.37和19.53~20.70 d, 最大增加速率分别为0.66~0.73、0.78~0.87、0.85~0.88 mg grain-1 d-1。行距30 cm提高了灌浆中后期上部籽粒和下部籽粒淀粉累积速率(图7)。

图7

新窗口打开|下载原图ZIP|生成PPT
图7行距和密度对单粒淀粉累积速率的影响

处理同图3。a: 上部穗位; b: 中部穗位; c: 下部穗位。
Fig. 7Effects of row space and planting densities on starch accumulation rate per grain at grain-filling stage

Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle.


图8可知, 50 cm和60 cm行距显著提高了灌浆前期上、中和下部穗位籽粒淀粉含量, 上部和中部籽粒淀粉含量是行距30 cm的2倍(P<0.01), 但在花后30 d行距和密度对籽粒淀粉含量没有显著影响(P>0.05)。花后前30 d, 50 cm行距下部籽粒淀粉含量最高, 30 cm行距最低; 但花后30 d后30 cm行距提高了下部籽粒淀粉含量, 收获时各处理差异不显著(P>0.05)。

图8

新窗口打开|下载原图ZIP|生成PPT
图8行距和密度对籽粒淀粉含量的影响

处理同图3。a: 上部穗位; b: 中部穗位; c: 下部穗位。
Fig. 8Effects of row space and planting densities on starch content of grain at grain-filling stage

Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle.


2.4 对高粱籽粒氮磷钾累积的影响

随着灌浆期的延长, 穗位上中下单粒氮和磷吸收量增加至稳定, 但单粒钾累积量在花后40 d左右最大然后下降; 上部单粒氮磷钾含量高于中部, 下部最低(图9~图11)。花后40 d左右上部单粒氮吸收量最大, 而中下部收获时最大, 收获时上、中和下部单粒氮累积量分别为321.5~423.4、286.0~365.8和207.7~303.8 μg grain-1。50 cm行距单粒氮累积量最高, 其次为60 cm行距, 30 cm行距最低; 相同行距时随密度增加单粒氮累积量降低, 行距50 cm密度16.5万株 hm-2上、中和下最高, 分别为423.4、365.3和303.8 μg grain-1, 行距30 cm密度22.5万株 hm-2上、中和下单粒氮累积量最低, 分别为321.5、283.5和207.7 μg grain-1。收获时30 cm行距上、中和下三部位的单粒磷累积量是行距50 cm和60 cm的37%~50%, 约为48.8~50.8、37.4~43.7和27.9~36.6 μg grain-1, 而50 cm行距分别高达71.1~79.9、65.2~69.0和51.5~57.2 μg grain-1 (图10)。30 cm行距的单粒钾累积量也明显低于50 cm和60 cm行距, 收获时行距50 cm密度16.5万株 hm-2单粒钾累积量最高, 上、中和下各部位单粒钾累积量分别为76.2、74.4和69.23 μg grain-1, 而行距30 cm密度16.5万株 hm-2单粒钾累积量仅为58.6、55.3和54.6 μg grain-1 (图11)。

图9

新窗口打开|下载原图ZIP|生成PPT
图9行距和密度对单粒氮累积的影响

处理同图3。a: 上部穗位; b: 中部穗位; c: 下部穗位。
Fig. 9Effects of row space and planting densities on N accumulation per grain at grain-filling stage

Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle.


图10

新窗口打开|下载原图ZIP|生成PPT
图10行距和密度对籽粒单粒磷累积的影响

处理同图3。a: 上部穗位; b: 中部穗位; c: 下部穗位。
Fig. 10Effects of row space and planting densities on P accumulation per grain at grain-filling stage

Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle.


图11

新窗口打开|下载原图ZIP|生成PPT
图11行距和密度对籽粒单粒钾累积的影响

处理同图3。a: 上部穗位; b: 中部穗位; c: 下部穗位。
Fig. 11Effects of row space and planting densities on K accumulation per grain at grain-filling stage

Treatments are the same as those given in Fig. 3. a: upper part of panicle; b: middle part of panicle; c: lower part of panicle.


3 讨论

行距和密度影响植株叶面积、株型、光能截获和养分吸收, 调控谷物籽粒产量[20,28-29]。本试验连续2年50 cm和60 cm行距籽粒产量较高, 以50 cm行距16.5万株 hm-2密度籽粒产量和千粒重最高, 穗粒数也相对较高, 表明调控行距及密度可进一步挖掘高粱籽粒生产潜力。

单位面积的穗数、穗粒数和粒重是高粱产量的构成因子, 灌浆能力和灌浆速率是影响粒重的主要生理基础[30]。着生在稻穗中上部为强势粒, 稻穗下部迟开花的籽粒为弱势粒[31], 这种差异在超级稻品种上表现更突出[32], 而玉米的强势粒在果穗下部, 小麦强势粒在穗中部[33], 而关于高粱不同部位籽粒灌浆特性鲜有报道, 本研究所用高粱品种上部为强势粒, 这可能与高粱顶部先开花有关; 尽管上部1/3 穗位的单穗籽粒产量最小, 不及中部和下部籽粒产量的50% (图3), 但其单粒重最高, 说明每穗强势粒籽粒数较少。

适宜的行距和密度有利于单穗粒数和单穗粒重的协调发展[28,34], 扩大库容量能够提高籽粒产量[35]。通常随密度增加千粒重降低[36], 本研究中随密度增加不仅千粒重降低, 穗粒数也明显降低(图2); 谷物籽粒填充过程受遗传或环境共同调控[3,37], 已有研究发现谷物籽粒重由灌浆时间和灌浆速率共同影响, 但灌浆速率比灌浆时间影响更大[4,38], 也有研究认为灌浆速率和灌浆时间共同决定粒重[39], 灌浆速率和灌浆时间对谷物粒重的影响可能与环境因子有关; 尽管窄行距(30 cm)延长了中部和下部籽粒的灌浆活跃期, 但灌浆速率低(表1), 导致千粒重和单粒重低(图2图4-a)。总的来看50 cm行距13.5万株 hm-2和16.5万株 hm-2密度上部籽粒灌浆活跃期长且灌浆速率高, 中部和下部籽粒灌浆活跃期短但灌浆速率高; 60 cm行距也提高中部籽粒的灌浆活跃期, 缩短了下部籽粒的灌浆活跃期。谷物的灌浆速率与库的大小和活力有关[40], 胚乳细胞数影响库的大小, 而细胞激素则调节库的活力[41,42], 为此有必要进一步研究行距调控高粱灌浆速率的生理机制。高粱花序从始花到结束6~9 d或更长[43], 早霜对高粱籽粒产量的影响主要是对下部籽粒灌浆的影响, 30 cm行距降低下部籽粒灌浆速率, 延长其灌浆活跃期, 因此更易受不良气候的影响。从某种程度来看, 50 cm和60 cm行距能够在确保产量前提下缩短生育期5~10 d, 为此通过栽培模式充分协调高粱熟期和籽粒灌浆特性, 对指导高粱生产品种布局、挖掘品种高产潜力和实现高产优质具有重要意义。

高淀粉含量是高粱籽粒的主要利用特征[44], 可达70%~75%以上[45], 籽粒灌浆实质上主要是淀粉积累的过程。尽管上部单粒重(图4)、单粒淀粉累积量(图6)和氮磷钾累积量(图9~图11)较高, 但上部和中部籽粒淀粉含量低于下部籽粒(图8), 表明上部籽粒虽具有较大容积, 但籽粒中过多矿质养分影响了淀粉的填充。

栽培模式调控作物生长和养分吸收, 宽行距有利于植物对养分吸收与累积, 及籽粒产量形成[12,30]。籽粒中氮需求量高会提高营养器官中氮向籽粒中运转, 导致营养器官的早衰而影响灌浆[46,47], 行距对高粱营养器官和籽粒中氮含量具有相同方向的调控效应[12,28], 本试验也未发现50 cm行距籽粒中高氮累积导致早衰而影响产量(图2)。上部籽粒中较高氮磷钾的含量可能与其灌浆时营养器官长势较好和根系活力较强有关, 有待于在营养生理机制上进一步深入研究。通常植物钾的最大累积量出现在花期[48], 随着作物成熟营养器官中钾含量降低[49], 本研究发现在灌浆过程中籽粒的钾也会流失, 达10%左右, 30 cm窄行距和低密度流失更为明显。

4 结论

行距和密度共同影响高粱产量及其构成, 随密度增加单穗籽粒数降低, 宽行距适宜密度产量较高。每穗上部的籽粒产量低于中部和下部, 但上部单粒重、淀粉及氮磷钾累积量最高; 随灌浆进程单粒重、单粒淀粉和氮磷累积至稳定, 但在花后30~ 40 d单粒钾累积量最大然后下跌; 宽行距提高了各部位的单粒重、淀粉和氮磷钾累积量, 宽行距适宜密度延长上部籽粒的灌浆活跃期, 提早下部籽粒灌浆和提高灌浆速率, 确保下部籽粒(弱势粒)完全灌浆。因此适宜行距能够调控高粱籽粒充分灌浆, 确保熟期, 避免气候灾害(早霜)对高粱生产的影响。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Peltonen-Sainio P, Kangas A, Salo Y, Jauhiainen L. Grain number dominates grain weight in temperate cereal yield determination: evidence based on 30 years of multi-location trials
Field Crops Res, 2006, 100:179-188.

DOIURL [本文引用: 1]

王荣焕, 徐田军, 陈传永, 王元东, 吕天放, 刘月娥, 蔡万涛, 刘秀芝, 赵久然. 不同熟期类型玉米品种籽粒灌浆和脱水特性
作物学报, 2021, 47:149-158.

DOI [本文引用: 1]
根据自然生态条件及玉米品种的熟期、籽粒灌浆与脱水特性和产量潜力等进行科学品种布局, 是实现玉米高产优质和资源高效利用的重要途径。本试验选用中早熟、中熟和中晚熟3个熟期类型, 共13个玉米生产主栽品种, 通过测定籽粒干物质积累和含水率的动态变化, 研究并明确了不同熟期类型玉米品种的籽粒灌浆和脱水特性, 旨在为生产品种布局提供参考和指导。试验结果表明: 产量、籽粒灌浆和脱水特性在不同熟期类型和品种间均存在显著差异。产量表现为中晚熟(13,813.0 kg hm<sup>-2</sup>) &gt; 中熟(12,970.4 kg hm<sup>-2</sup>) &gt; 中早熟品种(10,729.0 kg hm<sup>-2</sup>), 中晚熟分别较中早熟和中熟品种增产28.7%和6.5%。平均灌浆速率表现为中早熟(0.034 g 100-grain<sup>-1</sup> ℃<sup>-1</sup>) &gt; 中熟(0.031 g 100-grain<sup>-1</sup> ℃<sup>-1</sup>) &gt; 中晚熟品种(0.027 g 100-grain<sup>-1</sup> ℃<sup>-1</sup>), 生理成熟后的平均物理脱水速率表现为中熟(0.027% ℃<sup>-1</sup> d<sup>-1</sup>) &gt; 中早熟(0.025% ℃<sup>-1</sup> d<sup>-1</sup>) &gt; 中晚熟品种(0.018% ℃<sup>-1</sup> d<sup>-1</sup>)。中早熟代表性品种京农科728的平均灌浆速率和生理成熟后的物理脱水速率。分别较3个熟期代表性品种郑单958、先玉335、农华101高38.5%和112.5%、28.6%和54.5%、28.6%和13.3%; 中晚熟代表性品种京科968产量潜力最大(14,813.0 kg hm<sup>-2</sup>), 且平均灌浆速率和物理脱水速率分别较同熟期品种郑单958高7.7%和18.8%。产量与灌浆期天数、积温、平均灌浆速率和百粒重呈显著或极显著正相关, 收获期籽粒含水率与灌浆期天数和积温显著正相关、与生理降水速率和物理脱水速率极显著负相关, 生理降水速率和物理脱水速率与平均灌浆速率相关性不显著。综上, 中早熟、中熟和中晚熟3个不同熟期类型及不同玉米品种的籽粒灌浆和脱水特性差异显著, 生产中品种布局除考虑熟期外还需兼顾该特性, 以更利于实现玉米高产优质和资源高效利用。
Wang R H, Xu T J, Chen C Y, Wang Y D, Lyu T F, Liu Y E, Cai W T, Liu X Z, Zhao J R. Grain filling and dehydrating characteristics of maize hybrids with different maturity
Acta Agron Sin, 2021, 47:149-158 (in Chinese with English abstract).

[本文引用: 1]

Wang T, Li F M, Turner N C, Wang B R, Wu F, Anten N P R, Du Y L. Accelerated grain-filling rate increases seed size and grain yield of recent naked oat cultivars under well-watered and water-deficit conditions
Eur J Agron, 2020, 116:126047.

DOIURL [本文引用: 2]

丁锦峰, 游蕊, 丁永刚, 王妍, 张明伟, 朱敏, 李春燕, 朱新开, 郭文善. 基于不同栽培模式的小麦强、弱势粒灌浆特性研究
麦类作物学报, 2020, 40(11):1-9.

[本文引用: 2]

Ding J F, You R, Ding Y G, Wang Y, Zhang M W, Zhu M, Li C Y, Zhu X K, Guo W S. Grain filling characters of superior and inferior grains in wheat based on different cultivation patterns
J Triticeae Crops, 2020, 40(11):1-9 (in Chinese with English abstract).

[本文引用: 2]

徐田军, 吕天放, 赵久然, 王荣焕, 张勇, 蔡万涛, 刘月娥, 刘秀芝, 陈传永, 邢锦丰, 王元东, 刘春阁. 不同播期条件下黄淮海区主推夏播玉米品种籽粒灌浆特性
作物学报, 2021, 47:566-574.

DOI [本文引用: 1]
以京农科728等18个黄淮海区主推夏播玉米品种为研究材料, 设置6月10日(S1)、6月20日(S2)和6月30日(S3)共3个播期处理, 研究夏播玉米品种在不同播期条件下的籽粒灌浆特性, 以期为玉米品种选择及高产栽培提供参考和指导。结果表明: (1)成熟期百粒重在不同播期及品种间存在极显著差异, 不同播期间表现为S1 (35.20 g) &gt; S2 (33.45 g) &gt;S3 (31.38 g); 不同品种间变幅为28.50 g (华美1号)~36.37 g (京农科728)。(2)籽粒平均灌浆速率(G<sub>ave</sub>)在不同播期条件下表现为S1 (0.74 g 100-grain <sup>-1</sup> d<sup>-1</sup>) &gt; S2 (0.65 g 100-grain <sup>-1</sup> d<sup>-1</sup>) &gt; S3 (0.57 g 100-grain <sup>-1</sup> d<sup>-1</sup>), S1平均灌浆速率分别比S2、S3高0.09 和0.17 g 100-grain<sup>-1</sup> d<sup>-1</sup>, 增幅分别为13.85%和29.82%; 18个品种平均灌浆速率以京农科728 (0.75 g 100-grain<sup>-1</sup> d<sup>-1</sup>)最高, 显著高于郑单958和先玉335 (0.58 g 100-grain<sup>-1</sup> d<sup>-1</sup>和0.67 g 100-grain<sup>-1</sup> d<sup>-1</sup>), 增幅为29.31%和11.94%。(3)不同播期间参试品种产量表现为S1 (10,628.67 kg hm<sup>-2</sup>) &gt; S2 (10,207.65 kg hm <sup>-2</sup>) &gt; S3 (9144.59 kg hm <sup>-2</sup>), S1分别较S2、S3高4.12%、16.23%; S1与S2下产量相差不大。不同品种间, NK815、MC121、京农科729、MC812、京农科728和先玉335产量相对较高, 平均为10,730.56 kg hm<sup>-2</sup>, 显著高于郑单958 (10,080.85 kg hm<sup>-2</sup>), 增幅为6.44%。(4)相关分析表明, 产量与平均灌浆速率(0.70<sup>**</sup>)、粒重(0.68<sup>**</sup>)呈极显著正相关; 与活跃灌浆期(-0.36<sup>**</sup>)呈极显著负相关, 而粒重与平均灌浆速率(0.58<sup>**</sup>)呈极显著正相关。因此, 黄淮海区夏播玉米抢时早播有利于获得更高产量, 玉米品种可选择种植中熟或中早熟、灌浆速率高、活跃灌浆期适中、产量水平较高的京农科728、京农科729、MC812、MC121、NK815和先玉335等。在播种较晚或积温不足地区, 可选择种植中早熟、灌浆速度快的高产型品种京农科728, 6月30日播种、10月16日达生理成熟, 可实现玉米高产。
Xu T J, Lyu T F, Zhao J R, Wang R H, Zhang Y, Cai W T, Liu Y E, Liu X Z, Chen C Y, Xing J F, Wang Y D, Liu C G. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region
Acta Agron Sin, 2021, 47:566-574 (in Chinese with English abstract).

[本文引用: 1]

于宁宁, 赵子航, 任佰朝, 赵斌, 刘鹏, 张吉旺. 综合农艺管理促进夏玉米氮素吸收、籽粒灌浆和品质提高
植物营养与肥料学报, 2020, 26:797-805.

[本文引用: 1]

Yu N N, Zhao Z H, Ren B Z, Zhao B, Liu P, Zhang J W. Integrated agronomic management practices improve nitrogen absorption, grain filling and nutritional qualities of summer maize
J Plant Nutr Fert, 2020, 26:797-805 (in Chinese with English abstract).

[本文引用: 1]

胡健, 杨连新, 周娟, 王余龙, 朱建国. 开放式空气CO2浓度增高(FACE)对水稻灌浆动态的影响
中国农业科学, 2007, 40:2443-2451.

[本文引用: 1]

Hu J, Yang L X, Zhou J, Wang Y L, Zhu J G. Effect of free-air CO2 enrichment (FACE) on grain filling dynamics of rice
Sci Agric Sin, 2007, 40:2443-2451 (in Chinese with English abstract).

[本文引用: 1]

张亚洁, 许德美, 孙斌, 刁广华, 林强森, 杨建昌. 种植方式对陆稻和水稻籽粒灌浆及垩白的影响
中国农业科学, 2005, 39:257-264.

[本文引用: 1]

Zhang Y J, Xu D M, Sun B, Diao G H, Lin Q S, Yang J C. Effects of cultivation methods on grain-filling and chalky grains of upland and paddy rice
Sci Agric Sin, 2005, 39:257-264 (in Chinese with English abstract).

[本文引用: 1]

何冬冬, 杨恒山, 张玉芹. 扩行距、缩株距对春玉米冠层结构和产量的影响
中国生态农业学报, 2018, 26:397-408.

[本文引用: 1]

He D D, Yang H S, Zhang Y Q. Effects of line-spacing expansion and row-spacing shrinkage on canopy structure and yield of spring corn
Chin J Eco-Agric, 2018, 26:397-408 (in Chinese with English abstract).

[本文引用: 1]

张春雨, 白晶, 丁相鹏, 张吉旺, 刘鹏, 任佰朝, 赵斌. 错株增密种植对夏玉米光合特性及产量的影响
中国农业科学, 2020, 53:3928-3941

[本文引用: 1]

Zhang C Y, Bai J, Ding X P, Zhang J W, Liu P, Ren B Z, Zhao B. Effects of staggered planting with increased density on the photosynthetic characteristics and yield of summer maize
Sci Agric Sin, 2020, 53:3928-3941 (in Chinese with English abstract).

[本文引用: 1]

Jia Q M, Yang L Y, An H Y, Dong S, Chang S H, Zhang C, Liu Y J, Hou F J. Nitrogen fertilization and planting models regulate maize productivity, nitrate and root distributions in semi-arid regions
Soil Tillage Res, 2020, 200:104636.

DOIURL [本文引用: 1]

董二伟, 王劲松, 焦晓燕, 武爱莲, 南江宽, 郭珺, 王立革. 栽培模式对晋杂34产量及氮素吸收利用的调控效应
华北农学报, 2019, 34(1):196-203.

[本文引用: 4]

Dong E W, Wang J S, Jiao X Y, Wu A L, Nan J K, Guo J, Wang L G. Effects of cultivation patterns on yield and nitrogen uptake and utilization of Jinza 34
Acta Agric Boreali-Sin, 2019, 34(1):196-203 (in Chinese with English abstract).

[本文引用: 4]

朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应
作物学报, 2021, 47:507-519.

DOI [本文引用: 1]
研究密度对不同熟期玉米品种不同粒位的籽粒灌浆和脱水特性的调控效应, 为陕北灌区春玉米密植高产机械粒收技术提供依据。于2018—2019年以中熟品种先玉335 (Xianyu 335)和晚熟品种东单60 (Dongdan 60)为材料, 设置45,000 (D1)、60,000 (D2)、75,000 (D3)、90,000 (D4)株 hm<sup>-2</sup>四个种植密度, 分析其不同粒位籽粒灌浆、脱水特性及其与气候因子的相关性。结果表明, 密度的增加能显著提高不同熟期品种玉米籽粒产量, 其中2018年2个品种均在D4处理下达到最高产量; 2019年先玉335和东单60分别在D4和D3处理下达到最高产量, 2年平均最高产量分别为18,739 kg hm<sup>-2</sup>和17,111 kg hm<sup>-2</sup>, 较D1处理产量分别提高了32.2%和27.7%。随着种植密度的增加, 不同粒位的籽粒灌浆速率降低, 粒重减小, 脱水速率加快。在D4种植密度下, 先玉335下部和上部籽粒平均灌浆速率较东单60分别高0.08 g d<sup>-1</sup>和0.04 g d<sup>-1</sup>, 粒重较东单60分别高3.6 g和1.6 g。生理成熟时不同粒位的籽粒含水率与吐丝到生理成熟间有效积温呈显著正相关, 总脱水速率与灌浆速率相关性不显著。先玉335不同粒位的籽粒脱水速率快, 且下部和上部籽粒平均脱水速率较东单60高0.006和0.005% ℃ d<sup>-1</sup>。与下部籽粒比, 上部籽粒灌浆速率低、灌浆期长、粒重小、后期脱水快、含水率达到28%和25%所需积温少。可见, 2个品种籽粒灌浆和脱水特性对增密的响应其上部籽粒更敏感; 与东单60相比, 先玉335密植下籽粒灌浆速率高, 粒重大, 且后期脱水速率快。因此, 选择中熟品种结合适宜增密能够实现陕北灌区玉米密植高产机械粒收生产。
Zhu Y L, Wang C G, Yang M, Zheng X H, Zhao C F, Zhang R H. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density
Acta Agron Sin, 2021, 47:507-519 (in Chinese with English abstract).

[本文引用: 1]

山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位
中国农业科学, 2009, 42:2342-2348.

[本文引用: 1]

Shan L, Xu B C. Discussion on drought resistance of sorghum and its status in agriculture in arid and semiarid regions
Sci Agric Sin, 2009, 42:2342-2348 (in Chinese with English abstract).

[本文引用: 1]

Subudhi P K, Nguyen H T. Linkage group alignment of sorghum RFLP maps using a RIL mapping population
Genome, 2000, 43:240-249.

PMID [本文引用: 1]
Several molecular maps have been constructed in sorghum (Sorghum bicolor L. Moench) using a variety of probes from different grass species such as sorghum, maize, sugarcane, rice, oat, and barley. In order to enhance the utility of the existing mapping information by the sorghum research community, alignment and integration of all major molecular maps is necessary. To achieve this objective, a genetic map of 214 loci with a total map distance of 1200 cM was constructed using 98 F7 sorghum recombinant inbred lines (RILs) from a cross between two inbred lines, B35 and Tx7000. Few cDNA clones of sorghum and maize related to photosynthesis and drought stress were mapped on this map for the first time. Five major restriction fragment length polymorphism (RFLP) maps independently developed in this species were used for alignment purpose. The distributions of previously mapped markers were compared with their respective sorghum maps to align each of the linkage groups. In general, consistent linear order among markers was maintained in all the linkage maps. The successful alignment of these RFLP maps will now allow selection of a large number of markers for any region of the sorghum genome with many potential applications ranging from fine mapping and marker-assisted selection to map-based cloning for the improvement of sorghum and related species.

Singh S P. Sources of cold tolerance in grain sorghum
Can J Plant Sci, 1985, 65:251-257.

DOIURL [本文引用: 1]

中国报告网. 2017年全国高粱播种面积为506.5千公顷(附各省市数量)
[2019-08-02] http://data.chinabaogao.com/nonglinmuyu/2019/0R43PB2019.html.

URL [本文引用: 1]

China Reports Network. In 2017, the sown area of Sorghum in China was 506.5 thousand hectares (with the number of provinces and cities attached)
[2019-08-02] http://data.chinabaogao.com/nonglinmuyu/2019/0R43PB2019.html. (in Chinese).

URL [本文引用: 1]

李娜. 山西霜冻灾害特征及其对农作物影响的研究
兰州大学硕士学位论文, 甘肃兰州, 2018.

[本文引用: 1]

Li N. Characteristics of Frost Disaster in Shanxi and Its Impact on Crops
MS Thesis of Lanzhou University. Lanzhou, Gansu, China, 2018 (in Chinese with English abstract).

[本文引用: 1]

柯福来, 朱凯, 邹剑秋. 密度对高粱品种辽杂19群体子粒灌浆的效应
作物杂志, 2016, (5):141-146.

[本文引用: 1]

Ke F L, Zhu K, Zou J Q. Effect of plants densities on population grain filling characteristic of sorghum hybrid Liaoza 19
Crops, 2016, (5):141-146 (in Chinese with English abstract).

[本文引用: 1]

王劲松, 董二伟, 焦晓燕, 武爱莲, 白文斌, 王立革, 郭珺, 韩雄, 柳青山. 不同种植模式对高粱晋糯3号产量和养分吸收的影响
作物杂志, 2019, (5):166-172

[本文引用: 2]

Wang J S, Dong E W, Jiao X Y, Wu A L, Bai W B, Wang L G, Guo J, Han X, Liu Q S. Effects of different planting patterns on yield and nutrient absorption of sorghum Jinnuo 3
Crops, 2019, (5):166-172 (in Chinese with English abstract).

[本文引用: 2]

朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析
作物学报, 1988, 3:182-192.

[本文引用: 1]

Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice
Acta Agron Sin, 1988, 3:182-192 (in Chinese with English abstract).

[本文引用: 1]

Wang Z Q, Xu Y J, Chen T T, Zhang H, Yang J C, Zhang J H. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling
Planta, 2015, 241:1091-1107.

DOIURL [本文引用: 1]

中华人民共和国农业部. 谷物籽粒粗淀粉测定方法, NY/T 11-1985, 1985.
[本文引用: 1]

Ministry of Agriculture, The People’s Republic of China. Determination of Crude Starch in Cereals Seeds, NY/T 11-1985, 1985 (in Chinese).
[本文引用: 1]

鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. pp 265-271.
[本文引用: 1]

Lu R K. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science and Technology Press, 1999. pp 265-271(in Chinese).
[本文引用: 1]

黄明, 吴金芝, 李友军, 王贺正, 陈明灿, 付国占. 旱地不同产量水平小麦的产量构成及氮素吸收利用效率
麦类作物学报, 2019, 39(2):163-170.

[本文引用: 1]

Huang M, Wu J Z, Li Y J, Wang H Z, Chen M C, Fu G Z. Differences of yield components and nitrogen uptake and utilization in winter wheat with different yield levels in drylands
J Triticeae Crops, 2019, 39(2):163-170 (in Chinese with English abstract).

[本文引用: 1]

吕丽华, 陶洪斌, 王璞, 刘明, 赵明, 王润正. 种植密度对夏玉米碳氮代谢和氮利用率的影响
作物学报, 2008, 34:718-723.

[本文引用: 1]

Lyu L H, Tao H B, Wang P, Liu M, Zhao M, Wang R Z. Carbon and nitrogen metabolism and nitrogen use efficiency in summer maize under different planting densities
Acta Agron Sin, 2008, 34:718-723 (in Chinese with English abstract).

[本文引用: 1]

徐娇, 孟亚利, 睢宁, 宋为超, 周治国. 种植密度对转基因棉氮、磷、钾吸收和利用的影响
植物营养与肥料学报, 2013, 19:174-181.

[本文引用: 1]

Xu J, Meng Y L, Sui N, Song W C, Zhou Z G. Effects of planting density on uptake and utilization of N, P and K of transgenic cotton
J Plant Nutr Fert, 2013, 19:174-181 (in Chinese with English abstract).

[本文引用: 1]

柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响
作物学报, 2019, 45:1868-1879.

[本文引用: 3]

Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize
Acta Agron Sin, 2019, 45:1868-1879 (in Chinese with English abstract).

[本文引用: 3]

蒯婕, 孙盈盈, 左青松, 廖庆喜, 冷锁虎, 程雨贵, 曹石, 吴江生, 周广生. 机械收获模式下直播冬油菜密度与行距的优化
作物学报, 2016, 42:898-908.

[本文引用: 1]

Kuai J, Sun Y Y, Zuo Q S, Liao Q X, Leng S H, Cheng Y G, Cao S, Wu J S, Zhou G S. Optimization of plant density and row spacing for mechanical harvest in winter rapeseed ( Brassica napus L.)
Acta Agron Sin, 2016, 42:898-908 (in Chinese with English abstract).

[本文引用: 1]

朱凯, 张飞, 柯福来, 王艳秋, 邹剑秋. 种植密度对适宜机械化栽培高粱品种产量及生理特性的影响
作物杂志, 2018, (1):83-87.

[本文引用: 2]

Zhu K, Zhang F, Ke F L, Wang Y Q, Zou J Q. Effects of planting density on yield and physiological characteristics of sorghum hybrids suitable for mechenization
Crops, 2018, (1):83-87 (in Chinese with English abstract).

[本文引用: 2]

陈婷婷, 谈桂露, 褚光, 刘立军, 杨建昌. 超级稻花后强、弱势粒灌浆相关蛋白质表达的差异
作物学报, 2012, 38:1471-1482.

[本文引用: 1]

Chen T T, Tan G L, Chu G, Liu L J, Yang J C. Differential expressions of the proteins related to grain filling between superior and inferior spikelets of super rice after anthesis
Acta Agron Sin, 2012, 38:1471-1482 (in Chinese with English abstract).

[本文引用: 1]

Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice: a super-domesticate in China
Ann Bot, 2007, 100:959-966.

DOIURL [本文引用: 1]

徐云姬. 三种禾谷类作物强、弱势粒灌浆差异机理及其调控技术
兰州大学博士学位论文, 甘肃兰州, 2016.

[本文引用: 1]

Xu Y J. Mechanism in the Filling Difference between Superior and Inferior Caryopses of Three Cereal Crops and Its Regulation Techniques
PhD Dissertation of Lanzhou University, Lanzhou, Gansu, China, 2016 (in Chinese with English abstract).

[本文引用: 1]

肖万欣, 刘晶, 史磊, 赵海岩, 王延波. 氮密互作对不同株型玉米形态、光合性能及产量的影响
中国农业科学, 2017, 50:3690-3701.

[本文引用: 1]

Xiao W X, Liu J, Shi L, Zhao H Y, Wang Y B. Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield
Sci Agric Sin, 2017, 50:3690-3701 (in Chinese with English abstract).

[本文引用: 1]

张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全. 陕西灌区高产春玉米物质生产与氮素积累特性
中国农业科学, 2017, 50:2238-2246.

[本文引用: 1]

Zhang R H, Wang B X, Yang Y H, Yang X J, Ma X F, Zhang X H, Hao Y C, Xue J Q. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi
Sci Agric Sin, 2017, 50:2238-2246 (in Chinese with English abstract).

[本文引用: 1]

徐丽娜, 闫艳, 梅沛沛, 陈士林, 王小龙. 种植密度对不同玉米品种籽粒灌浆特性的影响
山东农业科学, 2020, 52(7):20-23.

[本文引用: 1]

Xu L N, Yan Y, Mei P P, Chen S L, Wang X L. Effects of planting density on grain filling characteristics of different maize varieties
Shandong Agric Sin, 2020, 52(7):20-23 (in Chinese with English abstract).

[本文引用: 1]

Zhang H, Li H, Yuan L, Wang Z, Yang J, Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice
J Exp Bot, 2012, 63:215-227.

DOIPMID [本文引用: 1]
This study tested the hypothesis that a post-anthesis moderate soil drying can improve grain filling through regulating the key enzymes in the sucrose-to-starch pathway in the grains of rice (Oryza sativa L.). Two rice cultivars were field grown and two irrigation regimes, alternate wetting and moderate soil drying (WMD) and conventional irrigation (CI, continuously flooded), were imposed during the grain-filling period. The grain-filling rate and activities of four key enzymes in sucrose-to-starch conversion, sucrose synthase (SuSase), adenosine diphosphate-glucose pyrophosphorylase (AGPase), starch synthase (StSase), and starch branching enzyme (SBE), showed no significant difference between WMD and CI regimes for the earlier flowering superior spikelets. However, they were significantly enhanced by the WMD for the later flowering inferior spikelets. The activities of both soluble and insoluble acid invertase in the grains were little affected by the WMD. The two cultivars showed the same tendencies. The activities of SuSase, AGPase, StSase, and SBE in grains were very significantly correlated with the grain-filling rate. The abscisic acid (ABA) concentration in inferior spikelets was remarkably increased in the WMD and very significantly correlated with activities of SuSase, AGPase, StSase, and SBE. Application of ABA on plants under CI produced similar results to those seen in plants receiving WMD. Applying fluridone, an indirect inhibitor of ABA synthesis, produced the opposite effect. The results suggest that post-anthesis WMD could enhance sink strength by regulating the key enzymes involved, and consequently, increase the grain-filling rate and grain weight of inferior spikelets. ABA plays an important role in this process.

Liang W, Zhang Z, Wen X X, Liao Y C, Liu Y. Effect of no-structural carbohydrate accumulation in the stem pre-anthesis on grain filling of wheat inferior grain
Field Crops Res, 2017, 211:66-76.

DOIURL [本文引用: 1]

徐莹, 王林林, 陈炜, 李红兵, 邓西平. 施氮量对旱地小麦强势粒和弱势粒灌浆及产量的影响
麦类作物学报, 2013, 33:489-494.

[本文引用: 1]

Xu Y, Wang L L, Chen W, Li H B, Deng X P. Effects of different nitrogen levels on grain-filling characteristics and yield of two dryland wheat cultivars for superior and inferior grain
J Triticeae Crops, 2013, 33:489-494 (in Chinese with English abstract).

[本文引用: 1]

Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice
Field Crops Res, 2011, 123:170-182.

DOIURL [本文引用: 1]

Panda B B, Badoghar A K, Sekhar S, Shaw B P, Mohapatra P K. 1-MCP treatment enhanced expression of genes controlling endosperm cell division and starch biosynthesis for improvement of grain filling in a dense-panicle rice cultivar
Plant Sci, 2016, 246:11-25.

DOIPMID [本文引用: 1]
High ethylene production in dense-panicle rice cultivars impacts grain filling. 1-MCP (ethylene action inhibitor) treatment increased assimilates partitioning, cell number and size and expression of starch synthesizing enzyme genes of developing caryopses mostly in the basal spikelets of panicle at early post-anthesis stage. The gain in cell number was less compared to the increase of size. High ethylene production in spikelets matched with greater expression of ethylene receptor and signal transducer genes. Genes encoding cell cycle regulators CDK, CYC and CKI expressed poorly on 9 DAA. 1-MCP treatment enhanced their expression; the increase of expression was higher for CDKs and lower for CKIs in basal compared to apical spikelets. Greater expression of CDKB2:1 might have lifted cytokinesis of nascent peripheral cells of endosperm, while promotion of CDKAs, CYCD2:2 and inhibition of CYCB2:2 expression contributed to endoreduplication of central cells increasing cell size and DNA ploidy level. It is concluded that the process of endoreduplication, which begins at mid-grain filling stage, is crucially linked with the final caryopsis size of rice grain. The enhanced endosperm growth brought about by repressed ethylene action during the first few days after anthesis seems to be associated with the overall increased cell cycle activity and sink strength. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

Wang T, Du Y L, He J, Turner N C, Wang B R, Zhang C, Cui T, Li F M. Recently-released genotypes of naked oat ( Avena nuda L.) out-yield early releases under water-limited conditions by greater reproductive allocation and desiccation tolerance
Field Crops Res, 2017, 204:169-179.

DOIURL [本文引用: 1]

卢庆善. 高粱学. 北京: 中国农业出版社, 1999. pp 69-70.
[本文引用: 1]

Lu Q S. Sorghum. Beijing: China Agricultural Press, 1999. pp 69-70(in Chinese).
[本文引用: 1]

Ananda N, Vadlani P V, Prasad P V V. Evaluation of drought and heat stressed grain sorghum ( Sorghum bicolor) for ethanol production
Ind Crops Prod, 2011, 33:779-782.

DOIURL [本文引用: 1]

王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响
作物学报, 2021, 47:342-350.

DOI [本文引用: 1]
本研究于2015—2019年以晋杂34、辽杂27、晋饲2号、晋糯3号和汾酒粱1号为研究对象, 设0 (N0)、75 (N75)、150 (N150)、225 (N225)、300 (N300)、450 kg hm<sup>-2</sup> (N450) 6个氮素水平, 调查其对产量性状、淀粉含量和土壤硝态氮以及氮素利用特性指标的影响, 以探讨高粱合理的氮素施用方案。结果表明, 高粱的产量、穗粒数及植株地上部氮素累积量, 随施氮水平的增加呈先增加后趋于稳定的趋势, 其中以N75处理增幅最大, 较N0处理最大增幅分别可达23.68%、48.05%和51.86%; 籽粒淀粉含量、5年叠加氮肥利用率、5年叠加氮肥农学效率和氮素5年叠加表观回收率随施氮水平的增加都存在不同程度的降低, 其中N75处理下5年叠加氮肥利用率为63.01%, 较N150处理提高了76.91%; 籽粒淀粉产量则随施氮水平的增加呈先增加后降低的趋势。连续施氮4~5年后, 施氮量≥225 kg hm<sup>-2</sup>, 残留的硝态氮在60~200 cm土层逐年累积, 且在0~200 cm土层存在明显的累积峰, 硝态氮淋失风险加剧。施氮量75~150 kg hm<sup>-2</sup>之间, 在满足高粱植株基本生长需求的同时, 可以弥补了土壤氮库的消耗, 有效降低了土壤硝态氮的淋失, 亦有利于高粱产量和籽粒淀粉产量的形成。
Wang Y, Wang J S, Dong E W, Wu A L, Jiao X Y. Effects of long term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution
Acta Agron Sin, 2021, 47:342-350 (in Chinese with English abstract).

[本文引用: 1]

Gaju O, Allard V, Martre P, Le Gouis J, Moreau D, Bogard M, Hubbart S, Foulke M J. Nitrogen partitioning and remobilization in relation to leaf senescence: grain yield and grain nitrogen concentration in wheat cultivars
Field Crops Res, 2014, 155:213-223.

DOIURL [本文引用: 1]

Wei H H, Meng T Y, Li X Y, Dai Q G, Zhang H C, Yin X Y. Sink-source relationship during rice grain filling is associated with grain nitrogen concentration
Field Crops Res, 2018, 215:23-38.

DOIURL [本文引用: 1]

杨宁, 赵护兵, 王朝辉, 张达斌, 高亚军. 豆科作物-小麦轮作方式下旱地小麦花后干物质及养分累积、转移与产量的关系
生态学报, 2012, 32:4827-4835.

[本文引用: 1]

Yang N, Zhao H B, Wang Z H, Zhang D B, Gao Y J. Accumulation and translocation of dry matter and nutrients of wheat rotated with legumes and its relation to grain yield in a dryland area
Acta Ecol Sin, 2012, 32:4827-4835 (in Chinese with English abstract).

[本文引用: 1]

王劲松, 焦晓燕, 丁玉川, 董二伟, 白文斌, 王立革, 武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应
作物学报, 2015, 41:1269-1278.

[本文引用: 1]

Wang J S, Jiao X Y, Ding Y C, Dong E W, Bai W B, Wang L G, Wu A L. Response of nutrient uptake, yield and quality of grain sorghum to nutrition of nitrogen, phosphorus and potassium
Acta Agron Sin, 2015, 41:1269-1278 (in Chinese with English abstract).

[本文引用: 1]

相关话题/作物 籽粒 行距 生理 土壤