删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

盐胁迫对水稻颖花形成及籽粒充实的影响

本站小编 Free考研考试/2021-12-26

韦还和,1, 张徐彬1, 葛佳琳1, 陈熙2, 孟天瑶2, 杨洋3, 熊飞3, 陈英龙1, 戴其根,1,2,*1江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心 / 扬州大学水稻产业工程技术研究院, 江苏扬州 225009
2扬州大学教育部农业与农产品安全国际合作联合实验室 / 扬州大学农业科技发展研究院, 江苏扬州225009
3扬州大学生物科学与技术学院, 江苏扬州 225009

Effects of salinity stress on spikelets formation and grains filling in rice (Oryza sativa L.)

WEI Huan-He,1, ZHANG Xu-Bin1, GE Jia-Lin1, CHEN Xi2, MENG Tian-Yao2, YANG Yang3, XIONG Fei3, CHEN Ying-Long1, DAI Qi-Gen,1,2,*1Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology Jiangsu / Co-innovation Center for Modern Production Technology of Grain Crops / Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
2Joint International Research Laboratory of Agri-culture and Agro-product Safety, Ministry of Education / Institute of Agricultural Science and Technological Development, Yangzhou University, Yangzhou 225009, Jiangsu, China
3College of Biological Sciences and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China

通讯作者: * 戴其根, E-mail:qgdai@yzu.edu.cn

收稿日期:2020-11-30接受日期:2021-03-19网络出版日期:2021-04-14
基金资助:江苏省重点研发计划项目(BE2019343)
国家自然科学基金项目(32001466)
国家自然科学基金项目(31901448)
中国博士后面上项目(2020M671628)
中国博士后面上项目(2020M671629)
江苏省高等学校自然科学研究面上项目(19KJB210004)
江苏高校优势学科建设工程项目


Corresponding authors: * E-mail:qgdai@yzu.edu.cn
Received:2020-11-30Accepted:2021-03-19Published online:2021-04-14
Fund supported: Key Research and Development Program of Jiangsu Province(BE2019343)
National Natural Science Foundation of China(32001466)
National Natural Science Foundation of China(31901448)
China Postdoctoral Science Foundation(2020M671628)
China Postdoctoral Science Foundation(2020M671629)
Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB210004)
Priority Academic Program Development of Jiangsu Higher Education Institutions

作者简介 About authors
E-mail:hhwei@yzu.edu.cn



摘要
旨在探明盐胁迫对水稻颖花形成与籽粒充实性状的影响机制, 本研究以江苏沿海滩涂大面积种植的常规粳稻南粳9108和盐稻12为试材, 在盆栽条件下设置对照(check, CK, 盐浓度0%)、中盐(medium-salinity stress, MS, 盐浓度0.15%)和高盐(high-salinity stress, HS, 盐浓度0.3%), 分析盐胁迫对颖花分化与退化、花器官发育及籽粒充实的影响。结果表明, 与对照相比, (1) 盐胁迫下水稻产量显著下降, 中盐和高盐胁迫下南粳9108产量降幅分别为18.7%和54.5%, 盐稻12分别为24.3%和58.6%。(2) 盐胁迫显著降低了每穗粒数, 中盐和高盐胁迫下南粳9108每穗粒数较对照分别低8.6%和19.8%, 盐稻12较对照分别低8.0%和25.9%。此外, 中盐和高盐胁迫下南粳9108和盐稻12的结实率和粒重亦均显著低于对照。(3) 盐胁迫下水稻颖花分化数与现存数下降, 颖花退化数与退化率增加; 盐胁迫降低了一次和二次枝粳颖花分化数和现存数, 提高了一次和二次枝粳颖花退化数, 二次枝粳颖花分化数和现存数的下降幅度和颖花退化数的增加幅度均高于一次枝粳。(4) 盐胁迫下花药长度、宽度与体积降低, 花药开裂率、花粉活力以及颖花长度与宽度呈类似趋势。本研究表明, 盐胁迫抑制水稻颖花分化, 促进颖花退化, 导致每穗颖花数显著下降; 影响花器官正常发育, 并降低籽粒饱满度, 使籽粒充实性状明显变劣。
关键词: 水稻;盐胁迫;颖花形成;籽粒充实

Abstract
This study was conducted to explore the effects of salinity stress on spikelets formation and grains filling in rice. To analyze the effects of salinity stress on the differentiation and degradation of spikelets, development of floral organs, and grain-filling characteristics in rice, conventional japonica rice Nanjing 9108 and Yandao 12 were used with three salinity treatments under pot-cultivation conditions, control (CK, 0 salt concentration), medium-salinity stress (MS, 0.15% salt concentration), and high-salinity stress (HS, 0.3% salt concentration). As a result, compared with the CK, (1) rice grain yield was decreased under salinity stress. The grain yield of Nanjing 9108 was decreased by 18.7% and 54.5%, and Yandao 12 was decreased by 24.3% and 58.6%, under MS and HS treatments, respectively. (2) the number of spikelets per panicle was decreased under salinity stress. The number of spikelets per panicle of Nanjing 9108 was 8.6% and 19.8%, and Yandao 12 was 8.0% and 25.9% lower than that of CK under MS and HS treatments, respectively. Besides, the filled-grain percentage and grain weight of Nanjing 9108 and Yandao 12 under MS and HS were also significantly lower than CK. (3) the number of differentiated and survived spikelets was decreased, while the number of retrograded spikelets and its rate was increased under salinity stress. Salinity stress reduced the differentiated and survived spikelets on the primary and secondary branches, while increased retrograded spikelets. The decline in the number of differentiated and survived spikelets on the secondary branches were higher than those of primary branches, and the similar observations were also for the increase in the number of retrograded spikelets. (4) the length, width, and volume of anther were decreased under salinity stress, and the similar trends were also observed for dehiscence rate of anther, pollen vigor, and the length and width of spikelets. Our results suggested that, salinity stress could inhibit the differentiation of rice spikelets and promote the degradation of spikelets, resulting in a significant decrease in the number of spikelets per panicle; it adversely affected the development of floral organs and reduced the fullness of grains, which significantly deteriorated the characteristics of grain plumpness.
Keywords:rice;salinity stress;spikelets formation;grains filling


PDF (358KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响. 作物学报, 2021, 47(12): 2471-2480 DOI:10.3724/SP.J.1006.2021.02083
WEI Huan-He, ZHANG Xu-Bin, GE Jia-Lin, CHEN Xi, MENG Tian-Yao, YANG Yang, XIONG Fei, CHEN Ying-Long, DAI Qi-Gen. Effects of salinity stress on spikelets formation and grains filling in rice (Oryza sativa L.). Acta Agronomica Sinica, 2021, 47(12): 2471-2480 DOI:10.3724/SP.J.1006.2021.02083


我国有234万公顷沿海滩涂和1亿公顷内陆盐碱地, 是我国最重要的后备耕地资源[1]。水稻常作为盐土改良的重要粮食作物, 有关盐胁迫下水稻生长发育与产量形成特征一直备受关注[2,3]。研究表明, 盐胁迫对水稻植株生长发育的伤害主要包括渗透胁迫和离子胁迫。渗透胁迫主要是由于土壤中高浓度的盐分降低了土壤水势, 使植株吸水困难, 抑制植株生长; 离子胁迫则是由于植株叶片中Na+的过量积累常导致K+、Ca2+和磷素吸收受抑, 从而产生单盐毒害[4,5]。盐胁迫下, 水稻植株光合作用受到抑制, 不仅加剧了光合产物在主茎与分蘖之间的竞争, 引起部分分蘖困难且也难以获得充足的养分而未能成穗; 而且加快了花后植株衰老进程, 导致群体库容充实差、产量低[6,7,8]。当前, 我国正大力开发利用沿海滩涂和内陆盐碱地发展水稻生产[9,10]。但总体上, 沿海滩涂和内陆盐碱地种植的水稻产量偏低且稳产性较差[11,12]。每穗颖花数是决定水稻丰产性与稳产性的重要因子, 取决于颖花的分化与退化2个过程。水稻穗部颖花分化和退化, 既受植株营养物质供应的多寡、碳/氮比值的平衡以及幼穗器官生理活性高低等诸多内在生理因素的影响[13,14,15], 也易受外在环境条件和栽培措施的影响[16,17,18]。环境条件方面, 王亚梁等[16]研究表明, 水稻穗分化期高温胁迫会加剧颖花退化, 造成每穗颖花量显著下降; 抑制花药发育, 降低花粉活力, 导致籽粒充实性状差。栽培措施方面, 陈培峰等[17]研究表明, 与浅水灌溉相比, 轻干湿交替灌溉利于促进稻穗枝粳和颖花的分化, 尤其是促进稻穗中下部二次颖花的现存数的增加, 显著提高了中、弱势粒的粒重和充实度。目前, 关于盐胁迫下水稻穗部颖花分化与退化及籽粒充实的报道较少, 且缺少系统研究。为此, 本研究以江苏沿海滩涂大面积种植的常规粳稻南粳9108和盐稻12为试材, 研究分析盐胁迫对稻穗颖花形成、花器官发育及籽粒充实的影响, 旨在为沿海滩涂水稻高产栽培与调控措施提供理论与实践支撑。

1 材料与方法

1.1 供试材料

以江苏沿海滩涂大面积种植的常规粳稻南粳9108和盐稻12为供试材料。

1.2 试验设计与栽培管理

2019—2020年, 在扬州大学农学院试验农场进行盆栽试验, 盆钵直径25 cm、高30 cm。盆钵所装土壤取自试验农场稻田耕层, 土壤类型为沙壤土, 20 cm土壤耕层中含全氮0.13%、碱解氮89.4 mg kg-1、速效磷32.9 mg kg-1、速效钾80.1 mg kg-1, 每盆装土18 kg。

设置对照(check, CK, 盐浓度0%)、中盐(medium-salinity stress, MS, 盐浓度0.15%)和高盐(high-salinity stress, HS, 盐浓度0.3%)共3个盐浓度梯度处理, 每处理50盆。根据试验设计的含盐量梯度和盆钵土的重量来计算NaCl海盐的重量, 移栽前3 d将对应重量的Q/ZLY型速溶海水晶(浙江蓝海星盐制品厂生产, 天然海水晒制, 基本保留了海水的主要成分)均匀撒施在对应处理盆钵中, 并与土壤充分搅拌均匀。盆栽场上方建有遮雨棚, 以防因降雨引起池内盐分变化。2年中, 南粳9108和盐稻12均于5月20日播种, 采用塑料软盘旱育秧, 秧龄25 d后移至盆钵, 每盆4穴, 每穴4株苗。每盆基施2 g尿素和0.5 g磷酸二氢钾, 移栽后7 d每盆施0.5 g尿素, 穗分化期每盆施0.6 g尿素。移栽后, 各盆栽处理建立1~2 cm浅水层, 以湿润灌溉为主; 穗分化阶段与抽穗扬花期始终保持2~3 cm水层; 灌浆结实期实行干湿交替, 自1~2 cm浅水层自然落干至土壤水势-15 kPa, 然后灌1~2 cm浅水层, 再落干, 如此循环, 直至成熟。盆钵内安装真空表式负压计(中国科学院南京土壤研究所生产)监测土壤水势。按常规高产栽培管理病虫草害。

1.3 测定项目与方法

1.3.1 主茎穗颖花分化与退化及颖花大小 于抽穗期, 集中取样1次, 各处理选取大小一致主茎穗20个。以单茎为单位, 观察每穗一次和二次枝粳上的颖花现存数与退化数, 退化的颖花为具有白色的小颖花状薄膜痕迹, 部分可用肉眼观察计数, 部分颖花退化数痕迹较小在体视显微镜(OLYMPUS, SZX16)下观察计数。借助万深考种仪(SC-G)测量主茎穗颖花大小。

颖花现存(退化)数 = 一次枝粳颖花现存(退化)数 + 二次枝粳颖花现存(退化)数;

颖花分化数 = 颖花现存数 + 颖花退化数;

颖花退化率(%) = (颖花退化数 / 颖花分化数) ×100;

一次(二次)枝粳颖花分化数 = 一次(二次)枝粳颖花现存数 + 一次(二次)枝粳颖花退化数;

一次(二次)枝粳颖花退化率 = 一次(二次)枝粳颖花退化数×100 / 一次(二次)枝粳颖花分化数。

1.3.2 主茎穗花药形态 于主茎稻穗抽出约20%~30%时集中取样1次。各处理选取当天开放的花药30个, 在体视显微镜下(OLYMPUS, SZX16)观察花药形态, 并照相。之后, 利用测微尺测量花药长度(length, L)和宽度(width, W)。花药体积(V)按公式V = 0.34LW2计算[19]

1.3.3 主茎穗花药开裂率 取样方法与时期同1.3.2。各处理选取当天开放的花药30个, 在体视显微镜下(OLYMPUS, SZX16)观察花药开裂情况, 计算花药开裂率。

花药开裂率(%) = (完全开裂花药数+部分开裂花药数) / 镜检花药总数×100。

1.3.4 主茎穗花粉活力 取样方法与时期同1.3.2。各处理选取当天开放的颖花3枚, 用镊子取下每枚颖花上的全部花药挤碎, 用1% I2-KI溶液染色并于生物显微镜下(OLYMPUS, BX61)选取3个视野统计可染率, 能染色的花粉即具有活力的花粉。

1.3.5 主茎穗穗部性状与实产 于成熟期, 各处理选取大小一致主茎穗40个, 测定单穗重、每穗粒数、结实率和粒重。各处理选取植株长势基本均匀, 且未经取样测定的10盆稻株, 每盆单独手工脱粒计产。

1.4 数据处理

运用Microsoft Excel软件录入数据、计算, DPS软件作统计分析, SigmaPlot软件作图。

2 结果与分析

2.1 产量与主茎穗部性状

与对照相比, 盐胁迫显著降低了南粳9108和盐稻12产量。中盐胁迫下, 南粳9108和盐稻12产量降幅分别为18.7%和24.3%; 高盐胁迫下, 南粳9108和盐稻12产量降幅分别为54.5%和58.6% (表1)。盐胁迫处理下水稻主茎单穗重和每穗粒数显著低于对照。2年中, 中盐和高盐胁迫下南粳9108每穗粒数较对照分别低8.6%和19.8%, 盐稻12较对照分别低8.0%和25.9%; 穗部籽粒充实性状方面, 盐胁迫处理显著降低了南粳9108和盐稻12穗部籽粒的结实率和粒重, 2年中, 中盐和高盐胁迫下盐稻12穗部粒重分别为24.4 mg和22.9 mg, 较对照分别低1.2 mg和2.7 mg (表2)。

Table 1
表1
表1盐胁迫对水稻产量的影响
Table 1Effects of salinity stress on grain yield in rice
年份
Year
处理
Treatment
实产Actual yield (g plot-1)
南粳9108 Nanjing 9108盐稻12 Yandao 12
2019对照 CK126 a121 a
中盐 MS101 b93 b
高盐 HS55 c51 c
2020对照 CK120 a118 a
中盐 MS99 b88 b
高盐 HS57 c48 c
标以不同小写字母的值在同一年份同一栏中0.05水平差异显著。
CK: check; MS: medium-salinity stress; HS: high-salinity stress. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

新窗口打开|下载CSV

Table 2
表2
表2盐胁迫对水稻主茎穗部性状的影响
Table 2Effects of salinity stress on panicle traits of the main stem in rice
年份
Year
处理
Treatment
南粳9108 Nanjing 9108盐稻12 Yandao 12
单穗重
SPW (g)
每穗粒数
SPP
结实率
FGP (%)
粒重
GW (mg)
单穗重
SPW (g)
每穗粒数
SPP
结实率
FGP (%)
粒重
GW (mg)
2019对照 CK3.5 a142.9 a90.2 a25.9 a3.2 a136.2 a89.7 a25.5 a
中盐 MS2.9 b131.7 b88.3 b24.5 b2.7 b127.1 b87.4 b24.2 b
高盐 HS2.3 c115.7 c84.6 c23.2 c2.0 c115.7 c85.3 c22.7 c
2020对照 CK3.7 a150.4 a90.7 a26.2 a3.4 a143.8 a90.2 a25.7 a
中盐 MS3.1 b136.3 b88.2 b25.1 b2.9 b130.4 b87.7 b24.5 b
高盐 HS2.4 c119.4 c85.7 c23.7 c2.1 c105.7 c85.1 c23.0 c
处理同表1。标以不同小写字母的值在同一年份同一栏中0.05水平差异显著。
Treatments are the same as those given in Table 1. SPW: single panicle weight; SPP: spikelets per panicle; FGP: filled-grain percentage; GW: grain weight. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

新窗口打开|下载CSV

2.2 主茎穗部颖花分化与退化

与对照相比, 盐胁迫处理降低了水稻主茎颖花分化数和颖花现存数。中盐胁迫下南粳9108和盐稻12主茎颖花分化数较对照分别降低了4.4%和3.5%, 高盐处理下则分别降低了12.1%和11.2%。盐胁迫处理显著提高了主茎颖花退化数与退化率; 2年中, 中盐和高盐胁迫下南粳9108主茎颖花退化数分别为15.2和22.3, 较对照分别增加了72.7%和153.4% (表3)。对南粳9108和盐稻12而言, 中盐胁迫下一次枝粳上颖花分化数和颖花现存数均与对照差异不显著, 高盐胁迫下一次枝粳上颖花分化数和颖花现存数则显著低于对照。与对照相比, 中盐和高盐胁迫处理提高了主茎一次枝粳颖花退化数与退化率(表4)。中盐和高盐胁迫下, 主茎二次枝粳颖花分化数与颖花现存数均显著低于对照, 颖花退化数与颖花退化率则显著高于对照。中盐和高盐胁迫下, 南粳9108主茎二次枝粳颖花退化数较对照分别增加了52.7%和112.7%, 盐稻12主茎二次枝粳颖花退化率则较对照分别增加了51.7%和108.8% (表5)。

Table 3
表3
表3盐胁迫对水稻主茎穗部颖花分化与退化的影响
Table 3Effects of salinity stress on differentiated and retrograded spikelets of the main stem in rice
年份
Year
处理
Treatment
南粳9108 Nanjing 9108盐稻12 Yandao 12
颖花分化数
DS
颖花退化数
RS
颖花现存数
SS
颖花退化率
PRS (%)
颖花分化数
DS
颖花退化数
RS
颖花现存数
SS
颖花退化率PRS (%)
2019对照 CK155.6 a8.3 c147.3 a5.3 c150.6 a9.2 c141.4 a6.1 c
中盐 MS150.1 ab15.0 b135.1 b10.0 b145.8 a16.6 b129.2 b11.4 b
高盐 HS138.1 b22.6 a115.5 c16.4 a128.8 b22.4 a106.4 c17.4 a
2020对照 CK165.6 a9.3 c156.3 a5.6 c157.1 a10.0 c147.1 a6.3 c
中盐 MS157.0 ab15.4 b141.6 b9.8 b151.0 ab16.8 b134.2 b11.1 b
高盐 HS144.1 b22.0 a122.1 c15.3 a133.6 b23.8 a109.8 c17.8 a
处理同表1。标以不同小写字母的值在同一年份同一栏中0.05水平差异显著。
Treatments are the same as those given in Table 1. DS: differentiated spikelets; RS: retrograded spikelets; SS: survived spikelets; PRS: percentage of retrograded spikelets. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

新窗口打开|下载CSV

Table 4
表4
表4盐胁迫对水稻主茎一次枝粳颖花分化与退化的影响
Table 4Effects of salinity stress on differentiated and retrograded spikelets of the primary branches on the main stem of rice
年份
Year
处理
Treatment
南粳9108 Nanjing 9108盐稻12 Yandao 12
颖花分化数
DS
颖花退化数
RS
颖花现存数
SS
颖花退化率
PRS (%)
颖花分化数
DS
颖花退化数
RS
颖花现存数
SS
颖花退化率PRS (%)
2019对照 CK76.0 a0.6 a75.4 a0.8 b70.4 a0.4 a70.0 a0.6 b
中盐 MS73.0 a2.4 a70.6 a3.3 b69.1 a2.8 a66.3 a4.0 a
高盐 HS69.9 b4.8 a65.1 b6.9 a64.4 b3.9 a60.3 b6.1 a
2020对照 CK79.1 a0.5 a78.6 a0.6 b73.5 a0.5 a73.0 a0.7 b
中盐 MS74.7 b2.8 a71.9 b3.7 b71.4 a2.9 a68.5 a4.1 a
高盐 HS72.5 b4.6 a67.9 b6.4 a60.3 b4.2 a56.1 b6.9 a
处理同表1, 缩略词同表3。标以不同小写字母的值在同一年份同一栏中0.05水平差异显著。
Treatments and abbreviations are the same as those given in Tables 1 and 3, respectively. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

新窗口打开|下载CSV

Table 5
表5
表5盐胁迫对水稻主茎二次枝粳颖花分化与退化的影响
Table 5Effects of salinity stress on differentiated and retrograded spikelets of the secondary branches on the main stem in rice
年份
Year
处理
Treatment
南粳9108 Nanjing 9108盐稻12 Yandao 12
颖花分化数
DS
颖花退化数
RS
颖花现存数
SS
颖花退化率
PRS (%)
颖花分化数
DS
颖花退化数
RS
颖花现存数
SS
颖花退化率PRS (%)
2019对照 CK79.6 a7.7 c71.9 a9.7 c80.2 a8.8 c71.4 a10.9 c
中盐 MS77.1 a12.6 b64.5 b16.3 b76.7 b13.8 b62.9 b18.0 b
高盐 HS68.2 b17.8 a50.4 c26.1 a64.4 c18.5 a45.9 c28.7 a
2020对照 CK86.5 a8.8 c77.7 a10.2 c83.6 a9.5 c74.1 a11.3 c
中盐 MS82.3 ab12.6 b69.7 b15.3 b79.6 ab13.9 b65.7 b17.4 b
高盐 HS71.6 b17.4 a54.2 c24.3 a73.3 b19.6 a53.7 c26.8 a
处理同表1, 缩略词同表3。标以不同小写字母的值在同一年份同一栏中0.05水平差异显著。
Treatments and abbreviations are the same as those given in Tables 1 and 3, respectively. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

新窗口打开|下载CSV

2.3 主茎花药性状、花粉活力与颖花大小

与对照相比, 盐胁迫处理降低了水稻主茎花药长度、宽度与体积。中盐和高盐胁迫下, 南粳9108花药长度2年平均为1.71 mm和1.60 mm, 较对照分别下降了4.7%和11.1%; 盐稻12花药长度2年平均为1.80 mm和1.66 mm, 较对照分别下降了6.5%和13.8% (表6)。中盐和高盐胁迫下南粳9108花药开裂率分别为69.9%和55.6%, 盐稻12则分别为68.0%和54.0%, 均显著低于对照(图1)。对于南粳9108和盐稻12而言, 盐胁迫处理均显著降低了花粉活力。中盐和高盐胁迫下南粳9108花粉活力分别为81.6%和64.7%, 较对照分别降低了13.6%和31.5% (图2)。与对照相比, 盐胁迫处理降低了水稻主茎穗部颖花的长度和宽度。以南粳9108为例, 高盐胁迫下主茎穗部颖花长度和宽度分别为6.63 mm和3.49 mm, 较对照处理分别低6.5%和6.1% (表7)。

Table 6
表6
表6盐胁迫对水稻主茎花药大小的影响
Table 6Effects of salinity stress on size of anther of the main stem in rice
年份
Year
处理
Treatment
南粳9108 Nanjing 9108盐稻12 Yandao 12
花药长度
Length of anther
(mm)
花药宽度
Width of anther
(mm)
花药体积
Volume of anther (mm2)
花药长度
Length of anther (mm)
花药宽度
Width of anther (mm)
花药体积
Volume of anther (mm2)
2019对照 CK1.82 a0.46 a0.13 a1.91 a0.48 a0.15 a
中盐 MS1.73 b0.43 ab0.11 ab1.79 b0.44 b0.12 b
高盐 HS1.62 c0.41 b0.09 b1.65 c0.42 b0.10 b
2020对照 CK1.77 a0.45 a0.12 a1.94 a0.47 a0.15 a
中盐 MS1.69 b0.43 ab0.11 ab1.81 b0.43 b0.11 b
高盐 HS1.57 c0.39 b0.08 b1.67 c0.41 b0.10 b
处理同表1。标以不同小写字母的值在同一年份同一栏中0.05水平差异显著。
Treatments are the same as those given in Table 1. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

新窗口打开|下载CSV

图1

新窗口打开|下载原图ZIP|生成PPT
图1盐胁迫对主茎花药开裂率的影响

处理同表1。处理间标以不同小写字母的值在0.05水平差异显著。
Fig. 1Effects of salinity stress on dehiscence rate of anther on the main stem in rice

Treatments are the same as those given in Table 1. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the treatments.


图2

新窗口打开|下载原图ZIP|生成PPT
图2盐胁迫对主茎花粉活力的影响

处理同表1。处理间标以不同小写字母的值在0.05水平差异显著。
Fig. 2Effects of salinity stress on pollen activity on the main stem in rice

Treatments are the same as those given in Table 1. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the treatment.


Table 7
表7
表7盐胁迫对水稻主茎穗颖花大小的影响
Table 7Effects of salinity stress on size of spikelets on the main stem in rice
年份
Year
处理
Treatment
南粳9108 Nanjing 9108盐稻12 Yandao 12
长度
Length (mm)
宽度
Width (mm)
长度
Length (mm)
宽度
Width (mm)
2019对照 CK7.11 a3.72 a7.24 a3.34 a
中盐 MS6.93 b3.61 b7.03 b3.15 b
高盐 HS6.68 c3.49 c6.82 c3.07 c
2020对照 CK7.07 a3.71 a7.21 a3.32 a
中盐 MS6.85 b3.57 b6.95 b3.15 b
高盐 HS6.58 c3.49 c6.69 c3.03 c
处理同表1。标以不同小写字母的值在同一年份同一栏中0.05水平差异显著。
Treatments are the same as those given in Table 1. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

新窗口打开|下载CSV

2.4 相关性分析

相关性分析结果表明, 颖花长度与产量、每穗粒数、结实率和粒重呈极显著正相关。一次和二次枝粳颖花分化数和现存数与产量、每穗粒数、结实率和粒重呈极显著正相关, 颖花退化数和颖花退化率则与产量、每穗粒数、结实率和粒重呈极显著负相关。此外, 花药长度与宽度、花药开裂率、花粉活力与产量、每穗粒数、结实率和粒重均呈显著或极显著正相关(表8)。

Table 8
表8
表8盐胁迫处理下水稻穗部性状的相关性分析
Table 8Correlation analysis of panicle traits under salinity stress in rice
项目
Item
实产
Actual yield
每穗粒数
Spikelets per panicle
结实率
Filled-grain percentage
粒重
Grain weight
颖花
Spikelets
长度 Length0.89**0.74**0.88**0.80**
宽度 Width0.530.65*0.510.61*
一次枝粳
Primary branches
颖花分化数 DS0.74**0.88**0.74*0.82**
颖花退化数 RS-0.95**-0.86**-0.97**-0.92**
颖花现存数 SS0.86**0.95**0.86**0.92**
颖花退化率 PRS-0.98**-0.91**-0.98**-0.95**
二次枝粳
Secondary branches
颖花分化数 DS0.86**0.92**0.89**0.92**
颖花退化数 RS-0.99**-0.94**-0.98**-0.98**
颖花现存数 SS0.95**0.97**0.96**0.98**
颖花退化率 PRS-0.98**-0.97**-0.98**-0.98**
花药长度 Length of anther0.81**0.68*0.80**0.73**
花药宽度 Width of anther0.81**0.72**0.86**0.80**
花药开裂率 Dehiscence rate of anther0.97**0.92**0.97**0.95**
花粉活力 Pollen activity0.98**0.94**0.97**0.97**
DS: differentiated spikelets; RS: retrograded spikelets; SS: survived spikelets; PRS: percentage of retrograded spikelets. *P < 0.05, **P < 0.01.

新窗口打开|下载CSV

3 讨论

本试验条件下, 南粳9108和盐稻12在中盐和高盐胁迫下产量降幅分别为18.7%~24.3%和54.5%~58.6% (表1), 表明盐胁迫显著降低了水稻产量, 这与此前的研究结果基本一致[6,8,20]。有关盐胁迫对水稻产量构成因素的影响已有较多研究报道, 但研究结果并不完全一致。周根友等[6]、孙现军等[21]研究表明, 与非盐胁迫相比, 盐胁迫导致水稻产量显著下降的主要原因是每穗粒数和粒重的降低; 而胡博文等[22]、荆培培等[23]研究表明, 盐胁迫下水稻群体穗数、每穗粒数、结实率和粒重均降低, 从而使水稻产量显著下降。本试验条件下, 与对照相比, 中盐和高盐胁迫均显著降低了南粳9108和盐稻12的每穗粒数、结实率和粒重(表2); 此外, 笔者此前的研究表明[8], 盐胁迫下水稻分蘖发生率与成穗率均较低, 单株与群体成穗数少。因此, 库容量偏小与库容充实差共同制约了盐胁迫下水稻产量的提升, 这与胡博文等[22]、荆培培等[23]的研究结果基本一致。

目前有关盐胁迫影响水稻颖花形成的研究报道较少。本研究结果表明, 与对照相比, 盐胁迫处理降低了水稻颖花分化数, 提高了颖花退化数, 每穗颖花数显著下降; 从影响过程来看, 盐胁迫下南粳9108和盐稻12颖花退化数的增加幅度高于颖花分化数的下降幅度, 因此, 盐胁迫下颖花退化数的增加是导致每穗颖花数下降的关键因素(表2表3)。盐胁迫导致水稻穗部颖花数增加的原因可能有以下2点: (1) 植株内源激素比例失衡。水稻植株内源激素平衡程度是影响颖花退化的关键因素之一。水稻穗分化期尤其是减数分裂期较低的内源油菜素甾醇(BRs)和多胺(PAs)水平以及较高的乙烯水平与颖花退化密切相关, 提高BRs、PAs水平或PAs与乙烯的比值可有效减少颖花退化[24,25]。此前研究表明[26,27], 盐胁迫下水稻植株乙烯释放量急剧上升, PAs水平和PAs与乙烯的比值则显著下降, 加剧了穗部颖花的退化。(2) 盐胁迫易造成植株能荷水平过低及活性氧过度积累, 使得膜脂过氧化伤害和小穗程序性细胞死亡, 导致颖花退化数的增加[28,29]

关于不同枝粳上颖花分化与退化变化的比较已有相关研究报道[15,18,30]。董明辉等[18]研究表明, 麦秸还田与施氮量处理均对枝梗与颖花分化数、退化数/率、现存数产生显著影响, 对二次枝梗和二次颖花的影响大于一次枝梗和一次颖花。王亚梁等[30]研究表明, 穗分化期高温胁迫抑制水稻颖花分化, 加剧颖花退化; 高温对二次枝粳上颖花分化与退化的影响大于一次枝粳。本试验条件下, 盐胁迫处理降低了一次和二次枝粳颖花分化数和现存数, 增加了一次和二次枝粳颖花退化数; 盐胁迫下二次枝粳颖花分化数和现存数的下降幅度和颖花退化数的增加幅度均高于一次枝粳(表4表5), 表明盐胁迫对一次和二次枝粳颖花形成的影响存在差异, 以对二次枝粳颖花形成的影响更大。

本研究表明, 与对照相比, 盐胁迫处理下水稻籽粒充实性状(结实率和粒重)显著变劣(表2)。水稻花器官正常发育是籽粒充实饱满以及获取高产的关键因素之一。花器官的发育极易受到环境胁迫因子的影响[14-15,19,31]。温度胁迫方面, 张荣萍等[19]研究表明, 开花期低温胁迫影响水稻结实率的主要原因是低温胁迫影响花药发育成熟, 使花药不能正常开裂、散粉不足, 可育花粉率和柱头花粉萌发率降低, 直接影响了受精结实。水稻抽穗扬花期遇到高温胁迫, 对水稻的花粉粒直径、花粉活力和花药开裂率等均会产生不同程度的影响[14,31]。本试验条件下, 与对照相比, 盐胁迫降低了花药大小及其开裂率与花粉活力(表6, 图1, 图2), 表明盐胁迫下水稻花器官受到伤害, 使花药开裂受阻, 导致散发到柱头上的花粉量不足, 进而影响授粉受精, 引起结实率下降(表8)。水稻粒重取决于颖花大小和籽粒饱满度, 前者决定了库容潜力, 后者跟同化物的供应有关[32,33]。本研究结果表明, 与对照相比, 盐胁迫处理降低了水稻颖花长度和宽度(表7), 抑制了库容潜力的提升; 此外, 盐胁迫下植物光合作用受到抑制, 植株衰老进程加快, 花后干物质积累量少, 导致籽粒充实饱满度差[8,34]。因此, 盐胁迫抑制了水稻库容和籽粒充实饱满度的提升, 从而显著降低了粒重(表2)。

本研究在盆栽条件下, 模拟研究了不同盐胁迫浓度下水稻颖花分化与退化的变化趋势及花器官发育特点, 明确了盐胁迫对水稻颖花形成及籽粒充实的影响, 研究结果对于沿海滩涂水稻高产栽培与调控措施具有一定指导意义。考虑到盆栽条件与大田实际条件的差异, 本研究中的部分研究结果仍需进一步在沿海滩涂田间试验中加以验证。

4 结论

盐胁迫对水稻颖花形成及籽粒充实有显著影响。与对照相比, 盐胁迫抑制水稻颖花分化, 促进颖花退化, 每穗颖花数显著下降。影响花器官正常发育, 花药大小、花药开裂率和花粉活力下降; 缩短颖花长度和宽度, 降低籽粒饱满度, 使籽粒充实性状显著变劣。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议
中国稻米, 2019, 25(1):1-6.

[本文引用: 1]

Wang C L, Zhang Y D, Zhao L, Lu K, Zhu Z, Chen T, Zhao Q Y, Yao S, Zhou L H, Zhao C H, Liang W H, Sun M F, Yan G H. Research status, problems and suggestions on salt-alkali tolerant rice
China Rice, 2019, 25(1):1-6 (in Chinese with English abstract).

[本文引用: 1]

Liu L, Chen J, Tan Y N, Zhou T S, Ouyang N, Zeng J, Yuan D Y, Duan M J. Increasing fatty acids in rice root improves silence of rice seedling to salt stress
Rice Sci, 2019, 26:339-342.

DOIURL [本文引用: 1]

沙汉景, 胡文成, 贾琰, 王新鹏, 田雪飞, 于美芳, 赵宏伟. 外源水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻产量的影响
作物学报, 2017, 43:1677-1688.

[本文引用: 1]

Sha H J, Hu W C, Jia Y, Wang X P, Tian X F, Yu M F, Zhao H W. Effect of exogenous salicylic acid, proline, and γ-aminobutyric acid on yield of rice under salt stress
Acta Agron Sin, 2017, 43:1677-1688 (in Chinese with English abstract).

[本文引用: 1]

Munns R, Gilliham M. Salinity tolerance of crops-what is the cost
New Phytol, 2015, 208:668-673.

DOIPMID [本文引用: 1]
Soil salinity reduces crop yield. The extent and severity of salt-affected agricultural land is predicted to worsen as a result of inadequate drainage of irrigated land, rising water tables and global warming. The growth and yield of most plant species are adversely affected by soil salinity, but varied adaptations can allow some crop cultivars to continue to grow and produce a harvestable yield under moderate soil salinity. Significant costs are associated with saline soils: the economic costs to the farming community and the energy costs of plant adaptations. We briefly consider mechanisms of adaptation and highlight recent research examples through a lens of their applicability to improving the energy efficiency of crops under saline field conditions.© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

Zhang J F. Salinity affects the proteomics of rice roots and leaves
Proteomics, 2014, 14:1711-1712.

DOIURL [本文引用: 1]

周根友, 翟彩娇, 邓先亮, 张蛟, 张振良, 戴其根, 崔士友. 盐逆境对水稻产量、光合特性及品质的影响
中国水稻科学, 2018, 32:146-154.

[本文引用: 3]

Zhou G Y, Zhai C J, Deng X L, Zhang J, Zhang Z L, Dai Q G, Cui S Y. Performance of yield, photosynthesis and grain quality of japonica rice cultivars under salinity stress in micro-plots
Chin J Rice Sci, 2018, 32:146-154 (in Chinese with English abstract).

[本文引用: 3]

Wang X X, Wang W C, Huang J L, Peng S B, Xiong D L. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa)
Physiol Plant, 2018, 163:45-58.

DOIURL [本文引用: 1]

韦还和, 葛佳琳, 张徐彬, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系
作物学报, 2020, 46:1238-1247.

[本文引用: 4]

Wei H H, Ge J L, Zhang X B, Meng T Y, Lu Y, Li X Y, Tao Y, Ding E H, Chen Y L, Dai Q G. Tillering characteristics and its relationships with population productivity of japonica rice Nanjing 9108 under salinity stress
Acta Agron Sin, 2020, 46:1238-1247 (in Chinese with English abstract).

[本文引用: 4]

Wang J J, Dai Q X, Shang J L, Jin X L, Sun Q, Zhou G S, Dai Q G. Field-scale rice yield estimation using sentinel-1A synthetic aperture radar (SAR) data in coastal saline region of Jiangsu province, China
Remote Sens, 2019, 11:2274.

DOIURL [本文引用: 1]

彭既明. 耐盐(碱)水稻研发的建议
中国稻米, 2019, 25(1):7-9.

[本文引用: 1]

Peng J M. Suggestions for developing saline-alkaline tolerant rice
China Rice, 2019, 25(1):7-9 (in Chinese with English abstract).

[本文引用: 1]

Zhang Y, Li Q, Dai Q G, Kang Y J. Microbial mechanism underlying high and stable methane oxidation rates during mudflat reclamation with long-term rice cultivation: illumine high-throughput sequencing-based data analysis
J Hazard Mater, 2019, 371:332-341.

DOIPMID [本文引用: 1]
This study aimed to determine the methane oxidation rates (MOR), pmoA gene abundance and diversity, and microbial community composition using Illumina high-throughput sequencing. Mudflats located within Yancheng City, divided into different plots with 0-, 11-, and 20-year successive rice planting histories, were selected and sampled. The study found that the relative MOR (normalized with the 16S rRNA gene) increased dramatically after 11-year cultivation and remained stable in 20-year treatment, indicating that long-term rice cultivation in mudflats promoted MOR. The sequencing data analysis revealed that high MOR was related to the synergistic growth of methane-producing archaea (MPA) and aerobic and facultative methane-consuming bacteria (MCB) mainly belonging to Proteobacteria. Redundancy and correlation analyses showed that Methylophilaceae and Methylococcaceae affiliated within β- and γ-Proteobacterial methanotrophs were closely related to the relative MOR. Methane-oxidizing archaea (MOA) coupled to sulfate and nitrite reductions contributed more to the high and stable MOR compared with Proteobacterial MCB. Chloroflexi and Geobacter were the potential hydrogen donors for hydrogenotrophic MPA. The results showed that long-term rice cultivation in mudflats promoted the relative MOR. The unknown MOA coupled to sulfate and nitrite reductions, besides the necessary hydrogenotrophic MPA and their hydrogen donors (Chloroflexi and Geobacter) collectively contributed to methane cycling.Copyright © 2019 Elsevier B.V. All rights reserved.

徐晨, 凌风楼, 徐克章, 武志海, 刘晓龙, 安久海, 赵兰坡. 盐胁迫对不同水稻品种光合特性和生理生化特性的影响
中国水稻科学, 2013, 27:280-286.

[本文引用: 1]

Xu C, Ling F L, Xu K Z, Wu Z H, Liu X L, An J H, Zhao L P. Effects of salt stress on photosynthetic characteristics and physiological and biochemical traits of different rice varieties
Chin J Rice Sci, 2013, 27:280-286 (in Chinese with English abstract).

[本文引用: 1]

付永琦, 向妙莲, 蒋海燕, 何永明, 曾晓春. 水稻颖花开放前浆片转录组变化
中国农业科学, 2016, 49:1017-1033.

[本文引用: 1]

Fu Y Q, Xiang M L, Jiang H Y, He Y M, Zeng X C. Transcriptome profiling of lodicules before floret opening in Oryza sativa L
Sci Agric Sin, 2016, 49:1017-1033 (in Chinese with English abstract).

[本文引用: 1]

Kato Y, Kamoshita A, Yamagishi J. Preflowering abortion reduces spikelet number in upland rice ( Oryza sativa L.) under water stress
Crop Sci, 2008, 48:2389-2395.

DOIURL [本文引用: 3]

Bai J T, Zhu X D, Wang Q, Zhang J, Chen H Q, Dong G J, Zhu L, Zheng H K, Xie Q J, Nian J Q, Chen F, Fu Y, Qian Q, Zuo J R. Rice TUTOU1 encodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development
Plant Physiol, 2015, 169:1179-1191.

DOIURL [本文引用: 3]

王亚梁, 张玉屏, 朱德峰, 向镜, 武辉, 陈惠哲, 张义凯. 水稻穗分化期高温胁迫对颖花退化及籽粒充实的影响
作物学报, 2016, 42:1402-1410.

[本文引用: 2]

Wang Y L, Zhang Y P, Zhu D F, Xiang J, Wu H, Chen H Z, Zhang Y K. Effect of heat stress on spikelet degeneration and grain filling at panicle initiation period of rice
Acta Agron Sin, 2016, 42:1402-1410 (in Chinese with English abstract).

[本文引用: 2]

陈培峰, 韩立宇, 顾俊荣, 乔中英, 王文青, 董明辉. 灌溉方式与施氮量对杂交粳稻颖花形成及籽粒充实的影响
核农学报, 2017, 31:1604-1611.

[本文引用: 2]

Chen P F, Han L Y, Gu J R, Qiao Z Y, Wang W Q, Dong M H. Effects of irrigation pattern and nitrogen applications on spikelets formation and grain filling in hybrid japonica rice
J Nucl Agric Sci, 2017, 31:1604-1611 (in Chinese with English abstract).

[本文引用: 2]

董明辉, 顾俊荣, 陈培峰, 韩立宇, 乔中英. 麦秸还田与氮肥互作对大穗型杂交粳稻不同部位枝梗和颖花形成的影响
中国农业科学, 2015, 48:4437-4449.

[本文引用: 3]

Dong M H, Gu J R, Chen P F, Han L Y, Qiao Z Y. Effects of interaction of wheat straw residue with field and nitrogen applications on branches and spikelets formation at different positions in large panicle hybrid rice
Sci Agric Sin, 2015, 48:4437-4449 (in Chinese with English abstract).

[本文引用: 3]

张荣萍, 马均, 蔡光泽, 孙永健. 开花期低温胁迫对四川攀西稻区水稻开花结实的影响
作物学报, 2012, 38:1734-1742.

[本文引用: 3]

Zhang R P, Ma J, Cai G Z, Sun Y J. Effects of low temperature stress during flowering stage on flowering and seed setting of rice in Panxi region, Sichuan province
Acta Agron Sin, 2012, 38:1734-1742 (in Chinese with English abstract).

[本文引用: 3]

Gay F, Maraval I, Roques S, Gunata Z, Boulanger R, Audebert A, Mestres C. Effect of salinity on yield and 2-acetyl-1- pyrroline content in the grains of three fragrant rice cultivars ( Oryza sativa L.) in Camargue (France)
Field Crops Res, 2010, 117:154-160.

DOIURL [本文引用: 1]

孙现军, 姜奇彦, 胡正, 张惠媛, 徐长兵, 邸一桓, 韩龙植, 张辉. 水稻资源全生育期耐盐性鉴定筛选
作物学报, 2019, 45:1656-1663.

[本文引用: 1]

Sun X J, Jiang Q Y, Hu Z, Zhang H Y, Xu C B, Di Y H, Han L Z, Zhang H. Screening and identification of salt-tolerant rice germplasm in whole growth period
Acta Agron Sin, 2019, 45:1656-1663 (in Chinese with English abstract).

[本文引用: 1]

胡博文, 谷娇娇, 贾琰, 沙汉景, 张君颜, 黄书勤, 赵宏伟. 盐胁迫对寒地粳稻籽粒淀粉形成积累及产量的影响
华北农学报, 2019, 34(1):115-123.

[本文引用: 2]

Hu B W, Gu J J, Jia Y, Sha H J, Zhang J Y, Huang S Q, Zhao H W. Effect of salt stress on starch formation and yield of japonica rice in cold-region
Acta Agric Boreali-Sin, 2019, 34(1):115-123 (in Chinese with English abstract).

[本文引用: 2]

荆培培, 崔敏, 秦涛, 周在中, 戴其根. 土培条件下不同盐分梯度对水稻产量及其生理特性的影响
中国稻米, 2017, 23(4):26-33.

[本文引用: 2]

Jing P P, Cui M, Qin T, Zhou Z Z, Dai Q G. Effects of different saline stress on yield and physiological properties of rice in soil culture
China Rice, 2017, 23(4):26-33 (in Chinese with English abstract).

[本文引用: 2]

Wang Z Q, Zhang W Y, Yang J C. Physiological mechanism underlying spikelet degeneration in rice
J Integr Agric, 2018, 17:1475-1481.

DOIURL [本文引用: 1]

Zhang W Y, Zhu K Y, Wang Z Q, Zhang H, Gu J F, Liu L J, Yang J C, Zhang J H. Brassinosteroids function in spikelet differentiation and degeneration in rice
J Integr Plant Biol, 2019, 61:943-963.

DOIURL [本文引用: 1]

Sharma I, Ching E, Saini S, Bhardwaj R, Pati P K. Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1
Plant Physiol Biochem, 2013, 69:17-26.

DOIURL [本文引用: 1]

Zhang H, Tan G L, Yang L N, Yang J C, Zhang J H, Zhao B H. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice
Plant Physiol Biochem, 2009, 47:195-204.

DOIURL [本文引用: 1]

Moradi F, Ismail A M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice
Ann Bot, 2007, 99:1161-1173.

DOIURL [本文引用: 1]

Gregorio G B, Senadhira D, Mendoza R D, Manigbas N L, Roxas J P, Guerta C Q. Progress in breeding for salinity tolerance and associated abiotic stresses in rice
Field Crops Res, 2002, 76:91-101.

DOIURL [本文引用: 1]

王亚梁, 张玉屏, 曾研华, 武辉, 向镜, 陈惠哲, 张义凯, 朱德峰. 水稻穗分化期高温胁迫对颖花分化及退化的影响
中国农业气象, 2015, 36:724-731.

[本文引用: 2]

Wang Y L, Zhang Y P, Zeng Y H, Wu H, Xiang J, Chen H Z, Zhang Y K, Zhu D F. Effect of high temperature stress on rice spikelet differentiation and degeneration during panicle initiation stage
Chin J Agrometeorol, 2015, 36:724-731 (in Chinese with English abstract).

[本文引用: 2]

张桂莲, 张顺堂, 肖浪涛, 武小金, 肖应辉, 陈立云. 花期高温胁迫对水稻花药生理特性及花粉性状的影响
作物学报, 2013, 39:177-183.

[本文引用: 2]

Zhang G L, Zhang S T, Xiao L T, Wu X J, Xiao Y H, Chen L Y. Effect of high temperature stress on physiological characteristics of anther and pollen traits of rice at flowering stage
Acta Agron Sin, 2013, 39:177-183 (in Chinese with English abstract).

[本文引用: 2]

王余龙, 姚友礼, 李昊云, 蔡建中. 水稻籽粒有关性状与粒重关系的初步探讨
作物学报, 1995, 21:573-578.

[本文引用: 1]

Wang Y L, Yao Y L, Li T Y, Cai J Z. An inquiring into grain characters and their relations with grain weight in rice ( Oryza sativa L.)
Acta Agron Sin, 1995, 21:573-578 (in Chinese with English abstract).

[本文引用: 1]

付景, 刘洁, 曹转勤, 王志琴, 张耗, 杨建昌. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响
作物学报, 2014, 40:1056-1065.

[本文引用: 1]

Fu J, Liu J, Cao Z Q, Wang Z Q, Zhang H, Yang J C. Effects of alternate wetting and drying irrigation during grain filling on the seed-setting rate and grain weight of two super rice cultivars
Acta Agron Sin, 2014, 40:1056-1065 (in Chinese with English abstract).

[本文引用: 1]

Wungrampha S, Joshi R, Singla-Pareek S L, Pareek A. Photosynthesis and salinity: are these mutually exclusive?
Photosynthetica, 2018, 56:366-381.

DOIURL [本文引用: 1]

相关话题/作物 土壤 生理 水稻 扬州大学