删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响

本站小编 Free考研考试/2021-12-26

陈云,1,2, 刘昆1, 张宏路1, 李思宇1, 张亚军2, 韦佳利2, 张耗1, 顾骏飞1, 刘立军,1,*, 杨建昌11扬州大学江苏省作物遗传生理重点实验室/江苏省粮食作物现代产业技术协同创新中心/江苏省作物基因组学和分子育种重点实验室, 江苏扬州 225009
2扬州大学生物科学与技术学院, 江苏扬州 225009

Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars

CHEN Yun,1,2, LIU Kun1, ZHANG Hong-Lu1, LI Si-Yu1, ZHANG Ya-Jun2, WEI Jia-Li2, ZHANG Hao1, GU Jun-Fei1, LIU Li-Jun,1,*, YANG Jian-Chang11Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, Jiangsu, China
2College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China

通讯作者: * 刘立军, E-mail:ljliu@yzu.edu.cn, Tel: 0514-87972133

收稿日期:2020-10-22接受日期:2021-01-13网络出版日期:2021-08-12
基金资助:国家重点研发计划项目.2016YFD0300502
国家重点研发计划项目.2017YFD0301206
国家自然科学基金项目.31871557
国家自然科学基金项目.31671614
江苏省农业科技自主创新资金项目.cx183007
江苏省作物遗传生理重点实验室开放课题.YSCL201807
江苏高校优势学科建设工程项目资助


Received:2020-10-22Accepted:2021-01-13Online:2021-08-12
Fund supported: National Key Research and Development Program of China.2016YFD0300502
National Key Research and Development Program of China.2017YFD0301206
National Natural Science Foundation of China.31871557
National Natural Science Foundation of China.31671614
Jiangsu Agriculture Science and Technology Innovation Fund.cx183007
Open Project of Jiangsu Key Laboratory of Crop Genetics.YSCL201807
Physiology, and the Priority Academic Program Development of Jiangsu Higher Education Institutions

作者简介 About authors
E-mail:yunchen@yzu.edu.cn,Tel:0514-87979320



摘要
机插密度对优质食味水稻品种籽粒淀粉合成的影响尚不明确。试验以3个江苏省代表性优质食味水稻品种南粳9108、南粳5055和南粳46为材料, 行距固定为30 cm, 通过设置10、12、14、16和18 cm株距, 形成33.3×104、27.8×104、23.8×104、20.8×104和18.5×104穴 hm-2 5种机插密度, 研究了机插密度对上述优质食味水稻品种产量和籽粒淀粉合成的影响, 并观察了穗肥施氮量减半施用对优质食味水稻籽粒淀粉合成的调控效应。结果表明: (1) 3个优质食味水稻品种产量均在密度为27.8×104穴 hm-2时最高。成熟期稻米直链淀粉含量随机插密度增加呈先下降后上升的趋势, 支链淀粉含量则不断下降。机插密度控制在27.5×104~29.9×104穴 hm-2时, 有利于提高上述优质食味水稻品种的食味值。(2) 随机插密度增加, 颗粒结合态淀粉合成酶(granule-bound starch synthase, GBSS)和ADP-葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase, AGP)在籽粒灌浆前中期(抽穗后8~20 d)的活性有所上升, 但在灌浆后期迅速下降, 而机插密度对淀粉分支酶(starch branching enzyme, SBE)活性无明显影响。其中, 抽穗后12~16 d籽粒中GBSS和AGP活性与直链淀粉和总淀粉含量呈显著或极显著正相关。(3) 与正常穗肥相比, 穗肥减半处理能显著降低优质食味水稻品种灌浆前中期籽粒中GBSS和AGP活性, 降低稻米直链淀粉含量, 提升优质食味稻米的食味值。上述结果表明, 机插密度可通过调控灌浆前中期籽粒中淀粉合成关键酶(GBSS和AGP)活性, 调控直链淀粉含量进而影响稻米食味值。合理的机插密度和穗肥施用量有助于进一步改善优质食味稻米的食味品质。
关键词: 优质食味水稻;机插密度;淀粉合成关键酶;食味值;直链淀粉

Abstract
The effect of machine transplanting density on grain starch synthesis in good taste rice cultivars (GTRC) is still unclear. In the experiment, three representative GTRC of Nanjing 9108, Nanjing 5055, and Nanjing 46 in Jiangsu province were used as materials. Five machine transplanting densities of 33.3 × 104, 27.8 × 104, 23.8 × 104, 20.8 × 104, and 18.5 × 104 hills hm-2 were formed with the row spacing at 30 cm and the plant spacing of 10, 12, 14, 16, and 18 cm, respectively. The effects of machine transplanting density on yield and grain starch synthesis in above three rice cultivars were studied, and the regulation mechanism of halving normal nitrogen (N) rate of panicle nitrogen fertilizer on the starch synthesis was also observed. The results were as follows: (1) The grain yield of the three GTRC were highest at the transplanting density of 27.8 × 104 hills hm-2. The amylose content at mature stage of the three GTRC decreased first and then increased with the increase in machine transplanting density, while the amylopectin content continued to decrease. When the machine transplanting density was controlled at 27.5 × 104-29.9 × 104hills hm-2, it was beneficial to improve the taste value of the above-mentioned GTRC. (2) With the increase in machine transplanting density, the activities of granule-bound starch synthase (GBSS) and ADP-glucose pyrophosphorylase (AGP) were increased in the early and middle stages of grain filling (8-20 days after heading), and were decreased rapidly at later grain filling stage. Machine transplanting density had no significant effect on starch branching enzyme (SBE) activity. Among them, the activities of GBSS and AGP in grains at 12-16 days after heading were significantly and positively correlated with the contents of amylose and total starch. (3) Compared with normal N rate of panicle nitrogen fertilizer, half normal N rate could significantly decrease the activities of GBSS and AGP in grains during the early and middle stages of grain filling, reduce the amylose content of rice, and further improve the taste value of GTRC. These results indicated that machine transplanting density could regulate the amylose content due to the activities variations of key enzymes involved in starch synthesis (GBSS and AGP) in the grains during the early and middle stages of grain filling, thus resulting in the difference of rice taste value. Reasonable machine transplanting density and panicle nitrogen fertilizer rate are helpful to further improve the eating quality of GTRC.
Keywords:good taste rice cultivar;machine transplanting density;key enzymes involved in starch synthesis;taste value;amylose


PDF (719KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响. 作物学报[J], 2021, 47(8): 1540-1550 DOI:10.3724/SP.J.1006.2021.02069
CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars. Acta Agronomica Sinica[J], 2021, 47(8): 1540-1550 DOI:10.3724/SP.J.1006.2021.02069


中国是世界上最大的水稻生产国和消费[1,2]。近年来, 随着社会经济的不断发展和产业结构的调整, 农村大量青壮年劳动力流失, 从事农业生产劳动力严重不足[3]。水稻生产机械化是实现水稻高效种植的重要途径, 推进以机插秧为主的水稻机械化高产种植技术, 对稳定我国水稻生产、保障粮食安全具有重要意义[4]。机插密度影响水稻群体结构、产量形成和稻米品质, 确定合理的种植密度是高产优质栽培基本的因素[5]。由于粳稻多为中、小穗型, 产量往往受到基本苗数量不足的限制, 适当密植(23.8×104~27.8×104穴 hm-2)可有效提高粳稻产量[5,6]

近年来, 随着我国经济的发展和人民生活水平的提高, 人们对稻米的需求逐渐从“吃得饱”向“吃得好”转变, 迫切需要在稳定产量的同时提高稻米品质, 尤其是食味品质, 以满足供给侧结构性改革的需求[3]。近年来, 江苏省农业科学院选育的南粳系列优良食味粳稻品种, 因优良的食味品质获得广大消费者的好评。而北方的“面食改米食”和南方的“籼米改粳米”趋势明显, 更加大了稻米市场对粳米, 特别是优质食味粳稻的需求量。但机插密度对优质食味水稻蒸煮食味品质的影响尚不清楚。

淀粉是稻米的主要组成部分, 是由葡萄糖多聚体构成的高度有序的晶状质体, 是人类重要的热量来源, 对稻米的理化性质和蒸煮性能起着基础性作用[7,8]。根据淀粉结构不同, 分为直链淀粉和支链淀粉[9,10]。直链淀粉的分子量较小(105~106 Da)、分支极少, 而支链淀粉分子分子量较大(107~109 Da)、具有高度分支性[11]。直链淀粉的生物合成主要由ADP-葡萄糖焦磷酸酶(ADP-glucose pyrophosphorylase, AGP)和颗粒结合淀粉合成酶(granule-bound starch synthase, GBSS)控制, 而支链淀粉的反应则更为复杂, 需要在AGP、可溶性淀粉合成酶和淀粉分支酶(starch branching enzyme, SBE)等一系列酶的作用下生成。直链淀粉含量一直是衡量稻米蒸煮食味品质的关键指标, 一般认为食味优的水稻品种具有较低的直链淀粉含量[12,13]。直链淀粉含量不仅对米饭食味品质和质地起重要作用, 也与众多的淀粉理化参数如黏滞性、糊化特性、回生特性密切相关[7]。直链淀粉含量除受主效基因位点Wx控制外, 还受灌浆结实期温光资源以及栽培措施的影响[7,14-16]。施用氮素穗肥除了会对水稻产量产生影响外, 亦会影响水稻籽粒淀粉结构和理化性质, 从而影响稻米的食味品质[17]。目前关于机插密度和氮素穗肥对优质食味水稻品种淀粉合成, 尤其是直链淀粉合成的影响研究较少, 其生理机制尚不明确。

本研究选用3个食味品质优良的水稻品种为材料, 研究了机插密度对其籽粒淀粉合成的影响及穗肥减量对优质食味水稻籽粒淀粉合成的调控。旨在进一步揭示机插密度影响优质食味水稻品种籽粒淀粉合成的生理机制, 为优质食味水稻品种选育以及栽培调控提供理论与实践依据。

1 材料与方法

1.1 供试材料与试验设计

以江苏大面积推广应用的优质食味水稻品种南粳9108、南粳5055和南粳46为试验材料。上述水稻品种在生产中常用的机插密度通常为22.5×104~ 27×104穴 hm-2 (国家水稻数据中心, http://www.ricedata.cn), 全生育期施氮量(折合纯氮) 300 kg hm-2左右[18]。根据研究需要, 设置以下2组试验。

试验1: 机插密度试验。采用常规塑盘毯苗育秧, 5月20日至21日播种, 播种量为每盘干谷120 g, 6月13日至14日采用洋马VP6乘坐式水稻插秧机进行机械移栽, 每穴栽插3~4株苗。行距固定为30 cm, 通过设置10、12、14、16和18 cm株距, 形成33.3×104、27.8×104、23.8×104、20.8×104和18.5×104穴 hm-2等5种机插密度。小区面积400 m2, 随机区组排列, 重复3次。全生育期施氮肥(折合纯氮) 300 kg hm-2, 所施氮肥为尿素, 按基肥∶分蘖肥∶穗肥=4∶3∶3施用, 穗肥分促花肥、保花肥2次等量施用。基施过磷酸钙(含P2O5 13.5%) 120 kg hm-2和氯化钾(含K2O 62.5%) 120 kg hm-2。试验重复2年(2017年和2018年)。

试验2: 穗肥施氮量减半试验。试验于2019年5月22日播种, 6月16日机械移栽。试验采用裂区设计, 品种为主区, 穗肥施氮量处理为裂区。行株距固定为30 cm ×12 cm (对应机插密度为27.8×104穴 hm-2), 设置2种穗肥施氮量处理: (1) 正常穗肥用量(normal N rate of panicle nitrogen fertilizer, NR): 穗肥施氮量与试验1相同, 为90 kg hm-2; (2) 穗肥用量减半(half normal N rate of panicle nitrogen fertilizer, HR): 穗肥施氮量为45 kg hm-2。穗肥分促花肥、保花肥2次等量施用。小区面积150 m2, 重复3次。供试材料、育秧和基蘖肥用量及施用方法等同试验1。各小区作田埂覆膜分开, 单独排灌, 以防水肥串灌。

以上2组试验, 均在扬州大学江苏省作物栽培生理重点实验室校外试验农场镇江市新民洲农场(32°16′N, 119°33′E)进行。试验地前茬作物均为小麦, 土壤类型为沙壤土, 耕作层有机质、有效氮、速效磷和速效钾含量分别为22.4 g kg-1、106.2 mg kg-1、32.4 mg kg-1和87.5 mg kg-1。水分管理采用“浅—搁—湿”灌溉方式, 即薄水移栽, 活棵立苗后采取浅水勤灌促分蘖, 分蘖末期断水搁田, 拔节后采取干湿交替灌溉, 抽穗至成熟前7 d湿润灌溉, 之后断水。全生育期严格控制病虫草害。

1.2 取样与测定

1.2.1 籽粒淀粉代谢相关酶活性 在抽穗期, 每品种每处理选择生长状况基本一致的抽穗单茎300个挂牌并标记日期。分别在抽穗后8、12、16、20、24、28和32 d, 取挂牌单茎20个, 摘下稻穗中部籽粒于液氮中冷冻30s, 置于-80℃冰箱保存待测。在测定酶活性时, 先将籽粒剥壳, 使用德国莱驰RETSCH MM400混合球磨仪充分研磨, 参照Yang等[19]方法测定颗粒结合态淀粉合成酶(GBSS)、ADP-葡萄糖焦磷酸化酶(AGP)以及淀粉分支酶(SBE)活性。

1.2.2 籽粒直链淀粉、总淀粉积累量 在上述相同时期和成熟期, 取挂牌单茎稻穗中部籽粒, 测定籽粒直链淀粉和总淀粉积累量的变化动态。

1.2.3 考种与计产 在成熟期, 各小区调查100株穗数, 并按平均穗数取样10穴, 手工脱粒, 考查水稻每穗粒数、结实率和千粒重等产量构成因素。结实率采用水漂法测定。各小区实收5 m2, 机器脱粒晒干后测定重量和含水率, 按13.5%的含水率折算为实收产量。

1.2.4 稻米淀粉含量 取存放3个月后的实收稻谷样本, 参照中华人民共和国国家标准《GB/T 17891-1999优质稻谷》测定稻米直链淀粉含量。总淀粉含量测定参照Zhu等[20]方法, 并以总淀粉含量与直链淀粉含量的差值计算支链淀粉含量。

1.2.5 米饭食味特性 称取30 g精米, 放入不锈钢罐中并加水浸泡30 min后接洗米装置, 用水冲洗约30 s至水的浊度很小。按照米水1.0∶1.3的比例加水, 放入电饭锅内预约1 h, 调理30 min, 焖饭10 min。冷却2 h后采用日本佐竹公司生产的STA1B型米饭食味计(STA1B, SATAKE Co., Ltd, 日本)测定米饭食味值, 每个样品重复3次。

1.3 数据计算与统计分析

用Microsoft Excel 2003与SPSS软件统计分析数据, SigmaPlot 11.0和R绘图。

2 结果与分析

2.1 方差分析

方差分析(表1)表明, 机插密度对南粳9108、南粳5055和南粳46三个优质食味水稻品种产量、整精米率、垩白粒率、直链淀粉含量、蛋白质含量和食味值的影响在密度和品种间存在差异显著, 而上述指标在年份、年份×密度、年份×品种、密度×品种和年份×密度×品种间差异均不显著。因此, 本文中试验1重点以2018年的数据进行分析。

Table 1
表1
表1机插密度对优质食味水稻品种产量和稻米主要品质指标的方差分析
Table 1Analysis of variance of machine transplanting density on grain yield and main grain quality indices in good taste rice cultivars
变异来源
Source of variation
自由度
Degree of freedom
产量
Grain yield
整精米率
Head rice percentage
垩白粒率
Chalky kernel percentage
直链淀粉含量
Amylose content
蛋白质含量
Protein content
食味值
Taste value
年份 Year (Y)1nsnsnsnsnsns
密度 Density (D)434.0**3.33*9.1**10.5**7.76**10.1**
品种 Cultivar (C)238.9**65.4**2645.8**33.8**3.94*10.2**
年份×密度 Y × D4nsnsnsnsnsns
年份×品种Y × C2nsnsnsnsnsns
密度×品种D × C8nsnsnsnsnsns
年份×密度×品种Y × D × C8nsnsnsnsnsns
***分别表示在0.05和0.01水平上显著, ns表示差异不显著(P > 0.05)。
* and ** mean significant differences at the 0.05 and 0.01 probability levels, respectively. ns: not significant at P > 0.05.

新窗口打开|下载CSV

2.2 机插密度对优质食味水稻品种产量及其构成因素的影响

机插密度对优质食味水稻品种南粳9108、南粳5055和南粳46产量及产量构成因素的影响趋势大致相同(图1)。随机插密度的增加, 3个优质食味水稻品种产量, 均表现为先上升后下降的趋势, 且均在密度为27.8×104穴 hm-2时产量最高。单位面积穗数、结实率总体随机插密度增大呈先升后降, 而每穗粒数和千粒重则逐渐降低。

图1

新窗口打开|下载原图ZIP|生成PPT
图1机插密度对优质食味水稻品种产量及其构成因素的影响(2018年)

18.5、20.8、23.8、27.8和33.3分别表示机插密度为18.5×104、20.8×104、23.8×104、27.8×104和33.3×104穴 hm-2
Fig. 1Effects of machine transplanting density on yield and its components in good taste rice cultivars in 2018

18.5, 20.8, 23.8, 27.8, and 33.3 represent the transplanting density of 18.5 × 104, 20.8 × 104, 23.8 × 104, 27.8 × 104, and 33.3 × 104 hills hm-2, respectively.


2.3 机插密度对优质食味水稻品种淀粉含量和食味值的影响

3个优质食味水稻品种籽粒直链淀粉含量随机插密度的增加呈先降后升的趋势, 支链淀粉、总淀粉含量基本随机插密度的增加而降低。稻米食味值随机插密度的增加呈先升后降的趋势, 供试3个品种的表现一致。与南粳9108、南粳46相比, 南粳5055在相同机插密度条件下具有较低的直链淀粉含量与较高的食味值(图2)。相关分析表明, 在不同机插密度下3个优质食味水稻品种的食味值与直链淀粉和总淀粉含量呈极显著负相关, 但与支链淀粉含量之间的相关性不显著(图3)。对机插密度与直链淀粉含量进行方程拟合可以看出, 机插密度为27.5×104~29.9×104穴 hm-2时, 3个优质食味水稻品种直链淀粉含量最低, 食味值较高(表2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2机插密度对优质食味水稻品种淀粉含量和食味值的影响(2018年)

Fig. 2Effects of machine transplanting density on starch content and taste value in good taste rice cultivars in 2018



图3

新窗口打开|下载原图ZIP|生成PPT
图3优质食味水稻品种食味值与直链淀粉含量、支链淀粉含量和总淀粉含量的相关(2018年)

Fig. 3Correlation between the taste value and the contents of amylose, amylopectin and total starch in good taste rice cultivars in 2018

*, P < 0.05; **, P < 0.01.


Table 2
表2
表2优质食味水稻品种获得最低直链淀粉含量时的机插密度(2018年)
Table 2Machine transplanting density of good taste rice cultivars with minimum amylose content in 2018
品种
Cultivar
机插密度(x, ×104穴 hm-2)与直链淀粉含量(y, %)关系方程
Equation between machine transplanting density (x, ×104 hills hm-2) and amylose content (y, %)
R2xopt1
(x, ×104 hills hm-2)
xopt2
(x, cm)
ymin
(%)
南粳9108 Nanjing 9108y=0.011x2-0.657x+21.50.91229.911.111.7
南粳5055 Nanjing 5055y=0.012x2-0.659x+19.70.91527.512.110.7
南粳46 Nanjing 46y=0.012x2-0.674x+20.80.96628.111.911.3
xopt1: 获得最低直链淀粉含量时的机插密度; xopt2: 获得最低直链淀粉含量时的机插株距; ymin: 最低直链淀粉含量。
xopt1: the optimal machine transplanting density for minimum amylose content; xopt2: the optimal plant spacing for minimum amylose content; ymin: minimum amylose content.

新窗口打开|下载CSV

2.4 机插密度对优质食味水稻籽粒直链淀粉和总淀粉积累量的影响

不同机插密度条件下, 3个优质食味水稻品种籽粒直链淀粉和总淀粉积累量, 在抽穗后32 d即达最终积累量的69.7%~95.1%和80.3%~92.4%, 此后至成熟变化相对较小。随机插密度增加, 水稻籽粒直链淀粉积累量呈先降后升的变化趋势, 而总淀粉积累量则随机插密度增加而逐渐降低(图4)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4机插密度对优质食味水稻品种籽粒直链淀粉和总淀粉积累动态的影响(2018年)

18.5、20.8、23.8、27.8和33.3分别表示机插密度为18.5×104、20.8×104、23.8×104、27.8×104和33.3×104穴 hm-2
Fig. 4Effects of machine transplanting density on the dynamics of amylose content and total starch content in grains of good taste rice cultivars in 2018

18.5, 20.8, 23.8, 27.8, and 33.3 represent the transplanting density of 18.5 × 104, 20.8 × 104, 23.8 × 104, 27.8 × 104, and 33.3 × 104 hills hm-2, respectively.


2.5 机插密度对优质食味水稻籽粒淀粉合成关键酶活性的影响

在不同机插密度下, 3个优质食味水稻品种灌浆籽粒中的淀粉合成关键酶(GBSS、SBE和AGP)活性皆呈先上升后下降的趋势, 且基本都在抽穗后20 d达到峰值。机插密度对3个优质食味水稻品种SBE活性的影响较小(图5), 而对GBSS和AGP活性的影响则表现为: 抽穗前中期(抽穗后0~20 d)机插密度越大, 酶活性越低, 后期则相反(图6图7)。相关分析表明(表3), 稻米直链淀粉含量与抽穗后12~16 d籽粒中GBSS和AGP活性呈显著或极显著正相关(r = 0.523*~0.865**), 而总淀粉含量与抽穗后12~20 d籽粒中上述2种酶活性均呈极显著正相关(r = 0.659**~0.771**)。

图5

新窗口打开|下载原图ZIP|生成PPT
图5机插密度对优质食味水稻品种籽粒中淀粉分支酶(SBE)活性的影响(2018年)

18.5、20.8、23.8、27.8和33.3分别表示机插密度为18.5×104、20.8×104、23.8×104、27.8×104和33.3×104穴 hm-2
Fig. 5Effects of machine transplanting density on starch branching enzyme (SBE) activity in grains of good taste rice cultivars in 2018

18.5, 20.8, 23.8, 27.8, and 33.3 represent the transplanting density of 18.5 × 104, 20.8 × 104, 23.8 × 104, 27.8 × 104, and 33.3 × 104 hills hm-2, respectively.


图6

新窗口打开|下载原图ZIP|生成PPT
图6机插密度对优质食味水稻品种籽粒中颗粒结合态淀粉合成酶(GBSS)活性的影响(2018年)

18.5、20.8、23.8、27.8和33.3分别表示机插密度为18.5×104、20.8×104、23.8×104、27.8×104和33.3×104穴 hm-2
Fig. 6Effects of machine transplanting density on granule-bound starch synthase (GBSS) activity in grains of good taste rice cultivars in 2018

18.5, 20.8, 23.8, 27.8, and 33.3 represent the transplanting density of 18.5 × 104, 20.8 × 104, 23.8 × 104, 27.8 × 104, and 33.3 × 104 hills hm-2, respectively.


图7

新窗口打开|下载原图ZIP|生成PPT
图7机插密度对优质食味水稻品种籽粒中ADP-葡萄糖焦磷酸化酶(AGP)活性的影响(2018年)

18.5、20.8、23.8、27.8和33.3分别表示机插密度为18.5×104、20.8×104、23.8×104、27.8×104和33.3×104穴 hm-2
Fig. 7Effects of machine transplanting density on ADP-glucose pyrophosphorylase (AGP) activity in grains of good taste rice cultivars in 2018

18.5, 20.8, 23.8, 27.8, and 33.3 represent the transplanting density of 18.5 × 104, 20.8 × 104, 23.8 × 104, 27.8 × 104, and 33.3 × 104 hills hm-2, respectively.


Table 3
表3
表3优质食味水稻抽穗后不同时期籽粒中淀粉合成关键酶活性与成熟期稻米直链淀粉、总淀粉含量的相关(2018年)
Table 3The correlation between the activities of key enzymes involved in grain starch synthesis in good taste rice cultivars at different stages after heading and the amylose and total starch content at mature stage in 2018
酶类型
Enzyme type
淀粉含量
Starch content
抽穗后天数 Days after heading
8 d12 d16 d20 d24 d28 d32 d
SBE直链淀粉含量Amylose content0.303-0.170-0.4190.353-0.2550.3080.603*
总淀粉含量Total starch content-0.110-0.0320.0950.826**-0.747**0.624*-0.149
GBSS直链淀粉含量Amylose content-0.5050.523*0.728**0.4600.0310.2090.468
总淀粉含量Total starch content0.0950.659**0.701**0.771**-0.652**-0.573*-0.468
AGP直链淀粉含量Amylose content-0.3360.865**0.819**0.4310.2790.0920.084
总淀粉含量Total starch content0.0970.699**0.762**0.776**-0.561*-0.719**-0.195
***分别表示在0.05和0.01水平上显著。SBE: 淀粉分支酶; GBSS: 颗粒结合态淀粉合成酶; AGP: ADP-葡萄糖焦磷酸化酶。
* and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively. SBE: starch branching enzyme; GBSS: granule-bound starch synthase; AGP: ADP-glucose pyrophosphorylase.

新窗口打开|下载CSV

2.6 穗肥减半对优质食味水稻产量和籽粒淀粉的调控

与正常穗肥用量(NR)相比, 穗肥用量减半处理(HR)使南粳9108、南粳5055和南粳46的产量略有降低, 但均未达显著水平。HR显著降低了3个品种的直链淀粉含量(降幅达5.5%~8.7%), 提高了其食味值(增幅达4.9%~7.2%)。HR对支链淀粉和总淀粉含量影响较小(表4)。与NR相比, HR对抽穗后12~16 d籽粒中SBE活性无显著影响, 但显著降低了GBSS和AGP活性(图8)。

Table 4
表4
表4穗肥减半对优质食味水稻品种产量、直链淀粉含量、总淀粉含量和食味值的影响(2019年)
Table 4Effects of halving panicle nitrogen fertilizer on grain yield, amylose content, total starch content and taste value in good taste rice cultivars in 2019
品种
Cultivar
处理
Treatment
产量
Grain yield
(t hm-2)
直链淀粉含量
Amylose content (%)
支链淀粉含量
Amylopectin
content (%)
总淀粉含量
Total starch content (%)
食味值
Taste value
南粳9108 Nanjing 9108正常穗肥用量 NR11.3 a11.5 a54.8 a66.3 a75.9 b
穗肥用量减半 HR11.0 a10.9 b54.9 a65.8 a79.6 a
南粳5055 Nanjing 5055正常穗肥用量 NR10.7 a10.2 a55.9 a66.1 a78.4 b
穗肥用量减半 HR10.4 a9.5 b53.7 b63.2 b82.7 a
南粳46 Nanjing 46正常穗肥用量 NR10.1 a11.3 a55.2 a66.5 a73.3 b
穗肥用量减半 HR9.9 a10.4 b54.1 a63.5 a78.6 a
NR: 正常穗肥用量; HR: 穗肥用量减半。标以不同字母表示在同一品种内比较0.05水平上差异显著。
NR: normal N rate of panicle nitrogen fertilizer; HR: half normal N rate of panicle nitrogen fertilizer. Different lowercase letters within the same column indicate statistical significance at the P = 0.05 level within the same cultivar.

新窗口打开|下载CSV

图8

新窗口打开|下载原图ZIP|生成PPT
图8穗肥减半对优质食味水稻抽穗后籽粒中淀粉合成关键酶活性的影响(2019年)

NR: 正常穗肥用量; HR: 穗肥用量减半。SBE: 淀粉分支酶; GBSS: 颗粒结合态淀粉合成酶; AGP: ADP-葡萄糖焦磷酸化酶。酶活性以抽穗后12 d和16 d两次测定的平均值表示。
Fig. 8Effects of halving panicle nitrogen fertilizer on the activities of key enzymes involved in grain starch synthesis in good taste rice cultivars in 2019

NR: normal N rate of panicle nitrogen fertilizer; HR: half normal N rate of panicle nitrogen fertilizer. SBE: starch branching enzyme; GBSS: granule-bound starch synthase; AGP: ADP-glucose pyrophosphorylase. The activities of enzymes were means of two repetitions at 12 and 16 days after heading.


3 讨论

水稻生产机械化是实现水稻高效种植的重要途径, 机插密度是影响水稻群体结构、产量形成和稻米品质的重要调控因素, 确定合理的种植密度是水稻高产优质栽培最基本、最关键的因素[5]。淀粉是水稻胚乳的主要成分, 是种子萌发和幼苗生长过程中碳水化合物的主要来源。直链淀粉含量一直是衡量稻米蒸煮食味品质的关键指标, 一般认为食味优的水稻品种具有较低的直链淀粉含量[12,13]。直链淀粉含量降低是中国籼稻食味品质得以改善的一个主要原因[21]。在本试验条件下, 随机插密度的增加, 3个优质食味水稻品种(南粳9108、南粳5055和南粳46)籽粒直链淀粉含量呈先降后升的趋势, 而食味值与之相反。食味值与直链淀粉含量呈极显著负相关关系, 即降低直链淀粉含量有助于提升稻米的食味值。以往对何种机插密度利于降低水稻直链淀粉含量, 进而提高稻米食味值研究结果不一。胡雅杰等[22]研究表明, 适当降低机插密度(19.5×104~25.5×104穴 hm-2时)能够降低不同穗型水稻品种蛋白质和直链淀粉含量, 改善淀粉RVA谱特征。但亦有研究者指出, 增加密度有利于降低粳稻直链淀粉含量, 提高稻米食味值[23]。本研究观察到, 将机插密度控制在27.5×104~29.9×104穴 hm-2时, 3个优质食味水稻品种直链淀粉含量最低, 此时食味值较高。

GBSS、SBE和AGP对水稻籽粒淀粉合成具有关键作用, GBSS和AGP不仅参与水稻籽粒灌浆, 还与直链淀粉含量密切相关[24,25], AGP还被认为是淀粉合成相关途径的限速酶[26,27], 而SBE主要参与促进形成支链淀粉[28]。以往对玉米、小麦大田作物籽粒淀粉代谢相关途径的研究较多[29,30], 而对水稻尤其是优质食味稻种相关代谢途径调控的研究鲜有涉及[17], 或多以温度[29]、水肥[17,31]等调控措施为主。已有研究表明, 灌浆期高温可提高非优质食味水稻品种淀粉的糊化温度, 降低直链淀粉含量, 增加支链淀粉中相对较长的葡聚糖链的比例[32]。非优质食味水稻品种直链淀粉含量降低的原因在于GBSS酶的高表达[33,34]。但亦有相反的观点认为, 非优质食味水稻品种淀粉代谢关键酶(GBSS、SBE和AGP)活性降低能够减少直链淀粉含量, 进而提高稻米食味值[35]。因此, 非优质食味水稻品种籽粒上述淀粉代谢关键酶活性与直链淀粉含量的关系仍需进一步深入研究。可溶性淀粉合成酶(soluble starch synthase, SSS)可通过催化支链淀粉α-1,4糖苷键的形成, 参与支链淀粉的生物合成[36,37]。SSS基因发生突变或转移反SSS基因, 其结构会发生改变、酶活性下降, 支链淀粉含量也会相应降低[36]。但本试验观察到, 稻米支链淀粉含量与食味值并无明显相关(r = 0.333)。因此, SSS对水稻, 尤其是优质食味水稻品种食味值的调控作用尚待进一步明确。

氮素是提高产量和蛋白质含量的重要养分, 但过量施氮会降低稻米品质, 尤其是蒸煮食味品质[31]。胡群等[38]研究表明, 适当增加穗肥比例虽能有效改善稻米的加工品质和营养品质, 但显著降低了稻米的食味品质。沈鹏等[39,40]以不同品质类型的粳稻品种为材料研究认为, 随着施氮量的增加, 籽粒中蛋白质含量逐渐提高, 淀粉谱特性变劣, 味度值下降。在本试验条件下, 与正常穗肥用量相比, 穗肥用量减半处理使南粳9108、南粳5055和南粳46三个优质食味水稻品种的直链淀粉含量降低了5.5%~8.7%, 食味值提高了4.9%~7.2%。这可能是由于减施氮肥降低了叶片和籽粒氮代谢相关酶活性, 抑制了氮素吸收和转运, 导致籽粒中蛋白质含量和直链淀粉含量降低所致[41,42]。与正常穗肥用量相比, 穗肥用量减半处理显著降低优质食味水稻品种抽穗后12~ 16 d籽粒GBSS和AGP活性, 这也进一步验证了降低灌浆前中期籽粒中GBSS和AGP活性有利于降低稻米直链淀粉含量, 优化稻米食味值。

4 结论

优质食味水稻品种食味值与直链淀粉含量显著负相关。灌浆前中期(抽穗后12~16 d)籽粒中GBSS和AGP活性与成熟期稻米直链淀粉含量密切相关。合理的机插密度(27.5×104~29.9×104穴 hm-2)有利于在保证优质食味水稻品种产量较高的前提下, 降低灌浆前中期籽粒中GBSS和AGP的活性, 进而降低直链淀粉含量, 进一步改善优质稻米的食味值。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Wang Y, Xue Y, Li J. Towards molecular breeding and improvement of rice in China
Trends Plant Sci, 2005,10:610-614.

DOIURL [本文引用: 1]

Huang M, Chen J, Cao F, Zou Y. Increased hill density can compensate for yield loss from reduced nitrogen input in machine- transplanted double-cropped rice
Field Crops Res, 2018,221:333-338.

DOIURL [本文引用: 1]

Peng S, Tang Q, Zou Y. Current status and challenges of rice production in China
Plant Prod Sci, 2009,12:3-8.

DOIURL [本文引用: 2]

Xing Z, Hu Y, Qian H, Cao W, Guo B, Wei H, Xu K, Huo Z, Zhou G, Dai Q, Zhang H. Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system
J Integr Agric, 2017,16:1451-1466.

DOIURL [本文引用: 1]

Hu Q, Jiang W Q, Qiu S, Xing Z P, Hu Y J, Guo B W, Liu G D, Gao H, Zhang H C, Wei H Y. Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice
J Integr Agric, 2020,19:1197-1214.

DOIURL [本文引用: 3]

Liu Q, Zhou X, Li J, Xin C. Effects of seedling age and cultivation density on agronomic characteristics and grain yield of mechanically transplanted rice
Sci Rep, 2017,7:1-10.

DOIURL [本文引用: 1]

Zhu D, Zhang H, Guo B, Xu K, Dai Q, Wei C, Zhou G, Huo Z. Physicochemical properties of indica-japonica hybrid rice starch from Chinese varieties
Food Hydrocolloid, 2017,63:356-363.

DOIURL [本文引用: 3]

Chung H J, Liu Q, Lee L, Wei D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents
Food Hydrocolloid, 2011,25:968-975.

DOIURL [本文引用: 1]

Li H, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains
Food Chem, 2016,196:702-711.

DOIURL [本文引用: 1]

Yang Y, Lin G, Yu X, Wu Y, Xiong F. Rice starch accumulation at different endosperm regions and physical properties under nitrogen treatment at panicle initiation stage
Int J Biol Macromol, 2020,160:328-339.

DOIURL [本文引用: 1]

Gilbert R G, Witt T, Hasjim J. What is being learned about starch properties from multiple-level characterization
Cereal Chem, 2013,90:312-325.

DOIURL [本文引用: 1]

Hori K, Suzuki K, Iijima K, Ebana K. Variation in cooking and eating quality traits in Japanese rice germplasm accessions
Breed Sci, 2016,66:309-318.

DOIURL [本文引用: 2]

Bhat F M, Riar C S. Physicochemical, cooking, and textural characteristics of grains of different rice (Oryza sativa L.) cultivars of temperate region of India and their interrelationships
J Text Stud, 2016,48:160-170.

DOIURL [本文引用: 2]

Bao J S. Toward understanding the genetic and molecular bases of the eating and cooking qualities of rice
Cereal Foods World, 2012,57:148-156.

DOIURL [本文引用: 1]

Patindol J A, Siebenmorgen T J, Wang Y J. Impact of environmental factors on rice starch structure: a review
Starch-Starke, 2015,67:42-54.

DOIURL

Bello B K, Hou Y, Zhao J, Jiao G, Wu Y, Li Z, Wang Y, Tong X, Wang W, Yuan W, Wei X, Zhang J. NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.)
Plant Biotechnol J, 2019,17:1222-1235.

DOIURL [本文引用: 1]

Zhu D, Zhang H, Guo B, Xu K, Dai Q, Wei C, Zhou G, Huo Z. Effects of nitrogen level on structure and physicochemical properties of rice starch
Food Hydrocol, 2017,63:525-532.

DOIURL [本文引用: 3]

刘立军, 王康君, 卞金龙, 熊溢伟, 陈璐, 王志琴, 杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系
作物学报, 2014,40:1999-2007.

[本文引用: 1]

Liu L J, Wang K G, Bian J L, Xiong Y W, Chen L, Wang Z Q, Yang J C. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology
Acta Agron Sin, 2014,40:1999-2007 (in Chinese with English abstract).

[本文引用: 1]

Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling
Field Crops Res, 2003,81:69-81.

DOIURL [本文引用: 1]

Zhu D, Wei H, Guo B, Dai Q, Wei C, Gao H, Hu Y, Cui P, Li M, Huo Z, Xu K, Zhang H. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L.) starch
Food Chem, 2017,237:936-941.

DOIURL [本文引用: 1]

Feng F, Li Y, Qin X, Liao Y, Siddique K H M. Changes in rice grain quality of indica and japonica type varieties released in China from 2000 to 2014
Front Plant Sci, 2017,8:1-7.

[本文引用: 1]

胡雅杰, 吴培, 邢志鹏, 钱海军, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 机插方式和密度对水稻主要品质性状及淀粉RVA谱特征的影响
扬州大学学报(农业与生命科学版), 2017,38(3):73-82.

[本文引用: 1]

Hu Y J, Wu P, Xing Z P, Qian H J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Effect of different mechanical transplanted methods and plant density on grain quality and characteristic of starch RVA of rice
J Yangzhou Univ (Agric Life Sci Edn), 2017,38(3):73-82 (in Chinese with English abstract) .

[本文引用: 1]

季红娟, 张小祥, 赵步洪, 郑青松, 陈刚, 李育红, 肖宁, 潘存红, 吴云雨, 蔡跃, 李爱宏. 不同播期和密度对直播粳稻扬粳3012产量及品质的影响
扬州大学学报(农业与生命科学版), 2020,41(1):85-90.

[本文引用: 1]

Ji H J, Zhang X X, Zhao B H, Zheng Q S, Chen G, Li Y H, Xiao N, Pan C H, Wu Y, Cai Y, Li A H. Effect of different sowing date and density on yield and quality of Yangjing 3012 in direct-seeding rice
J Yangzhou Univ (Agric Life Sci Edn), 2020,41(1):85-90 (in Chinese with English abstract).

[本文引用: 1]

Zhou T, Zhou Q, Li E, Yuan L, Wang W, Zhang H, Liu L, Wang Z, Yang J, Gu J. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch
Carbohyd Polym, 2020,239:1-11.

[本文引用: 1]

Smith A M, Denyer K, Martin C R. What controls the amount and structure of starch in storage organs?
Plant Physiol, 1995,107:673-677.

DOIURL [本文引用: 1]

Smidansky E D, Meyer F D, Blakeslee B, Weglarz T E, Greene T W, Giroux M J. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism
Planta, 2007,225:965-976.

PMID [本文引用: 1]
ADP-glucose pyrophosphorylase (AGP) is the rate-limiting step in seed starch biosynthesis. Expression of an altered maize AGP large subunit (Sh2r6hs) in wheat (Triticum aestivum L.) results in increased AGP activity in developing seed endosperm and seed yield. The yield phenotype involves increases in both seed number and total plant biomass. Here we describe stimulation of photosynthesis by the seed-specific Sh2r6hs transgene. Photosynthetic rates were increased in Sh2r6hs-expressing plants under high light but not low light growth conditions, peaking at roughly 7 days after flowering (DAF). In addition, there were significant increases in levels of fructose, glucose, and sucrose in flag leaves at both 7 and 14 DAF. In seeds, levels of carbon metabolites at 7 and 14 DAF were relatively unchanged but increases in glucose, ADP-glucose, and UDP-glucose were observed in seeds from Sh2r6hs positive plants at maturity. Increased photosynthetic rates relatively early in seed development appear to be key to the Sh2r6hs enhanced yield phenotype as no yield increase or photosynthetic rate changes were found when plants were grown in a suboptimal light environment. These findings demonstrate that stimulation of biochemical events in both source and sink tissues is associated with Sh2r6hs expression.

Devi T A, Sarla N, Siddiq E A, Sirdeshmukh R. Activity and expression of adenosine diphosphate glucose pyrophosphorylase in developing rice grains: varietal differences and implications on grain filling
Plant Sci, 2010,178:123-129.

DOIURL [本文引用: 1]

Mizuno K, Kimura K, Arai Y, Kawasaki T, Shimada H, Baba T. Starch branching enzymes from immature rice seeds
J Biochem, 1992,112:643-651.

PMID [本文引用: 1]
Four forms of branching enzyme, termed RBE1, RBE2 (a mixture of RBE2A and RBE2B), RBE3, and RBE4, were apparently separated by DEAE-cellulose column chromatography of soluble extract from immature rice seeds, and each of these four forms was further purified by gel-filtration. RBE1, RBE2A, and RBE2B were the predominant forms of the enzyme. The molecular size, amino-terminal amino acid sequence, and immunoreactivity with anti-maize branching enzyme-I (BE-I) antibody were identical among these three forms, except that the molecular mass of RBE2A was almost 3 kDa higher than those of RBE1 and RBE2B. These results indicate that RBE1, RBE2A, and RBE2B are the same (termed rice BE-I). The cDNA clones coding for rice BE-I have been identified from a rice seed library in lambda gt11, using the maize BE-I cDNA as a probe. The nucleotide sequence indicates that rice BE-I is initially synthesized as an 820-residue precursor protein, including a putative 64- or 66-residue transit peptide at the amino terminus. The rice mature BE-I contains 756 (or 754) amino acids with a calculated molecular mass of 86,734 (or 86,502) Da, and shares a high degree of sequence identity (86%) with the maize protein. The consensus sequences of the four regions that form the catalytic sites of amylolytic enzymes are conserved in the central region of the rice BE-I sequence. Thus, rice BE-I as well as the maize protein belongs to a family of amylolytic enzymes.

Koo S H, Lee K Y, Lee H G. Effect of cross-linking on the physicochemical and physiological properties of corn starch
Food Hydrocol, 2010,24:619-625.

DOIURL [本文引用: 2]

Hurkman W J, McCue K F, Altenbach S B, Korn A, Tanaka C K, Kothari K M, Johnson E L, Bechtel D B, Wilson J D, Anderson O D, DuPont F M. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm
Plant Sci, 2003,164:873-881.

DOIURL [本文引用: 1]

Gu J F, Chen J, Chen L, Wang Z Q, Zhang H, Yang J C. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s
Crop J, 2015,3:285-297.

DOIURL [本文引用: 2]

Asaoka M, Okuno K, Sugimoto Y, Kawakami J, Fuwa H. Effect of environmental temperature during development of rice plants on some properties of endosperm starch
Starch-Starke, 1984,36:189-193.

DOIURL [本文引用: 1]

Ahmed N, Tetlow I J, Nawaz S, Iqbal A, Mubin M, Nawazul Rehman M S, Butt A, Lightfoot D A, Maekawa M. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice
J Sci Food Agric, 2015,95:2237-2243.

DOIURL [本文引用: 1]

Ahmed N, Maekawa M, Tetlow I J. Effects of low temperature on grain filling, amylose content, and activity of starch biosynthesis enzymes in endosperm of basmati rice
Aust J Agric Res, 2008,59:599-604.

DOIURL [本文引用: 1]

Cheng F, Zhong L, Zhao N, Liu Y, Zhang G. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties
Plant Growth Regul, 2005,46:87-95.

DOIURL [本文引用: 1]

刘鑫燕, 李娟, 刘雪菊, 张昌泉, 顾铭洪, 刘巧泉. 可溶性淀粉合成酶与稻米淀粉精细结构关系的研究进展
植物生理学报, 2014,50:1453-1458.

[本文引用: 2]

Liu X Y, Li J, Liu X J, Zhang C Q, Gu M H, Liu Q. Progress in the relationship between soluble starch synthases and starch fine structure in rice
Plant Physiol J, 2014,50:1453-1458 (in Chinese with English abstract).

[本文引用: 2]

Pandey M K, Rani N S, Madhav M S, Sundaram R M, Varaprasad G S, Sivaranjani A K, Bohra A, Kumar G R, Kumar A. Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.)
Biotechnol Adv, 2012,30:1697-1706.

DOIURL [本文引用: 1]

胡群, 夏敏, 张洪程, 曹利强, 郭保卫, 魏海燕, 陈厚存, 韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响
作物学报, 2017,43:420-431.

[本文引用: 1]

Hu Q, Xia M, Zhang H C, Cao L Q, Guo B W, Wei H Y, Chen H C, Han B F. Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality
Acta Agron Sin, 2017,43:420-431 (in Chinese with English abstract).

[本文引用: 1]

沈鹏, 罗秋香, 金正勋. 稻米蛋白质与蒸煮食味品质关系研究
东北农业大学学报, 2003,34:378-381.

[本文引用: 1]

Shen P, Luo Q X, Jin Z X. Relationship between protein content and the cooking and eating quality properties of rice grain
J Northeast Agric Univ, 2003,34:378-381 (in Chinese with English abstract).

[本文引用: 1]

沈鹏, 金正勋, 罗秋香, 金学泳, 孙艳丽. 氮肥对水稻籽粒淀粉合成关键酶活性及蒸煮食味品质的影响
东北农业大学学报, 2005,36:561-566.

[本文引用: 1]

Shen P, Jin Z X, Luo Q X, Jin X Y, Sun Y L. Effects of nitrogen fertilizer on the enzyme activities involved in the starch synthesis and eating and cooking quality in rice grain
J Northeast Agric Univ, 2005,36:561-566 (in Chinese with English abstract)

[本文引用: 1]

潘圣刚, 翟晶, 曹凑贵, 蔡明历, 王若涵, 黄胜奇, 李进山. 氮肥运筹对水稻养分吸收特性及稻米品质的影响
植物营养与肥料学报, 2010,16:522-527.

[本文引用: 1]

Pan S G, Zhai J, Cao C G, Cai M L, Wang R H, Huang S Q, Li J S. Effects of nitrogen management practices on nutrition uptake and grain qualities of rice
Plant Nutr Fert Sci, 2010,16:522-527 (in Chinese with English abstract).

[本文引用: 1]

Borrell A K, Garside A L, Fukai S, Reid D J. Grain quality of flooded rice is affected by season, nitrogen rate, and plant type
Aust J Agric Res, 1999,50:1399-1408.

DOIURL [本文引用: 1]

相关话题/淀粉 作物 直链 材料 生理