删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一个新的水稻脆秆突变体bc17的鉴定及基因定位

本站小编 Free考研考试/2021-12-26

闂傚倷娴囬褏鈧稈鏅犻、娆撳冀椤撶偟鐛ラ梺鍦劋椤ㄥ懐澹曟繝姘厵闁告挆鍛闂佹娊鏀遍崹鍫曞Φ閸曨垰绠涢柛鎾茬劍閸嬔冾渻閵堝繒鍒扮€殿喖澧庨幑銏犫攽鐎n亞鍔﹀銈嗗笒鐎氼剛绮婚妷锔轰簻闁哄啠鍋撻柛搴″暱閻g兘濡烽妷銏℃杸濡炪倖姊婚悺鏂库枔濡眹浜滈柨鏂垮⒔閵嗘姊婚崒姘偓鐑芥倿閿旈敮鍋撶粭娑樻噽閻瑩鏌熼悜姗嗘畷闁稿孩顨嗛妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸箖濡も偓閳藉鈻庣€n剛绐楅梻浣哥-缁垰螞閸愵喖钃熸繛鎴欏灩鍞梺闈涚箚閸撴繈鎮甸敃鈧埞鎴︽倷閹绘帗鍊悗鍏夊亾闁归棿绀侀拑鐔兼煏閸繍妲哥紒鐙欏洦鐓曟い顓熷灥閺嬬喐绻涢崼婵堝煟婵﹨娅g槐鎺懳熼悡搴樻嫛闂備胶枪缁ㄦ椽宕愬Δ鍐ㄥ灊婵炲棙鍔曠欢鐐烘煙闁箑澧版い鏃€甯″娲嚃閳圭偓瀚涢梺鍛婃尰閻╊垶鐛繝鍌楁斀閻庯綆鍋嗛崢浠嬫⒑缂佹◤顏勵嚕閼搁潧绶為柛鏇ㄥ幐閸嬫挾鎲撮崟顒傤槰闂佹寧娲忛崹浠嬪极閹扮増鍊风痪鐗埫禍楣冩煥濠靛棝顎楀ù婊冨⒔缁辨帡骞夌€n剛袦闂佸搫鐬奸崰鎰缚韫囨柣鍋呴柛鎰ㄦ櫓閳ь剙绉撮—鍐Χ閸℃ê鏆楅梺纭呮珪閹瑰洦淇婇幘顔肩闁规惌鍘介崓鐢告⒑閹勭闁稿妫濇俊瀛樼節閸屾鏂€闂佺粯锕╅崑鍕妤e啯鈷戦柛娑橈功閳藉鏌f幊閸旀垵顕i弻銉晢闁告洦鍓欓埀顒€鐖奸弻锝夊箛椤撶偟绁烽梺鎶芥敱濮婅绌辨繝鍕勃闁稿本鑹鹃~鍥⒑閸濆嫮鐒跨紒缁樼箓閻i攱绺介崜鍙夋櫇闂侀潧绻掓慨瀵哥不閹殿喚纾介柛灞剧懅閸斿秵銇勯妸銉﹀殗閽樻繈姊婚崼鐔恒€掗柡鍡檮閹便劌顫滈崱妤€浼庣紓浣瑰敾缁蹭粙婀侀梺鎸庣箓鐎氼垶顢楅悢璁垮綊鎮℃惔銏犳灎濠殿喖锕ュ钘夌暦閵婏妇绡€闁稿本绮庨幊鍡樼節绾版ɑ顫婇柛瀣噽閹广垽宕奸妷褍绁﹂梺鍦濠㈡﹢鏌嬮崶顒佺厸闁搞儮鏅涢弸鎴炵箾閸涱喚澧紒缁樼⊕濞煎繘宕滆琚f繝鐢靛仜閹锋垹绱炴担鍝ユ殾闁炽儲鏋奸崼顏堟煕椤愩倕鏋庨柍褜鍓涢弫濠氬蓟閿濆顫呴柣妯哄悁缁敻姊洪幖鐐测偓鎰板磻閹剧粯鈷掑ù锝堫潐閸嬬娀鏌涢弬璺ㄐら柟骞垮灲瀹曠喖顢橀悙鑼喊闂佽崵濮村ú銈咁嚕椤掑嫬绫嶉柛灞绢殔娴滈箖鏌ㄥ┑鍡涱€楀褌鍗抽弻銊モ槈閾忣偄顏�
547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鏌嶈閸撶喖寮绘繝鍥ㄦ櫜濠㈣泛锕﹂悿鍥⒑鐟欏嫬绀冩い鏇嗗懐鐭嗛柛鎰ㄦ杺娴滄粓鐓崶銊﹀鞍妞ゃ儲绮撻弻锝夊箻鐎靛憡鍒涘┑顔硷攻濡炶棄鐣峰Δ鍛闁兼祴鏅涢崵鎺楁⒒娴e憡鎲搁柛锝冨劦瀹曟垿宕熼娑樹患闂佺粯鍨兼慨銈夊疾閹间焦鐓ラ柣鏇炲€圭€氾拷1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻锝夊閵忊晜姣岄梺绋款儐閹瑰洤鐣疯ぐ鎺濇晝闁挎繂娲﹂濠氭⒒娓氣偓閳ь剛鍋涢懟顖涙櫠閸欏浜滄い鎰╁焺濡叉椽鏌涢悩璇у伐妞ゆ挸鍚嬪鍕節閸愵厾鍙戦梻鍌欑窔閳ь剛鍋涢懟顖涙櫠閹绢喗鐓涢悘鐐登规晶鑼偓鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偞鎯旈埦鈧弨浠嬫煟閹邦垰鐨哄褎鐩弻娑㈠Ω閵壯傝檸闂佷紮绲块崗姗€寮幘缁樺亹闁肩⒈鍓﹀Σ浼存煟閻斿摜鐭婄紒缁樺笧閸掓帒鈻庨幘宕囧€為梺鍐叉惈閸熶即鏁嶅⿰鍕瘈闁靛骏绲剧涵楣冩煥閺囶亪妾柡鍛劦濮婄粯鎷呴崨濠傛殘闁煎灕鍥ㄧ厱濠电姴鍟版晶杈╃磽閸屾稒宕岄柟绋匡攻缁旂喖鍩¢崒娑辨閻庤娲︽禍婵嬪箯閸涱垱鍠嗛柛鏇ㄥ幗琚欓梻鍌氬€风粈浣革耿闁秴鍌ㄧ憸鏃堝箖濞差亜惟闁宠桨鑳堕鍥⒑閸撴彃浜濇繛鍙夌墵閹偤宕归鐘辩盎闂佺懓顕崑娑㈩敋濠婂懐纾煎ù锝呮惈椤eジ鏌曢崶褍顏い銏℃礋婵偓闁宠桨绀佹竟澶愭⒒娴g懓顕滅紒瀣浮瀹曟繂鈻庨幘璺虹ウ闁诲函缍嗛崳顕€寮鍡欑瘈濠电姴鍊规刊鍏间繆閺屻儲鏁辩紒缁樼箞閹粙妫冨☉妤佸媰闂備焦鎮堕崝宀€绱炴繝鍌ゅ殨妞ゆ劑鍊楅惌娆愪繆椤愩倖鏆╅柛搴涘€楅幑銏犫攽鐎n亞鍊為梺闈浨归崕鏌ヮ敇濞差亝鈷戦柛婵嗗濡叉悂鏌eΔ浣虹煉鐎规洘鍨块獮鎺懳旈埀顒勫触瑜版帗鐓涢柛鎰╁妿婢ф盯鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲烽梻浣呵圭换鎰版儔閼测晜顫曢柟鐑橆殢閺佸﹪鏌涜箛鎿冩Ц濞存粓绠栭幃娲箳瀹ュ棛銈板銈庡亜椤︾敻鐛崱娑樻閹煎瓨鎸婚~宥夋⒑閸︻厼鍔嬮柛銊ㄦ珪缁旂喖寮撮悢铏诡啎闁哄鐗嗘晶浠嬪箖婵傚憡鐓涢柛婊€绀佹禍婊堝础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀛樼闁哄瞼鍠栭幃婊兾熺拠鏌ョ€洪梻浣呵归鍥ㄧ箾閳ь剟鏌$仦鐣屝ユい褌绶氶弻娑滅疀閺冨倶鈧帗绻涢崱鎰仼妞ゎ偅绻勯幑鍕洪鍜冪船婵犲痉鏉库偓褏寰婃禒瀣柈妞ゆ牜鍋涚粻鐘虫叏濡顣抽柛瀣崌閻涱噣宕归鐓庮潛闂備礁鎽滈崰鎾寸箾閳ь剛鈧娲橀崹鍧楃嵁濡皷鍋撳☉娅亪顢撻幘缁樷拺缂備焦锚閻忥箓鏌ㄥ鑸电厓鐟滄粓宕滃☉銏犵;闁绘梻鍘ч悞鍨亜閹烘垵鏋ゆ繛鍏煎姍閺岀喖顢欓懖鈺佺厽閻庤娲樺ú鐔笺€佸☉銏″€烽柤纰卞墮婵附淇婇悙顏勨偓鏍垂婵傜ǹ纾垮┑鐘宠壘缁€鍌炴倶閻愭澘瀚庡ù婊勭矒閺岀喖骞嗚閹界娀鏌涙繝鍐ㄥ闁哄瞼鍠栭、娆撴嚃閳轰胶鍘介柣搴ゎ潐濞茬喐绂嶉崼鏇犲祦闁搞儺鍓欐儫闂侀潧顦崐鏇⑺夊顑芥斀闁绘劘鍩栬ぐ褏绱掗懠顒€浜剧紒鍌氱Ч閹崇偤濡疯濞村嫰姊洪幐搴㈢5闁稿鎹囧Λ浣瑰緞閹邦厾鍘遍棅顐㈡处濞叉牜鏁崼鏇熺厵闁稿繐鍚嬮崐鎰版煛鐏炵晫啸妞ぱ傜窔閺屾稖绠涢弮鍌楁闂傚洤顦甸弻娑㈠Ψ椤旂厧顫╃紒鐐劤閵堟悂寮婚弴鐔虹瘈闊洦娲滈弳鐘差渻閵堝棙绀夊瀛樻倐楠炲牓濡搁妷搴e枔缁瑩宕归纰辨綍闂傚倷鑳舵灙妞ゆ垵妫濋獮鎰節濮橆剛顔嗛梺鍛婁緱閸ㄩ亶宕伴崱娑欑厱闁哄洢鍔屾晶浼存煛閸℃ê鍝烘慨濠勭帛閹峰懘宕崟顐$帛闁诲孩顔栭崰妤呭磿婵傜ǹ桅闁圭増婢樼粈鍐┿亜韫囨挻顥犲璺哄娣囧﹪濡惰箛鏇炲煂闂佸摜鍣ラ崹璺虹暦閹达附鍋愮紓浣贯缚閸橀亶姊洪弬銉︽珔闁哥噥鍋呴幈銊╁焵椤掑嫭鈷戠紒瀣儥閸庢劙鏌熺粙娆剧吋妤犵偛绻樺畷銊р偓娑櫭禒鎯ь渻閵堝棛澧柤鐟板⒔缁骞嬮敂瑙f嫽婵炶揪绲介幉锟犲箚閸儲鐓曞┑鐘插閸︻厼寮查梻渚€娼х换鍫ュ磹閺囥垺鍊块柛顭戝亖娴滄粓鏌熺€电ǹ浠滄い鏇熺矌缁辨帗鎷呯憴鍕嚒濡炪値鍙€濞夋洟骞夐幘顔肩妞ゆ巻鍋撶痪鐐▕閹鈻撻崹顔界亾闂佽桨绀侀…鐑藉Υ娴g硶妲堟俊顖涚矌閸犲酣鎮鹃埄鍐跨矗濞达絽澹婂Λ婊勭節閻㈤潧浠╅柟娲讳簽缁辩偤鍩€椤掍降浜滄い鎰╁焺濡偓闂佽鍣换婵嬪春閳ь剚銇勯幒鎴濐仾闁抽攱甯¢弻娑氫沪閹规劕顥濋梺閫炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備礁婀遍崑鎾翅缚濞嗘拲澶婎潩閼哥數鍘遍柣搴秵閸嬪懐浜告导瀛樼厵鐎瑰嫮澧楅崵鍥┾偓瑙勬礈閸忔﹢銆佸Ο琛℃敠闁诡垎鍌氼棜濠电姷鏁告慨鏉懨洪敃鍌氱9闁割煈鍋嗙粻楣冩煙鐎涙ḿ绠橀柡瀣暟缁辨帡鍩€椤掑倵鍋撻敐搴℃灍闁绘挸鍟伴幉绋库堪閸繄顦у┑鐐村灦濮樸劑鎯岄崱妞曞綊鏁愰崼鐔粹偓鍐煟閹烘埊韬柡宀€鍠庨埢鎾诲垂椤旂晫浜愰梻浣呵归鍡涘箰閹间礁鐓″璺哄閸嬫捇宕烽鐐愩儲銇勯敂鍨祮婵﹥妞介弻鍛存倷閼艰泛顏梺鍛娒幉锛勬崲濞戙垹绾ч柟瀵稿仜閺嬬姴顪冮妶鍐ㄧ仾闁挎洏鍨归悾鐑筋敃閿曗偓鍞悷婊冪灱缁厽寰勬繛鐐杸闁圭儤濞婂畷鎰板箻缂佹ê鈧潡鏌ㄩ弮鈧畷妯绘叏閾忣偅鍙忔俊顖氱仢閻撴劙鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲舵俊鐐€х拋锝嗕繆閸ヮ剙鐒垫い鎺嗗亾婵犫偓鏉堛劎浠氭俊鐐€ら崢濂稿床閺屻儲鍋╅柣鎴eГ閺呮煡鏌涢妷顖炴闁告洖鍟村铏圭矙閹稿孩鎷卞銈冨妼閹冲繒绮嬪澶婄畾妞ゎ兘鈧磭绉洪柡浣瑰姍瀹曘劑顢欓崗鍏肩暭闂傚倷绀侀幉鈥趁洪悢铏逛笉闁哄稁鍘奸拑鐔兼煥濠靛棭妲归柛濠勫厴閺屾稑鈻庤箛锝嗏枔濠碘槅鍋呴崹鍨潖濞差亝鐒婚柣鎰蔼鐎氫即鏌涘Ο缁樺€愰柡宀嬬秮楠炴帡鎮欓悽鍨闁诲孩顔栭崳顕€宕滈悢椋庢殾闁圭儤鍩堝ḿ鈺呮煥濠靛棙顥犻柛娆忓暞缁绘繂鈻撻崹顔界亾闂佺娅曢幐鍝ュ弲闂佺粯枪椤曆呭婵犳碍鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋婵鐗婇弫楣冩⒑闂堚晝绋婚柟顔煎€垮濠氭晲閸℃ê鍔呴梺闈涚箳婵挳寮稿▎鎾寸厽闁绘ê鍟挎慨澶愭煕閻樺磭澧电€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熺€电ǹ浠滄い鏇熺矋閵囧嫰鏁冮崒銈嗩棖缂備浇椴搁幐鎼侇敇婵傜ǹ妞藉ù锝嚽规竟搴ㄦ⒒娴d警鏀版繛鍛礋閹囨偐鐠囪尙鐤囬梺缁樕戝鍧楀极閸℃稒鐓曢柟閭﹀枛娴滈箖鏌﹂幋婵愭Ш缂佽鲸鎹囧畷鎺戔枎閹存繂顬夐梻浣告啞閸旀洟鈥﹂悜鐣屽祦闊洦绋掗弲鎼佹煥閻曞倹瀚�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸稈鍋撴担鑲濇棃宕ㄩ闂寸盎闂備焦鍎崇换鎰耿闁秵鍋傞悗锝庡枟閳锋垿鎮峰▎蹇擃仾闁稿孩顨婇弻娑㈠Ω閵壯嶇礊婵犮垼顫夊ú鐔煎极閹剧粯鏅搁柨鐕傛嫹
姜鸿瑞,1,2, 叶亚峰1, 何丹1, 任艳1, 杨阳1, 谢建1, 程维民1, 陶亮之1, 周利斌3, 吴跃进1, 刘斌美,1,*1中国科学院合肥物质科学研究院, 安徽合肥 230031
2中国科学技术大学, 安徽合肥 230026
3中国科学院近代物理研究所, 甘肃兰州 730000

Identification and gene localization of a novel rice brittle culm mutant bc17

JIANG Hong-Rui,1,2, YE Ya-Feng1, HE Dan1, REN Yan1, YANG Yang1, XIE Jian1, CHENG Wei-Min1, TAO Liang-Zhi1, ZHOU Li-Bin3, WU Yue-Jin1, LIU Bin-Mei,1,*1Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
2University of Science and Technology of China, Hefei 230026, Anhui, China
3Institute of Modern Physics,Chinese Academy of Sciences, Lanzhou 730000, Gansu, China

通讯作者: * 刘斌美, E-mail: liubm@ipp.ac.cn

收稿日期:2020-04-3接受日期:2020-09-13网络出版日期:2021-01-12
基金资助:安徽省科技重大专项.18030701205
安徽省重点研发专项.201904c03020007
国家自然科学基金项目.31701330
国家自然科学基金项目.31601828
中国科学院科技服务网络计划项目(STS计划).
中国科学院科技服务网络计划项目.KFJ-STS-ZDTP-054


Received:2020-04-3Accepted:2020-09-13Online:2021-01-12
Fund supported: Anhui Science and Technology Major Project.18030701205
Anhui Key Research and Development Program.201904c03020007
National Natural Science Foundation of China.31701330
National Natural Science Foundation of China.31601828
Science and Technology Service Network Program of Chinese Academy of Sciences Project (STS Program).
Science and Technology Service Network Program of Chinese Academy of Sciences Project.KFJ-STS-ZDTP-054

作者简介 About authors
E-mail: j602910520@163.com













摘要
利用重离子辐照武运粳7号(Wuyunjing 7, wyj7)获得一个脆秆突变体bc17 (brittle culm 17), 该突变体脆性特征仅在茎秆中表现, 叶片正常, 并且茎秆脆性在抽穗后开始表现, 随着成熟度的增加脆性特征逐渐显著。农艺性状分析表明, 该突变体生长发育受到影响, 株高显著低于野生型, 分蘖数减少以及结实率降低。茎秆和叶片生化成分测定显示, 与野生型相比, bc17茎秆和叶片的纤维素含量分别降低22.70%和18.67%, 半纤维素含量分别升高45.76%和31.36%。bc17茎秆的抗折力、拉伸力均显著低于野生型, 表明茎秆的机械强度发生改变。组织解剖学观察发现, bc17茎秆的厚壁细胞孔隙变大, 结构疏松, 细胞数目减少。遗传分析表明, bc17的脆秆特征受单隐性核基因控制。利用图位克隆技术将bc17基因精细定位于水稻第7号染色体162 kb区域中, 生物信息学分析表明可能是一个新的水稻脆秆基因, 为揭示水稻细胞壁合成分子机制的研究提供重要的材料支撑。
关键词: 水稻;脆秆突变体;细胞壁;基因定位;纤维素含量

Abstract
A brim culm mutant bc17 (brittle culm 17) was obtained by irradiating wyj7 (Wuyunjing 7) with heavy ions. The brittle traits of the mutant were only found in the stalks and not in the leaves. The brittleness of the culm began to appear after heading stage, while it became more obvious as rice grew from heading stage to maturity stage. The growth and development of the mutant were affected, the plant height of the mutant was significantly lower than that in the wild type, and tiller number and seed setting rate were also lower than in the wild type. Compared with wild type, the cellulose content in bc17 culms and leaves decreased by 22.7% and 18.67%, while the hemicellulose content increased by 45.76% and 31.36%, respectively. The breaking resistance and tensile force of bc17 were significantly lower than those of wild type, indicating that the mechanical strength of the culm changed. The thick-walled cells of bc17 culms had larger pores, looser structures, and fewer cells. The fragile characteristics of bc17 were controlled by a single recessive nuclear gene. The bc17 gene was located in the 162 kb region of chromosome 7 by map-based cloning. Bioinformatics analysis indicated that it might be a novel gene related to rice brittle culm. These findings provided an important material support for the research on the molecular mechanism of cell wall synthesis in rice.
Keywords:rice;brittle culm mutant;cell wall;gene mapping;cellulose content


PDF (3527KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79. doi:10.3724/SP.J.1006.2021.02025
JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17[J]. Acta Agronomica Sinica, 2021, 47(1): 71-79. doi:10.3724/SP.J.1006.2021.02025


水稻茎秆的机械强度是重要的农艺性状之一, 直接影响着植株的抗倒伏能力。水稻脆性突变体是一类比较常见的突变体[1], 是研究细胞壁合成机制的重要材料。脆性突变一般是指植株茎秆机械强度下降, 通常表现为纤维素和半纤维素含量下降, 木质素含量升高[2], 在结构上表现为厚壁组织次生细胞壁变薄[3]。由于茎秆机械强度下降, 存在倒伏发生的隐患, 生产上一般认为是不利的性状。然而脆性突变体秸秆脆嫩、纤维素含量下降, 有利于反刍动物采食, 消化更加容易, 具备成为粮饲兼用型水稻品种的应用潜力[4]。另外, 脆秆突变体的茎秆易粉碎降解, 对于秸秆生态还田有着很好的应用前景, 是一种重要的种质资源[5]

从第一个水稻脆秆基因bc1[6]被发现以来, 对水稻脆性突变体的研究已有50多年的历史了。截止目前, 报道的水稻脆性突变体仅有20多个, 大多数基因都是涉及细胞壁纤维素合成酶OsCesA (cellulose synthase)的变异, 其中以bc (brittle culm)命名的水稻脆性突变体有16个(bc1~bc16), 相对研究的比较系统和深入, 并且对细胞壁合成调控的机制做了详细解析[7,8]。细胞壁化学成分的变化、合成和转运的阻滞以及厚壁组织结构发育异常等都可能引起水稻茎秆机械强度的改变[9,10,11,12,13,14,15,16,17,18,19]。近来发现水稻转录因子也参与细胞壁生物合成的过程[20,21,22]。水稻纤维素合酶基因是引起脆秆特性的关键基因, 其中最重要的是OsCesA4、OsCesA7、OsCesA9, 可能形成一个纤维素合成复合体参与次生细胞壁的合成[12]。水稻脆秆基因bc7bc11基因[13,14]OsCesA4的等位变异; bc6bc13基因[15,16]OsCesA9的等位变异。bc10、bc14、bc15可能参与细胞壁的修饰, 其中bc10基因编码一个定位在高尔基体的Ⅱ型内整合膜蛋白, 调节细胞壁纤维素合成和阿拉伯半乳聚糖蛋白含量[17], bc14基因编码核苷酸糖转运蛋白OsNST1, 定位于高尔基体, 转运UDPG, 可能为多糖生物合成提供底物[18]bc15基因编码一个膜相关的类几丁质酶蛋白[19]。转录因子MYB家族和NAC家族参与到细胞壁的合成途径, 比如NAC29/31-MYB61-CESA通路调控细胞壁生物合成和组装来影响次生细胞壁纤维素合成[20,21,22]bc12基因编码一个双靶向的驱动蛋白4, 控制水稻细胞周期进程, 揭示细胞生长和细胞壁修饰存在潜在的联系[23]。细胞壁的合成主要由不同类型的糖基转移酶来完成, 而且目前被揭示功能的酶还很少, 明确具体生化特征的更少[8]。由于水稻细胞壁的生物合成过程非常复杂, 涉及的调控途径类型多样, 新基因的发掘和研究有助于完善细胞壁合成机制, 为水稻细胞壁定向改良育种奠定理论基础。

本实验以重离子辐照诱变粳稻品种武运粳7号(Wuyunjing 7, wyj7)获得的一个脆秆突变体为研究对象, 根据水稻脆秆突变基因命名规则和顺序, 将其称为bc17突变体(brittle culm 17), 分析bc17突变体的脆性性状对农艺特征及机械强度的影响, 通过茎秆组织结构的解剖学及细胞壁成分的测定来分析脆性形成的生物学机制, 利用遗传学及图位克隆技术将bc17突变位点进行染色体定位, 通过生物信息学分析鉴定可能的候选基因, 为进一步分离目标基因奠定基础, 同时为育种应用提供高效的筛选标记。

1 材料与方法

1.1 材料

脆秆突变体bc17、野生型武运粳7号以及用于遗传分析和基因定位的群体材料, 均种植于中国科学院合肥物质科学研究院水稻实验基地(安徽合肥), 种植方式为人工栽插, 常规田间管理。

1.2 农艺性状分析

在田间随机取10株成熟期供试水稻材料, 考察其主要农艺特征和经济性状, 包括株高、穗长、分蘖数、每穗粒数、千粒重、结实率等。

1.3 细胞壁组分含量分析

根据Van Soest等[24]方法测定细胞壁纤维素、半纤维素和木质素等主要组成组分含量。取成熟期的水稻材料, 将茎秆和叶片分开, 剪成适当的长度放入65℃烘箱中, 待完全烘干后取出, 用旋风磨分别将茎秆和叶片粉碎, 粉末装入干净的封口袋中以备后续实验使用。重复3次。

1.4 bc17茎秆机械强度测定

1.4.1 茎秆拉伸力的测定 在成熟期从田间选取新鲜水稻材料, 将茎鞘分离后截取第2节间茎秆夹持在万能力学试验机(LD23.502, 力试(上海)科学仪器有限公司)上, 在茎秆断裂失去载荷后自动停止拉伸, 记录数据。

1.4.2 茎秆抗折力的测定 在成熟期从田间选取新鲜水稻材料, 将茎鞘分离后截取第2节间茎秆, 放置在等间距的支架上, 用数显式拉压力计(HP-50, 乐清市艾德堡仪器有限公司)从茎秆中部向下施压使水稻茎秆折断, 记录施加力的峰值, 即为茎秆抗折力。

1.4.3 倒伏指数的计算 根据章忠贵等[25]的方法略有修改, 在成熟期采集新鲜样品, 测量相应位置的长度和重量, 计算突变体和野生型第2节间的弯曲力矩和倒伏指数。

弯曲力矩 = 节间基部至穗顶的长度(cm) × 该节间基部至穗顶的鲜重(g) × 0.001 × 9.8

倒伏指数 = (弯曲力矩/抗折力) × 100

倒伏指数越大, 则茎秆越易倒伏, 以倒伏指数200为抗倒伏临界值。

1.5 茎秆结构的电镜观察

取成熟期相同部位的脆秆突变体及其野生型茎秆切成2~4 mm的小段, 投入含有2.5%戊二醛的PBS缓冲液(4 mmol L-1 sodium phosphate, pH 7.2; 200 mmol L-1 NaCl)中, 4℃固定48 h后用1%锇酸PBS (phosphate buffer saline)溶液固定。固定后的样品经过PBS缓冲液充分漂洗后, 顺序用10%、20%、40%、60%和80%的乙醇梯度各处理30 min脱水, 再用100%乙醇处理2次各30 min, 100%丙酮处理2次各5 min。脱水后的材料依次用London Resin White (Sigma, USA)树脂与乙醇顺序以1∶3、1∶1和3∶1的比例混合进行置换和浸透, 最后换入纯树脂继续浸透48 h, 并于模块中包埋, 60℃聚合24 h。样品修块后以80 nm超薄切片, 放置于铜网上, 观察前用醋酸铀和柠檬酸铅复染。样品放置在透射电镜上观察[26]

1.6 脆秆突变体bc17的遗传学分析

利用bc17突变体分别与粳稻品种(武运粳7号和当粳8号)和籼稻品种(特青、黄花占和9311)进行人工杂交, F1代经自交获得F2代种子。在成熟期对F2代植株进行茎秆脆性鉴定, 统计野生型和突变表型个体的数目, 并用统计学方法计算分离比例和卡方检验。

1.7 bc17基因的染色体定位

利用对bc17/9311杂交构建的F2分离群体对bc17基因进行初定位, 采用BSA (bulked segregant analysis)法进行基因定位, 即混合分组分析, 也称分离群体分组分析, 是一种通过在群体中挑选极端或代表性性状的个体组成混池进行分析的方法。通过研究混池之间等位基因/分子标记频率的差异, 将与性状相关的位点在基因组上进行定位。选择在水稻12条染色体上均匀分布的408个SSR (simple sequence repeat)标记进行亲本多态性检测, 利用筛选出的差异SSR标记对亲本、F1植株以及混合池(20个脆秆单株等量DNA混合)进行PCR扩增, 对电泳产物的统计分析。在精细定位阶段, 根据网上公布的Nipponbare和9311序列, 并选择定位区间中存在差异的序列进行引物设计与合成。用这些引物分别对bc17和9311基因组DNA进行PCR扩增。PCR程序按常规方法进行。如果PCR产物在bc17突变体和9311间产生多态性, 就直接用作新的SSR或者InDel (insertion and deletion)分子标记。

1.8 数据分析

采用Origin 2018对本文实验数据进行差异性分析和作图。

2 结果与分析

2.1 bc17突变体的表型特征

通过对突变体bc17和野生型wyj7在整个生育期中农艺特征的观察发现: 该突变体从抽穗期开始, 株高显著低于野生型, 分蘖数明显减少(图1-A), 在拔节期时通过手工折断实验, 突变体bc17茎秆表现出韧性丧失, 能够明显折成两截折断且断口清晰, 而野生型茎秆则表现出韧性, 没有断口出现难以折断(图1-B)。突变体的叶片和野生型的类似, 均只能折出痕迹, 无明显断裂(图1-C), 突变体的穗子比野生型变短, 穗粒数减少, 结实率显著降低(图1-D)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1突变体bc17和野生型wyj7植株及茎秆折断表现型

A: 成熟期植株; B: 成熟期茎秆折断表型; C: 成熟期叶片; D: 穗部表型。
Fig. 1Plants and broken culm phenotype of mutant type bc17 and wild type wyj7 in mature stage

A: Plants of mature stage; B: An easily broken bc17 culm indicated by arrows; C: Leaves of mature stage; D: Panicle phenotype. wyj7: Wuyunjing 7; bc17: brittle culm 17.


2.2 bc17突变体的农艺性状分析

与野生型相比, 突变体bc17的株高、穗长以及结实率极显著降低, 降低程度分别为26.61%、27.51%以及18.54%, 每穗粒数降低了13.18%, 达到显著水平, 而分蘖数和千粒重虽然降低, 但是差异不显著(表1)。农艺性状的变化表明, bc17脆秆性状的突变对于植株的生长和发育也产生了较大的影响, 可能存在一因多效。

Table 1
表1
表1突变体bc17与野生型wyj7农艺性状分析
Table 1Agronomic traits of mutant bc17 and wild type wyj7
性状
Trait
突变体
Mutant (bc17)
野生型
Wild type (wyj7)
株高 Plant height (cm)69.43±1.95**94.6±0.80
分蘖数Tiller number per plant9.67±0.58*11.33±0.58
结实率 Seed fertility (%)63.45±2.39**87.53±4.38
千粒重 1000-grain weight (g)23.6±0.67**26.62±0.84
穗长 Panicle length (cm)12.73±0.55**15.56±0.21
每穗粒数Number of grain per panicle111.94±12.06128.94±9.34
* 表示显著差异(P < 0.05), ** 表示极显著差异(P < 0.01)。
* and ** represent significant differences between the bc17 mutant and wild type at the 0.05 and 0.01 probability levels, respectively. wyj7: Wuyunjing 7; bc17: brittle culm 17.

新窗口打开|下载CSV

2.3 细胞壁组分含量的分析

木质素(lignin)、纤维素(cellulose)、半纤维素(hemi-cellulose)以及灰分(主要成分是二氧化硅)是构成水稻细胞壁的主要成分。通过测定成熟期突变体bc17和野生型wyj7茎秆、叶片的细胞壁组分含量, 结果表明, 突变体bc17叶片和茎秆的纤维素含量比野生型分别降低18.67%和22.70%, 半纤维素含量分别升高31.36%和45.76%; 野生型叶片中木质素含量显著低于突变体, 而灰分含量显著高于野生型, 但是在茎秆中差异不明显(表2)。细胞壁成分在不同组织中比例的差异, 可能是引起脆性特征特异表达的主要因素。

Table 2
表2
表2野生型和突变体bc17茎秆和叶片细胞壁成分分析
Table 2Cell wall components between wild type wyj7 and mutant type bc17 (%)
成分
Component
茎秆Culm叶片Leaf
突变体
Mutant (bc17)
野生型
Wild type (wyj7)
突变体
Mutant (bc17)
野生型
Wild type (wyj7)
纤维素 Cellulose19.91±1.77*25.77±1.3629.19±2.16*35.89±1.74
半纤维素 Hemicellulose22.68±1.78*15.56±0.6330.03±1.1722.86±2.40
木质素 Lignin4.39±0.403.99±0.666.52±0.30*4.61±0.24
灰分 Ash4.21±0.134.19±0.596.65±0.12*8.07±0.29
* 表示显著差异(P < 0.05), ** 表示极显著差异(P < 0.01)。
* and ** represent significant differences between the bc17 mutant and wild type at the 0.05 and 0.01 probability levels, respectively. wyj7: Wuyunjing 7; bc17: brittle culm 17.

新窗口打开|下载CSV

2.4 脆秆突变体bc17茎秆的物理特征

机械强度是水稻茎秆重要的物理特征之一, 而脆秆突变是引起机械强度改变的。在成熟期时测定水稻茎秆的第2节间和第3节间的折断力、拉伸力。野生型wyj7与突变体bc17茎秆的第2节间茎秆抗折力分别为6.38和3.33, 第3节间茎秆抗折力分别为7.30和4.73。bc17茎秆第2节间抗折力比野生型降低了47.80%, 第3节间茎秆抗折力降低了35.20% (图2), 这与田间观察的茎秆脆性特征相符, 突变体所需要的茎秆折断力明显减少, 拉伸力的测定也验证了这一点, 第2节间突变体相对于野生型分别降低了63.65%。第3节间突变体相对于野生型分别降低了60.34%。脆秆突变体茎秆抗折力比野生型显著下降, 可能会引起倒伏的发生, 因此计算了第2节间的倒伏指数。结果表明bc17突变体第2节间弯曲力矩比野生型显著下降, 引起倒伏指数比野生型升高, 但是二者差异不显著, 说明bc17突变体抗倒伏能力较强, 可能是由于突变体株高下降, 植株重心下移产生的后果。

图2

新窗口打开|下载原图ZIP|生成PPT
图2野生型和突变体第2节间、第3节间茎秆折断力和茎秆拉伸力分析

* 表示显著差异(P < 0.05), ** 表示极显著差异(P < 0.01)。
Fig. 2Breaking force and tension force of wild type and mutant in the 2nd and 3rd internodes

* and ** represent significant differences between the bc17 mutant and wild type at the 0.05 and 0.01 probability levels, respectively. wyj7: Wuyunjing 7; bc17: brittle culm 17.


Table 3
表3
表3野生型和突变体bc17倒伏指数计算
Table 3Lodging index of wild type and mutant type bc17
参数
Parameters
野生型
Wild type (wyj7)
突变体
Mutant (bc17)
抗折力Breaking resistance (N)6.38±0.593.33±0.11**
弯曲力矩Bending moment (N m)6.31±0.343.75±0.34**
倒伏指数Lodging index99.38±76.40112.15±57.40
* 表示显著差异(P<0.05), ** 表示极显著差异(P<0.01)。
* and ** represent significant differences between the bc17 mutant and wild type at the 0.05 and 0.01 probability levels, respectively. wyj7: Wuyunjing 7; bc17: brittle culm 17.

新窗口打开|下载CSV

2.5 组织解剖学观察

为了观察茎秆性状对细胞壁结构的影响, 成熟期分别对野生型wyj7和突变体bc17茎秆第2节间横切样品进行电镜观察, 结果发现, 突变体茎秆的厚壁组织明显变薄, 细胞之间空隙变大, 相应地细胞密度降低, 细胞数目减少, 从而造成支撑力下降, 对外力响应变得敏感(图3)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3野生型(左)和突变体(右)茎秆横截面

Fig. 3Cross section of wild type (left) and mutant (right) in stalks



2.6 遗传分析

将突变体bc17分别与野生型wyj7正反交得到F1, 杂交后F1代表型正常。统计杂交组合F2代中的群体单株总数以及具有脆秆表型的单株数, 计算分离比例并进行卡方检验, 结果表明, 突变体bc17与不同品种杂交的F2群体脆秆植株分离比例均符合3∶1 (P>0.05)的理论比值(表4), 这表明bc17的脆秆特征是由一对单隐性核基因控制的。

Table 4
表4
表4突变体bc17的遗传分析
Table 4Genetic analysis of mutant bc17
杂交组合
Cross
正常植株
Normal plants
脆秆株数
Number of brittle culm plants
群体总数
Total number of F2
χ2
20.05 = 3.84)
bc17/wyj7223783010.13
bc17/9311329974261.13
wyj7: Wuyunjing 7; bc17: brittle culm 17.

新窗口打开|下载CSV

2.7 基因定位

bc17/9311杂交组合F2分离群体中的97株脆秆表型植株作为定位群体。选取均匀分布于12条染色体上的408对SSR分子标记对bc17和9311两亲本进行多态性筛选, 将具有多态性的110对引物检测亲本。F1基因组DNA以及突变混池DNA (选取20个脆性单株等量DNA混合)进行连锁分析, 其中7号染色体上的SSR引物RM500和RM3743与突变体具有良好的连锁性。利用bc17/9311杂交组合的682株F2脆秆表型植株扩大群体进行精细定位, 在RM500~RM3743之间设计多个InDel分子标记, 最终将bc17定位在UP-81至DN-25之间, 物理距离约162 kb的区间内(表5图4)。在水稻基因组注释网站(http://rice.plantbiology.msu.edu/)上进行生物信息学分析, 结果发现定位区间内有25个编码蛋白, 查询这25个蛋白的RNA-Seq FPKM (fregments per kilobase per million) 表达量, 该区间内蛋白表达量差异较大, 其中10个蛋白FPKM值很低, 几乎检测不到; 结合基于序列比对的生物信息学的预测发现, 其中8个蛋白预测结果为转座相关蛋白, 成为bc17的候选基因可能性较低。通过对其中7个功能基因测序, 在序列上没有发现涉及功能改变的序列差异, 需要进一步进行启动子测序或者表达分析来确定可能的候选基因。在bc17定位区间预测有功能的基因涉及到氨基转移酶(LOC_Os07g27780)、O-甲基转移酶(LOC_Os07g27880)、硫酯酶(LOC_Os07g 27870)等, 都有可能影响到细胞壁组分的改变, 而这些基因目前还没有相关研究报道。除了O-甲基转移酶在RNA-seq数据库中仅在叶片中表达外, 氨基转移酶和硫酯酶全生育期表达, 其中硫酯酶在萌发前的花序中FRKM值为9.61, 萌发后花序中FRKM值为31.63, 表达量具有时空特异性, 很可能是bc17的候选基因。

Table 5
表5
表5bc17基因定位部分引物
Table 5Part of the primers for bc17 gene mapping
标记
Marker
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
RM500GAGCTTGCCAGAGTGGAAAGGTTACACCGAGAGCCAGCTC
RM3743TAGCCTTGTTCCATCCATCCCTTCTCCCTCTCCTCCTTCC
UP-81TGCATCTCATCTCCCCTCTTTGGAGTATAACGCCGACCTC
DN-25AGGGAAAATGCGCTGAACTAATTCATCCATGCCCTATCCA

新窗口打开|下载CSV

图4

新窗口打开|下载原图ZIP|生成PPT
图4利用分子标记对bc17基因定位

Fig. 4Positional mapping of bc17 by molecular makers



3 讨论

目前报道的许多水稻脆性突变体都伴随着明显的表型变化, 如植株矮小, 分蘖数减少, 结实率降低以及产量下降等, 且脆性全生育期、全组织表达, 类似的有bc3bc12[23,26]bc3突变体出现轻微矮化, 与野生型相比bc3突变体的茎、叶、根中纤维素含量降低了28%~36%, 而其他细胞壁组分含量没有发生变化[26]bc12突变体由于细胞数目的显著减少导致植株矮化, 纤维素微纤维的方向和细胞壁组分改变致使出现脆秆表型[23]bc17突变体虽然植株变矮, 但是脆性特征比较独特, 具有组织特异性和时间表达特异性, 与其他矮秆脆性突变体具有明显的差异。茎秆和叶片细胞壁成分测定显示, 与野生型相比, bc17茎秆和叶片都出现纤维素含量降低, 半纤维素含量升高。值得一提的是, 与野生型相比, bc17叶片木质素含量降低, 灰分升高, 也可能是导致叶片没有表现出脆性的原因。

水稻脆秆性状发生的原因, 除了涉及经典的纤维素合成途径(纤维素合酶)、多糖生物合成转运途径外, 转录因子调控途径以及细胞壁多糖乙酰化修饰等[27]对细胞壁的功能也起到重要的调控作用。叶亚峰等[20]发现OsMYB103L是MYB家族转录因子, C端具有较高的转录活性, 可直接与OsCesA4、OsCesA7、OsCesA9以及bc1启动子区域结合调控他们的表达, 此外, OsMYB103L还参与GA介导的纤维素合成途径的调控。周奕华等发现水稻BS1蛋白为木聚糖乙酰酯酶[28], 可从木糖吡喃糖基残基的O-2和O-3位置的木聚糖骨架上切割乙酰基部分。在维持木聚糖主链上适当的乙酰化水平中起重要作用, 参与次生细胞壁的形态建成, 这表明水稻次生细胞壁的生物合成过程非常复杂。本研究将bc17定位在7号染色体分子标记UP-81和DN-25之间, 没有发现相关报道的其他脆秆基因。在bc17定位区间预测有功能的基因涉及到氨基转移酶、O-甲基转移酶、硫酯酶等, 都有可能影响到细胞壁组分的改变, 而这些基因目前还没有相关研究报道, 可能会为次生细胞壁合成的机制解析发现一条新的调控途径。

农作物传统秸秆处理如弃置农田或者直接焚烧, 由于自然状态下降解速率缓慢, 容易造成环境污染和资源浪费[29]。水稻脆秆突变体, 由于其独特的细胞壁组成和结构的变化, 收获时秸秆易破碎降解, 有利于水稻秸秆的生态还田[30]。同时, 还可以将脆性材料直接作为家畜饲料, 较低的纤维素含量更有利于反刍动物消化, 具有良好的饲料应用前景[31]。水稻秸秆是可再生的生物质原料, 可以经过水解发酵产生生物乙醇[32,33]。黄峰等利用水稻脆性秸秆为原料, 利用酸预处理且酶促糖化发酵72 h后, 脆性秸秆发酵的乙醇产量可达为普通秸秆的1.1倍[34]bc17突变体细胞壁纤维素含量降低, 半纤维素含量升高, 有望通过优异等位基因的发掘, 应用到生产中, 从秸秆饲料化和能源化角度解决秸秆利用的难题。

4 结论

利用重离子辐照武运粳7号(wyj7)获得一个脆秆突变体bc17, 在抽穗后茎秆出现脆性特征, 且随着生育期进程脆秆脆性程度增加, 叶片基本表现正常。较野生型, bc17叶片和茎秆纤维素含量显著降低, 半纤维素含量显著升高, 厚壁组织变薄, 细胞之间空隙变大, 相应地细胞密度降低, 细胞数目减少。该性状受一对隐性核基因控制, 被定为在7号染色体长臂上162 kb区间内, 生物信息学分析表明bc17可能是一个新的脆秆基因, 为进一步揭示水稻细胞壁合成机制奠定材料基础。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

沈革志, 王新其, 王江, 宛新彬, 李琳, 张景六. 水稻脆秆突变体bcm581-1茎秆形态结构观察、理化测定和遗传分析
实验生物学报, 2002,35:307-312.

[本文引用: 1]

Shen G Z, Wang X Q, Wang J, Wan X B, Li L, Zhang J L. Stem morphological structure observation, physical and chemical determination and genetic analysis of the rice brittle stem mutant bcm581-1
J Mol Cell Biol, 2002,35:307-312 (in Chinese with English abstract).

[本文引用: 1]

Aohara T, Kotake T, Kaneko Y, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes
Plant Cell Physiol, 2009, 11:1886-1897.

[本文引用: 1]

Xu J D, Zhang Q F, Zhang T, Zhang H Y, Xu P Y, Wang X D, Wu X J. Phenotypic characterization, genetic analysis and gene- mapping for a brittle mutant in rice
J Integr Plant Biol, 2008,50:319-328.

DOI:10.1111/j.1744-7909.2007.00629.xURLPMID:18713364 [本文引用: 1]
Plant mechanical strength is an important agronomic trait of rice. An ethyl methane sulfonate (EMS)-induced rice mutant, fragile plant 2 (fp2), showed morphological changes and reduced mechanical strength. Genetic analysis indicated that the brittle of fp2 was controlled by a recessive gene. The fp2 gene was mapped on chromosome 10. Anatomical analyses showed that the fp2 mutation caused the reduction of cell length and cell wall thickness, increasing of cell width, and the alteration of cell wall structure as well as the vessel elements. The consequence was a global alteration in plant morphology. Chemical analyses indicated that the contents of cellulose and lignin decreased, and hemicelluloses and silicon increased in fp2. These results were different from the other mutants reported in rice. Thus, fp2 might affect the deposition and patterning of microfibrils, the biosynthesis and deposition of cell wall components, which influences the formation of primary and secondary cell walls, the thickness of cell walls, cell elongation and expansion, plant morphology and plant strength in rice.

韦存虚, 谢佩松, 周卫东, 陈义芳, 严长杰. 水稻脆性突变体叶的解剖结构和化学特性
作物学报, 2008,34:1417-1423.

DOI:10.3724/SP.J.1006.2008.01417URL [本文引用: 1]
bc7(t)]叶进行了细胞学观察及叶细胞化学组成分析。光镜和电镜观察都发现突变体厚壁细胞的细胞壁变薄; 对细胞壁成分的化学分析显示突变体纤维素含量明显低于对照, 硅含量明显升高, 而木质素变化不明显; 木质素的组化反应也显示了木质素在突变体和对照之间差异不大; X-射线微区分析表明, 硅元素在突变体叶表面明显提高。上述结果表明, 突变体叶纤维素含量的降低影响了厚壁细胞次生壁的形成, 导致细胞壁变薄, 机械强度降低, 硅含量的升高有助于突变体增强机械强度。]]>
Wei C X, Xie P S, Zhou W D, Chen Y F, Yan C J. Anatomical structure and chemical features of leaf in brittle mutant of rice
Acta Agron Sin, 2008,34, 1417-1423 (in Chineses with English abstract).

[本文引用: 1]

冯永清, 邹维华, 李丰成, 张晶, 张会, 谢国生, 涂媛苑, 路铁刚, 彭良才. 特异水稻茎秆突变体生物学特性及生物质降解效率的研究
中国农业科技导报, 2013,15(3):77-83.

[本文引用: 1]

Feng Y Q, Zou W H, Li F C, Zhang J, Zhang H, Xie G S, Tu Y Y, Lu T G, Peng L C. Studies on biological characterization of rice brittle culm mutants and their biomass degradation efficiency
J Agr Sci Tech China, 2013,15(3):77-83 (in Chinese with English abstract).

[本文引用: 1]

Li Y H, Qian Q, Zhou Y H, Yan M X, Sun L, Zhang M, Fu Z M, Wang Y H, Han B, Pang X M, Chen M S, Li J Y. Brittle culm 1, which encodes a cobra-like protein, affects the mechanical properties of rice plants
Plant Cell, 2003,9:2020-2031.

[本文引用: 1]

Zhang B C, Zhou Y H . Rice brittleness mutants: a way to open the ‘Black Box’ of monocot cell wall biosynthesis
J Integr Plant Biol, 2011,53:136-142.

URLPMID:21205179 [本文引用: 1]

张保才, 周奕华. 植物细胞壁形成机制的新进展
中国科学: 生命科学, 2015,45:544-556.

[本文引用: 2]

Zhang B C, Zhou Y H. Plant cell wall formation and regulation
Sci China Life Sci, 2015,45:544-556 (in Chinese with English abstract).

[本文引用: 2]

Xiong G Y, Li R, Qian Q, Song X Q, Liu X L, Yu Y C, Zeng D L, Wan J M, Li J Y, Zhou Y H. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis
Plant J, 2010,64:56-70.

DOI:10.1111/j.1365-313X.2010.04308.xURLPMID:20663087 [本文引用: 1]
Membrane trafficking between the plasma membrane (PM) and intracellular compartments is an important process that regulates the deposition and metabolism of cell wall polysaccharides. Dynamin-related proteins (DRPs), which function in membrane tubulation and vesiculation are closely associated with cell wall biogenesis. However, the molecular mechanisms by which DRPs participate in cell wall formation are poorly understood. Here, we report the functional characterization of Brittle Culm3 (BC3), a gene encoding OsDRP2B. Consistent with the expression of BC3 in mechanical tissues, the bc3 mutation reduces mechanical strength, which results from decreased cellulose content and altered secondary wall structure. OsDRP2B, one of three members of the DRP2 subfamily in rice (Oryza sativa L.), was identified as an authentic membrane-associated dynamin via in vitro biochemical analyses. Subcellular localization of fluorescence-tagged OsDRP2B and several compartment markers in protoplast cells showed that this protein not only lies at the PM and the clathrin-mediated vesicles, but also is targeted to the trans-Golgi network (TGN). An FM4-64 uptake assay in transgenic plants that express green fluorescent protein-tagged OsDRP2B verified its involvement in an endocytic pathway. BC3 mutation and overexpression altered the abundance of cellulose synthase catalytic subunit 4 (OsCESA4) in the PM and in the endomembrane systems. All of these findings lead us to conclude that OsDRP2B participates in the endocytic pathway, probably as well as in post-Golgi membrane trafficking. Mutation of OsDRP2B disturbs the membrane trafficking that is essential for normal cellulose biosynthesis of the secondary cell wall, thereby leading to inferior mechanical properties in rice plants.

Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. Rice Brittle Culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls
J Exp Bot, 2011,62:2053-2062.

DOI:10.1093/jxb/erq395URLPMID:21209026 [本文引用: 1]
The brittle culm (bc) mutants of Gramineae plants having brittle skeletal structures are valuable materials for studying secondary cell walls. In contrast to other recessive bc mutants, rice Bc6 is a semi-dominant bc mutant with easily breakable plant bodies. In this study, the Bc6 gene was cloned by positional cloning. Bc6 encodes a cellulose synthase catalytic subunit, OsCesA9, and has a missense mutation in its highly conserved region. In culms of the Bc6 mutant, the proportion of cellulose was reduced by 38%, while that of hemicellulose was increased by 34%. Introduction of the semi-dominant Bc6 mutant gene into wild-type rice significantly reduced the percentage of cellulose, causing brittle phenotypes. Transmission electron microscopy analysis revealed that Bc6 mutation reduced the cell wall thickness of sclerenchymal cells in culms. In rice expressing a reporter construct, BC6 promoter activity was detected in the culms, nodes, and flowers, and was localized primarily in xylem tissues. This expression pattern was highly similar to that of BC1, which encodes a COBRA-like protein involved in cellulose synthesis in secondary cell walls in rice. These results indicate that BC6 is a secondary cell wall-specific CesA that plays an important role in proper deposition of cellulose in the secondary cell walls.

舒亚洲, 曾冬冬, 秦冉, 金晓丽, 郑希, 石春海. 水稻脆秆突变体bc16的鉴定和基因精细定位
中国水稻科学, 2016,30:345-355.

[本文引用: 1]

Shu Y Z, Zeng D D, Qin R, Jin X L, Zheng X, Shi C H. Identification and gene fine mapping of a brittle culm 16 (bc16) mutant in rice
Chin J Rice Sci, 2016,30:345-355 (in Chinese with English abstract).

[本文引用: 1]

Katsuyuki T, Kazumasa M, Muneo Y, Katsura O, Akio M, Hirohiko H. Three distinct rice cellulose synthase catalytic subunit gnes required for cellulose synthesis in the secondary wall
Plant Physiol, 2003,133:73-83.

URLPMID:12970476 [本文引用: 2]

Yan C S, Yan S, Zeng X H, Zhang Z Q, Gu M H. Fine, mapping and isolation of Bc7(t), allelic to OsCesA4
J Genet Genomics, 2007,34:1019-1027.

DOI:10.1016/S1673-8527(07)60115-5URL [本文引用: 2]
AbstractSeveral brittle culm mutants of rice were identified and characterized. In this study, we characterized a brittle mutant (bc7(t)) identified from japonica variety Zhonghua 11 by means of 60Co-γ radiation. This mutant displays normal phenotype similar to its wild type plants except for the fragility of all plant body, with ∼10% decrease in the cellulose content. The genetic analysis and gene fine mapping showed that the bc7(t) mutant was controlled by a recessive gene, residing on an 8.4 kb region of the long arm of chromosome 1. The gene annotation indicated that there was only one putative gene encoding cellulose synthase catalytic subunit (CesA) in this region, which was allelic to OsCesA4. Furthermore, the sequence analysis was carried out and 7 bases deletion in the junction of exon 10 and intron 10 was done in bc7(t) mutant, resulting in the change of reading frame and the consequent failure to generate functional protein. In addition, the result of RNA interference experiment showed that when the Bc7(t) was knocked down, the transplants exhibited fragility, similar to bc7(t) mutant. The finding of novel allele of OsCesA4 locus will facilitate the understanding of the mechanism of cell wall biosynthesis. The potential utilization of the bc7(t) mutant in animal food was discussed as well.]]>

Zhang B C, Deng L W, Qian Q, Xiong G Y, Zeng D L, Li R, Guo L B, Li J Y, Zhou Y H. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice
Plant Mol Biol, 2009,71:509-524.

DOI:10.1007/s11103-009-9536-4URL [本文引用: 2]
Cellulose synthase (CESA) is a critical catalytic subunit of the cellulose synthase complex responsible for glucan chain elongation. Our knowledge about how CESA functions is still very limited. Here, we report the functional characterization of a rice mutant, brittle culm11, that shows growth retardation and dramatically reduced plant strength. Map-based cloning revealed that all the mutant phenotypes result from a missense mutation in OsCESA4 (G858R), a highly conserved residue at the end of the fifth transmembrane domain. The aberrant secondary cell wall of the mutant plants is attributed to significantly reduced cellulose content, abnormal secondary wall structure of sclerenchyma cells, and overall altered wall composition, as detected by chemical analyses and immunochemical staining. Importantly, we have found that this point mutation decreases the abundance of OsCESA4 in the plasma membrane, probably due to a defect in the process of CESA complex secretion. The data from our biochemical, genetic, and pharmacological analyses indicate that this residue is critical for maintaining the normal level of CESA proteins in the plasma membrane.]]>

Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. Rice Brittle Culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls
J Exp Bot, 2011,62:2053-2062.

DOI:10.1093/jxb/erq395URL [本文引用: 2]
The brittle culm (bc) mutants of Gramineae plants having brittle skeletal structures are valuable materials for studying secondary cell walls. In contrast to other recessive bc mutants, rice Bc6 is a semi-dominant bc mutant with easily breakable plant bodies. In this study, the Bc6 gene was cloned by positional cloning. Bc6 encodes a cellulose synthase catalytic subunit, OsCesA9, and has a missense mutation in its highly conserved region. In culms of the Bc6 mutant, the proportion of cellulose was reduced by 38%, while that of hemicellulose was increased by 34%. Introduction of the semi-dominant Bc6 mutant gene into wild-type rice significantly reduced the percentage of cellulose, causing brittle phenotypes. Transmission electron microscopy analysis revealed that Bc6 mutation reduced the cell wall thickness of sclerenchymal cells in culms. In rice expressing a reporter construct, BC6 promoter activity was detected in the culms, nodes, and flowers, and was localized primarily in xylem tissues. This expression pattern was highly similar to that of BC1, which encodes a COBRA-like protein involved in cellulose synthesis in secondary cell walls in rice. These results indicate that BC6 is a secondary cell wall-specific CesA that plays an important role in proper deposition of cellulose in the secondary cell walls.

Song X Q, Liu L F, Jiang Y J, Zhang B C, Gao Y P, Liu X L, Lin Q S, Ling H Q, Zhou Y H. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants
Mol Plant, 2013,6:768-780.

DOI:10.1093/mp/sst025URL [本文引用: 2]
Tricheary elements (TEs), wrapped by secondary cell wall, play essential roles in water, mineral, and nutrient transduction. Cadmium (Cd) is a toxic heavy metal that is absorbed by roots and transported to shoot, leaves, and grains through vascular systems in plants. As rice is a major source of Cd intake, many efforts have been made to establish 'low-Cd rice'. However, no links have been found between cellulose biosynthesis and cadmium accumulation. We report here a rice brittle culm13 mutant, resulting from a novel missense mutation (G101K) in the N-terminus of cellulose synthase subunit 9 (CESA9). Except for the abnormal mechanical strength, the mutant plants are morphologically indistinguishable from the wild-type plants. Transmission electron microscopy (TEM) and chemical analyses showed a slight reduction in secondary wall thickness and 22% decrease in cellulose content in bc13 plants. Moreover, this mutation unexpectedly confers the mutant plants Cd tolerance due to less Cd accumulation in leaves. Expression analysis of the genes required for Cd uptake and transport revealed complicated alterations after applying Cd to wild-type and bc13. The mutants were further found to have altered vascular structure. More importantly, Cd concentration in the xylem saps from the bc13 plants was significantly lower than that from the wild-type. Combining the analyses of CESA9 gene expression and Cd content retention in the cell-wall residues, we conclude that CESA9(G101K) mutation alters cell-wall properties in the conducting tissues, which consequently affects Cd translocation efficiency that largely contributes to the low Cd accumulation in the mutant plants.

Zhou Y H, Li S B, Qian Q, Zeng D L, Zhang M, Guo L B, Liu X L, Zhang B C, Deng L W, Liu X F. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice
Plant J, 2009,57:444-462.

[本文引用: 2]

Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice
Proc Natl Acad Sci USA, 2011,108:5110-5115.

URLPMID:21383162 [本文引用: 2]

Wu B, Zhang B C, Dai Y, Zhang L, Guan S K K, Peng Y G, Zhou Y H, Zhu Z. Brittle culm 15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice
Plant Physiol, 2012,159:1440-1452.

URLPMID:22665444 [本文引用: 2]

Ye Y F, Liu B M, Zhao M, Wu K, Cheng W M, Chen X B, Liu Q, Liu Z, Fu X D, Wu Y J. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice
Plant Mol Biol, 2015,89:385-401.

URLPMID:26350403 [本文引用: 3]

Huang D B, Wang S G, Zhang B C, Shang G K K, Shi Y Y, Zhang D M, Liu X L, Wu K, Xu Z P, Fu X D. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice
Plant Cell, 2015,27:1681-1696.

URLPMID:26002868 [本文引用: 2]

Ye Y F, Wu K, Chen J F, Liu Q, Wu Y J, Liu B M, Fu X D. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice
Rice, 2018,11:1-14.

DOI:10.1186/s12284-017-0196-8URLPMID:29305728 [本文引用: 2]
BACKGROUND: Rice zebra mutants are leaf variegation mutants that exhibit transverse sectors of green/yellow or green/white in developing or mature leaves. In most cases, leaf variegation is caused by defects in chloroplast biogenesis pathways, leading to an accumulation of reactive oxygen species in a transverse pattern in the leaves. Here, we examine a new type of leaf variegation mutant in rice, zebra3 (z3), which exhibits transverse dark-green/green sectors in mature leaves and lacks the typical yellow or white sectors. RESULTS: Map-based cloning revealed that the Z3 locus encodes a putative citrate transporter that belongs to the citrate-metal hydrogen symport (CitMHS) family. CitMHS family members have been extensively studied in bacteria and function as secondary transporters that can transport metal-citrate complexes, but whether CitMHS family transporters exist in eukaryotes remains unknown. To investigate whether Z3 acts as a citrate transporter in rice, we measured citrate levels in wild-type leaves and in the dark-green and green sectors of the leaves of z3 mutants. The results showed that citrates accumulated to high levels in the dark-green sectors of z3 mutant leaves, but not in the green sectors as compared with the wild-type leaves. CONCLUSIONS: These results suggest that leaf variegation in the z3 mutant is caused by an unbalanced accumulation of citrate in a transverse pattern in the leaves. Taking these results together, we propose that Z3 plays an important role in citrate transport and distribution during leaf development and is a possible candidate for a CitMHS family member in plants.

Zhang M, Zhang B C, Qian Q, Yu Y C, Li R, Zhang J W, Liu X L, Zeng D L, Li J Y, Zhou Y H. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice
Plant J, 2010,63:312-328.

DOI:10.1111/j.1365-313X.2010.04238.xURLPMID:20444225 [本文引用: 3]
Kinesins are encoded by a large gene family involved in many basic processes of plant development. However, the number of functionally identified kinesins in rice is very limited. Here, we report the functional characterization of Brittle Culm12 (BC12), a gene encoding a kinesin-4 protein. bc12 mutants display dwarfism resulting from a significant reduction in cell number and brittleness due to an alteration in cellulose microfibril orientation and wall composition. BC12 is expressed mainly in tissues undergoing cell division and secondary wall thickening. In vitro biochemical analyses verified BC12 as an authentic motor protein. This protein was present in both the nucleus and cytoplasm and associated with microtubule arrays during cell division. Mitotic microtubule array comparison, flow cytometric analysis and expression assays of cyclin-dependent kinase (CDK) complexes in root-tip cells showed that cell-cycle progression is affected in bc12 mutants. BC12 is very probably regulated by CDKA;3 based on yeast two-hybrid and microarray data. Therefore, BC12 functions as a dual-targeting kinesin protein and is implicated in cell-cycle progression, cellulose microfibril deposition and wall composition in the monocot plant rice.

Van Soest PJ, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition
J Daily Sci, 1991,74, 3583-3597.

[本文引用: 1]

章忠贵, 刘斌美, 许学, 张丽丽, 王敏, 吴跃进. 水稻株高突变系的农艺性状与抗倒伏研究
核农学报, 2010,24:430-435.

[本文引用: 1]

Zhang Z G, Liu B M, Xu X, Zhang L L, Wang M, Wu Y J. Agronomic characters and lodging resistance of plant height mutants of rice
Acta Agric Nucl Sin, 2010,24:430-435 (in Chinese with English abstract).

[本文引用: 1]

Hirano K, Kotake T, Kamihara K, Tsuna K, Aohara T, Kaneko Y, Takasuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis
Planta, 2010,232:95-108.

DOI:10.1007/s00425-010-1145-6URLPMID:20369251 [本文引用: 3]

张兰军, 张保才, 周奕华. 植物细胞壁多糖乙酰化修饰与生物学功能
植物生理学报, 2018,54:1272-1278.

[本文引用: 1]

Zhang L J, Zhang B C, Zhou Y H. Progress on polysaccharide acetylation in plant cell wall
J Plant Physiol, 2018,54:1272-1278 (in Chinese with English anstract).

[本文引用: 1]

Zhang B C, Zhang L J, Li F, Zhang D M, Liu X L, Wang H, Xu Z P, Chu C C, Zhou Y H. Control of secondary cell wall patterning involves xylan deacetylatin by a GDSL esterase
Nat Plant, 2017,3:17017.

[本文引用: 1]

陆荷微, 刘斌美, 陶亮之, 叶亚峰, 吴振宇, 范爽, 吴跃进, 王钰. 水稻脆茎突变体的主要性状比较研究
杂交水稻, 2017,32(5):51-55.

[本文引用: 1]

Lu H W, Liu B M, Tao L Z, Ye Y F, Wu Z Y, Fan S, Wu Y J, Wang Y. Comparative studies of major characteristics of rice brittle culm mutants
Hybrid Rice, 2017,32(5):51-55 (in Chinese with English abstract).

[本文引用: 1]

陆荷微, 刘斌美, 陶亮之, 叶亚峰, 吴振宇, 范爽, 吴跃进, 王钰. 水稻脆性突变体w7bc5的生物学特性研究
生物学杂志, 2018,35(1):1-4.

[本文引用: 1]

Lu H W, Liu B M, Tao L Z, Ye Y F, Wu Z Y, Fan S, Wu Y J, Wang Y. Characterization of a brittle culm mutant w7bc5 in japonica rice
J Biol, 2018,35(1):1-4 (in Chinese with English abstract).

[本文引用: 1]

吕宗友, 苏衍菁, 赵国琦, 严长杰. 全株脆性突变体在奶牛瘤胃内降解特性的研究
中国奶牛, 2011,18(4):7-11.

[本文引用: 1]

Lyu Z Y, Su Y J, Zhao G Q, Yan C J. Study on degradation characteristics of whole plant fragile mutant in rumen of dairy cow
China Dairy Cattle, 2011,18(4):7-11 (in Chinese).

[本文引用: 1]

王艳婷, 徐正丹, 彭良才. 植物细胞壁沟槽结构与生物质利用研究展望
中国科学: 生命科学, 2014,44:766-774.

[本文引用: 1]

Wang Y T, Xu Z D, Peng L C. Research progress in the groove structures of plant cell walls and biomass utilizations
Sci China Life Sci, 2014,44:766-774 (in Chinese with English abstract).

[本文引用: 1]

黄成, 李来庚. 植物细胞壁研究与生物质改造利用
中国科学: 生命科学, 2016,61:3623-3629.

[本文引用: 1]

Huang C, Li L G. Understanding of plant cell wall biosynthesis for utilization of lignocellulosic biomass resources
Sci China: Life Sci, 2016,61:3623-3629 (in Chinese with English abstract).

[本文引用: 1]

黄峰, 王永泽, 周胜德, 赵锦芳, 赵筱, 王金华. 水稻脆性秸秆发酵产纤维乙醇的研究
可再生能源, 2014,32:211-215.

[本文引用: 1]

Huang F, Wang Y Z, Zhou S D, Zhao J F, Zhao X, Wang J H. Study on cellulosic ethanol fermentation of brittle rice straw
Renew Energ, 2014,32:211-215 (in Chinese with English abstract).

[本文引用: 1]

婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鏌熺紒銏犳灈缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧鈽夋い顓炴健閹虫粌顕ュΔ濠侀偗闁诡喗锕㈤幃鈺冪磼濡厧甯鹃梻浣稿閸嬪懐鎹㈤崟顖氭槬闁挎繂顦伴悡娆戔偓瑙勬礀濞层倝鍩㈤崼鈶╁亾鐟欏嫭绀冪紒顔肩Ч楠炲繘宕ㄩ弶鎴炲祶濡炪倖鎸鹃崰鎰邦敊韫囨稒鈷掗柛灞捐壘閳ь剙鍢查湁闁搞儺鐏涘☉銏犵妞ゆ劑鍊栧▓鎯ь渻閵堝棗鍧婇柛瀣尰閵囧嫰顢曢敐鍥╃杽婵犵鍓濋幃鍌炲春閳╁啯濯撮柧蹇曟嚀楠炩偓婵犵绱曢崑鎴﹀磹閺嶎厽鍋嬫俊銈呮噺閸嬶繝鏌曢崼婵囩┛濠殿喗濞婇弻鈩冨緞婵犲嫭鐨戝┑鈩冨絻閻楁捇寮婚敓鐘茬闁挎繂鎳嶆竟鏇熺節閻㈤潧袨闁搞劍妞介弫鍐閻樺灚娈鹃梺鍛婄箓鐎氼噣寮抽崱娑欑厱闁哄洢鍔屾晶顔界箾閸繄鐒告慨濠冩そ瀹曘劍绻濋崒姣挎洘绻涚€涙ḿ鐭岄柛瀣ㄥ€曢悾宄懊洪鍕紜闂佸搫鍊堕崕鏌ワ綖瀹ュ鈷戦悷娆忓閸斻倝鏌f幊閸斿孩绂嶉幖渚囨晝闁靛牆娲ㄩ敍婊冣攽鎺抽崐鏇㈠疮椤愶箑鍑犻柡鍐ㄧ墛閻撴瑥顪冪€n亪顎楅柍璇茬墛椤ㄣ儵鎮欓弶鎴犱紝濡ょ姷鍋涘ú顓€€佸▎鎾充紶闁告洦浜i崺鍛存⒒閸屾艾鈧绮堟笟鈧獮鏍敃閿曗偓绾惧湱鎲搁悧鍫濈瑲闁稿绻濆鍫曞醇濮橆厽鐝曞銈庡亝濞茬喖寮婚妸鈺傚亞闁稿本绋戦锟�
2婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簻鎯熼梺鍐叉惈椤戝洨绮欒箛娑欌拺闁革富鍘奸崝瀣亜閵娿儲顥㈢€规洜鏁婚崺鈧い鎺戝閳锋垿鏌涘☉姗堝伐濠殿噯绠戦湁婵犲﹤鎳庢禒杈┾偓瑙勬礃濡炰粙寮幘缁樺亹鐎规洖娲ら獮妤呮⒒娓氣偓濞佳呮崲閸儱纾归柡宓偓濡插牏鎲搁弮鍫濊摕闁挎繂顦悞娲煕閹板吀绨奸柛锝庡幘缁辨挻鎷呴崜鎻掑壈闂佹寧娲︽禍顏勵嚕椤愶箑纾奸柣鎰綑濞堟劙姊洪崘鍙夋儓闁哥姵鑹惧嵄闁告鍋愰弨浠嬫煃閽樺顥滃ù婊呭仜椤儻顦虫い銊ワ躬瀵偆鈧綆鍓涚壕钘壝归敐澶嬫锭濠殿喖鍊搁湁婵犲﹤妫楅悡鎰庨崶褝鍔熼柍褜鍓氱粙鎺曟懌婵犳鍨伴顓犳閹烘垟妲堟慨妤€妫楅崜杈╃磽閸屾氨孝闁挎洏鍎茬粚杈ㄧ節閸ヨ埖鏅濋梺闈涚墕閹峰寮抽銏♀拺闁告捁灏欓崢娑㈡煕閵娿儳鍩g€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熸潏鍓хɑ缁绢叀鍩栭妵鍕晜閼测晝鏆ら梺鍝勬湰缁嬫垿鍩㈡惔銈囩杸闁哄洨濯崬鍦磽閸屾瑧绐旂紓鍌涜壘铻為柛鏇ㄥ枤娴滄瑩姊绘担鍛婂暈婵炶绠撳畷銏c亹閹烘垹锛涢梺鍦劋椤ㄥ棝鍩涢幋锔界厱婵犻潧妫楅鈺呮煃瑜滈崜娆戠礊婵犲洤绠栭梺鍨儐缂嶅洭鏌嶉崫鍕簽婵炶偐鍠庨埞鎴︻敊鐟欐帞鎳撻埢鏂库槈閵忊€冲壒濠德板€愰崑鎾绘煃鐟欏嫬鐏撮柟顔规櫊楠炴捇骞掗崱妞惧闂佸綊妫跨粈渚€鏌ㄩ妶鍛斀闁绘ɑ褰冮弸銈嗙箾閸粎鐭欓柡宀嬬秮楠炲洭顢楁担鍙夌亞闂備焦鎮堕崐妤呭窗閹邦喗宕叉繝闈涱儏閻掑灚銇勯幒鎴濐仼闁绘帗妞介弻娑㈠箛椤栨稓銆婇梺娲诲幗椤ㄥ懘鍩為幋锔绘晩缂佹稑顑嗛悾鍫曟⒑缂佹﹩娈旂紒缁樺笧閸掓帡宕奸悢椋庣獮闁诲函缍嗛崜娑㈩敊閺囥垺鈷戦柣鐔煎亰閸ょ喎鈹戦鐐毈鐎殿喗濞婇崺锟犲磼濠婂拋鍟庨梺鑽ゅТ濞壯囧礋椤愵偂绱�547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鎮楅敐搴′簻妞ゅ骏鎷�4婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簼閺呮煡鏌涢妷銏℃珖妞わ富鍨跺娲偡闁箑娈堕梺绋款儑閸犳牠宕洪姀銈呯睄闁逞屽墴婵$敻宕熼鍓ф澑闂佽鍎抽顓⑺囬柆宥嗏拺缂佸顑欓崕鎰版煙閻熺増鎼愰柣锝呭槻椤粓鍩€椤掑嫨鈧線寮崼婵嗚€垮┑掳鍊曢崯顐︾嵁閹扮増鈷掗柛灞剧懅椤︼箓鏌涘顒夊剰妞ゎ厼鐏濋~婊堝焵椤掆偓閻g兘顢涢悜鍡樻櫇闂侀潧绻堥崹鍝勨枔妤e啯鈷戦梻鍫熶緱濡狙冣攽閳ヨ櫕鍠橀柛鈹垮灲瀵噣宕奸悢鍝勫箥闂備胶顢婇~澶愬礉閺囥垺鍎嶆繛宸簼閻撶喖鏌i弮鍫熸暠閻犳劧绱曠槐鎺撴綇閵娿儳鐟查悗鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊呭仦缁傛帡鎮℃惔妯绘杸闂佺粯鍔樺▔娑氭閿曞倹鐓曟俊銈呭閻濐亜菐閸パ嶅姛闁逞屽墯缁嬫帟鎽繝娈垮灡閹告娊骞冨畡鎵虫瀻婵炲棙鍨甸崺灞剧箾鐎涙ḿ鐭掔紒鐘崇墵瀵鈽夐姀鐘电杸闂佺ǹ绻愰幗婊堝极閺嶎厽鈷戠紒顖涙礃濞呮梻绱掔紒妯肩疄鐎殿喛顕ч埥澶娾堪閸涱垱婢戦梻浣瑰缁诲倿骞婃惔顭掔稏闁冲搫鎳忛埛鎴︽煕濞戞﹫鍔熼柟铏礈缁辨帗娼忛妸锔绢槹濡ょ姷鍋涚换姗€骞冮埡鍐╁珰闁肩⒈鍓﹂崯瀣⒒娴e憡鍟炲〒姘殜瀹曞綊骞庨崜鍨喘閸╋繝宕ㄩ瑙勫闂佽崵鍋炵粙鍫ュ焵椤掆偓閸樻牗绔熼弴銏♀拻濞达絽鎲$拹锟犲几椤忓棛纾奸柕濞垮妼娴滃湱绱掗鍛箺鐎垫澘瀚伴獮鍥敇閻樻彃绠婚梻鍌欑閹碱偆鈧凹鍓涢幑銏ゅ箳閺冨洤小闂佸湱枪缁ㄧ儤绂嶅⿰鍫熺厸闁搞儺鐓侀鍫熷€堕柤纰卞厴閸嬫挸鈻撻崹顔界彯闂佺ǹ顑呴敃銈夘敋閿濆洦宕夐悶娑掑墲閻庡姊虹拠鈥崇€婚柛蹇庡嫎閸婃繂顫忕紒妯诲闁荤喖鍋婇崵瀣磽娴e壊鍎愰柛銊ㄥ劵濡喎顪冮妶鍡樺蔼闁搞劌缍婇幃鐐哄垂椤愮姳绨婚梺鍦劋閸╁﹪寮ㄦ繝姘€垫慨妯煎亾鐎氾拷40缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎸鹃埀顒冾潐濞叉牕煤閵娧呬笉闁哄啫鐗婇悡娆撴煙椤栧棗鑻▓鍫曟⒑瀹曞洨甯涙慨濠傜秺楠炲牓濡搁妷顔藉缓闂侀€炲苯澧版繛鎴犳暬楠炴牗鎷呴崨濠勨偓顒勬煟鎼搭垳绉靛ù婊冪埣閹垽宕卞☉娆忎化闂佹悶鍎荤徊娲磻閹捐绀傞柛娑卞弾濡粎绱撻崒姘偓宄懊归崶銊d粓闁归棿鐒﹂崑锟犳煃閸濆嫭鍣归柦鍐枔閳ь剙鍘滈崑鎾绘煕閺囥劌浜炴い鎾存そ濮婃椽骞愭惔锝囩暤濠电偠灏欐繛鈧€规洘鍨块獮妯肩磼濡鍔掗梺鑽ゅ枑閻熴儳鈧凹鍓熷畷銏c亹閹烘挴鎷洪梺鍛婄箓鐎氼厼顔忓┑瀣厱閹兼番鍨归悘鈺備繆閸欏濮囨顏冨嵆瀹曞ジ鎮㈤崫鍕闂傚倷鑳剁涵鍫曞礈濠靛枹娲冀椤愩儱小缂備緡鍋勭€殿剟姊婚崒姘偓椋庢濮橆兗缂氱憸宥堢亱闂佸搫鍟崐濠氭儗閸℃褰掓晲閸偄娈欓梺鑽ゅ枑鐎氬牓寮崼婵嗙獩濡炪倖妫侀~澶屸偓鍨墵濮婄粯鎷呴崨濠傛殘婵炴挻纰嶉〃濠傜暦閵忋倖瀵犲璺烘閻庢椽鎮楅崗澶婁壕闂佸憡娲﹂崜娑㈠储闁秵鈷戦柛婵嗗閺嗙偤鏌熺粙鍨挃濠㈣娲熼獮鎰償濞戞鐩庨梻渚€娼ф蹇曟閺団偓鈧倿鎳犻鍌滐紲闂佸搫鍟崐鎼佸几濞戞瑣浜滈柕蹇婂墲缁€瀣煙椤旇娅婃い銏℃礋閿濈偤顢橀悜鍡橆棥濠电姷鏁搁崑鐘诲箵椤忓棛绀婇柍褜鍓氶妵鍕敃閵忊晜鈻堥梺璇″櫙缁绘繈宕洪埀顒併亜閹烘垵顏柍閿嬪浮閺屾稓浠﹂幑鎰棟闂侀€炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備浇顫夊畷妯衡枖濞戙埄鏁佺€光偓閸曨剛鍘告繛杈剧到婢瑰﹪宕曡箛鏂讳簻妞ゆ挴鍓濈涵鍫曟煙妞嬪骸鈻堥柛銊╃畺瀹曟宕ㄩ娑樼樆闂傚倸鍊风欢姘跺焵椤掑倸浠滈柤娲诲灦瀹曘垽骞栨担鍦幘闂佸憡鍔樼亸娆撳春閿濆應鏀介柨娑樺閺嗩剟鏌熼鐣屾噰鐎殿喖鐖奸獮瀣敇閻愭惌鍟屾繝鐢靛У椤旀牠宕板Δ鍛櫇闁冲搫鎳庣粈鍌涚箾閹寸偟顣叉い顐f礋閺屻劌鈹戦崱妯轰痪閻熸粎澧楃敮妤呭疾閺屻儲鐓曢柍鈺佸暟閹冲懘鏌i幘鍐测偓鎼佲€旈崘顔嘉ч柛鎰╁妿娴犲墽绱掗悙顒佺凡缂佸澧庨崚鎺楀煛閸涱喖浜滅紒鐐妞存悂寮插┑瀣拺闂傚牊绋撴晶鏇熺箾鐠囇呯暤妤犵偛妫濋弫鎰緞鐎Q勫闂備礁婀辨灙婵炲鍏橀崺銉﹀緞鐎c劋绨婚梺鎸庢椤曆冾嚕椤曗偓閺屾盯鍩為幆褌澹曞┑锛勫亼閸婃牜鏁幒妤佹櫇闁靛/鈧崑鎾愁潩閻愵剙顏�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸垹绁﹂梺鍛婂姦閸犳牜绮绘繝姘厱闁规崘灏欑粣鏃堟煃閻熸壆绠茬紒缁樼箞婵偓闁挎繂妫涢妴鎰斿Δ濠佺凹闁圭ǹ鍟块悾宄扳攽鐎n亜绐涢柣搴㈢⊕宀e潡宕㈤柆宥嗏拺闁告繂瀚弳濠囨煕鐎n偅灏电紒杈ㄥ笧閳ь剨缍嗛崑鍛暦瀹€鈧埀顒侇問閸n噣宕戞繝鍥х畺濞寸姴顑呴崹鍌涖亜閹扳晛鐏╂鐐村灴濮婄粯鎷呴崨濠冨創濠电偠顕滅粻鎴︼綖濠靛惟闁冲搫鍊告禒顓㈡⒑鐎圭姵銆冮悹浣瑰絻鍗遍柛顐犲劜閻撴瑩鏌i幇闈涘缂傚秵鍨块弻鐔煎礂閸忕厧鈧劙鏌$仦鐣屝ユい褌绶氶弻娑㈠箻閸楃偛顫囧Δ鐘靛仜缁绘﹢寮幘缁樻櫢闁跨噦鎷�1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻娑㈠箻閼碱剦妲梺鎼炲妽缁诲牓寮婚妸鈺傚亜闁告繂瀚呴姀銏㈢<闁逞屽墴瀹曟帡鎮欑€电ǹ骞堟繝鐢靛仦閸ㄥ爼鏁冮锕€缁╃紓浣贯缚缁犻箖鏌涢锝囩畼闁绘帗鎮傞弻锛勪沪缁嬪灝鈷夐悗鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偤宕堕浣叉嫼闂備緡鍋嗛崑娑㈡嚐椤栨稒娅犲Δ锝呭暞閻撴瑩鏌涢幋娆忊偓鏍偓姘炬嫹
相关话题/基因 生物 细胞 材料 机械

闂傚倸鍊搁崐鐑芥嚄閸撲礁鍨濇い鏍仜缁€澶嬩繆閵堝懏鍣圭紒鐘靛█閺岀喖骞戦幇闈涙闂佸憡淇洪~澶愬Φ閸曨垰妫橀柛顭戝枓閹稿啴姊洪崨濠庢畷鐎光偓閹间礁绠栨俊銈呮噺閺呮煡骞栫€涙ḿ绠橀柣鈺佹捣缁辨挻鎷呮搴ょ獥闂侀潻缍囩紞浣割嚕婵犳碍鍋勯柣鎾虫捣椤ρ囨⒑閸忚偐銈撮柡鍛箞閹繝宕掗悙绮规嫼缂備礁顑堝▔鏇㈡倿閸ф鐓欓柛鎴欏€栫€氾拷2婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳壆绱掔€n偓绱╂繛宸簻鎯熼梺鍐叉惈椤戝洨绮欒箛娑欌拺闁革富鍘奸崝瀣亜閵娿儲顥㈢€规洜鏁婚崺鈧い鎺戝閳锋垿鏌涘☉姗堝伐濠殿噯绠戦湁婵犲﹤鎳庢禒杈┾偓瑙勬礃濡炰粙寮幘缁樺亹鐎规洖娲ら獮妤呮⒒娓氣偓濞佳呮崲閸儱纾归柡宓偓濡插牏鎲搁弮鍫濊摕闁挎繂顦悞娲煕閹板吀绨奸柛锝勫嵆濮婅櫣鎷犻垾铏闂佹悶鍎滈崶褎鏆梻鍌欑劍鐎笛呮崲閸屾娲閵堝懐锛涢梺鍦劋椤ㄥ棝鍩涢幋锔界厱婵犻潧妫楅鈺呮煃瑜滈崜娆戠礊婵犲洤绠栭梺鍨儐缂嶅洭鏌嶉崫鍕簽婵炶偐鍠栧铏规崉閵娿儲鐝㈤梺鐟板殩閹凤拷
婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸嬪鏌曡箛瀣偓鏇㈡倷婵犲嫭鍠愮€广儱妫欓崣蹇涙煏閸繍妲归柍閿嬪灴閺屾稑鈽夊鍫濅紣缂備焦顨嗙敮妤佺┍婵犲浂鏁冮柨婵嗘处閸掓稑顪冮妶鍐ㄧ仾婵☆偄鍟幈銊╁焵椤掑嫭鐓忛柛顐g箖閿涘秵淇婇銏狀伃闁哄矉绲鹃幆鏃堫敍濠婂憛锝夋⒑閸濄儱校闁绘濮撮悾鐑藉閵堝懐顔掑銈嗘⒒閺咁偊宕㈤幖浣光拺闁告稑锕ョ粈瀣箾娴e啿娲﹂崐鍫曟煥濠靛棙顥撳ù婊勭矒閺岀喓鈧稒岣跨粻鏍ь熆鐠哄搫顏紒杈ㄥ笧閳ь剨缍嗘禍璺何熼埀顒勬⒑缁洘鏉归柛瀣尭椤啴濡堕崱妤€娼戦梺绋款儐閹瑰洭寮诲鍥ㄥ珰闁哄被鍎卞鏉库攽閿熺姷鐣哄ù婊冪埣瀵顓奸崼顐n€囬梻浣告啞閹稿鎮烽埡浣烘殾妞ゆ牗绋戦閬嶆倵濞戞顏呯椤栨埃鏀介柣鎰级閳绘洖霉濠婂嫮绠炵€殿喗鐓¢、妤呭礋椤掆偓閳ь剙鐖奸弻锝夊箛椤旇姤姣勯梺纭呮閸婂潡寮诲☉銏犖ч柛銉仢閵忋倖顥嗗璺侯儑缁♀偓婵犵數濮撮崐鎼佸汲閿濆棎浜滈幖娣焺濞堟洟鏌曢崶褍顏柛鈺冨仱椤㈡﹢鎮欏顔荤棯濠电姵顔栭崹閬嶅箰閹惰棄钃熼柨鐔哄Т閻愬﹪鏌嶆潪鎵妽闁诲繋绶氬娲川婵犲嫭鍠涢梺绋款儐閹瑰洤顫忕紒妯诲闁告縿鍎虫婵犵數鍋橀崠鐘诲幢閹邦亝鐫忛梻浣虹帛閸旀寮崫銉т笉闁哄啫鐗婇悡娆撴煙椤栧棗鑻▓鍫曟⒑瀹曞洨甯涙慨濠傜秺楠炲牓濡搁妷搴e枔閹风娀骞撻幒婵囨祰闂傚倷鐒﹂幃鍫曞磹瑜忕划濠氬箻鐠囪尪鎽曢梺缁樻濞咃綁鎯屽▎鎾寸厵缂佸鐏濋銏ゆ煙椤旂晫鎳囨慨濠勫劋鐎电厧鈻庨幋鐘樻粎绱撴担鍝勑i柣妤佹礋椤㈡岸鏁愭径妯绘櫇闂佸啿鐏堥弲婊堟倵婵犳碍鈷戠憸鐗堝笒娴滀即鏌涘Ο鍝勨挃缂侇喗鐟╁畷鐔碱敍濞戞帗瀚奸梻浣告贡鏋繛瀵稿厴閸┿儲寰勯幇顓犲幐闂佸壊鍋掗崑鍕櫠鐎电硶鍋撶憴鍕缂傚秴锕ユ穱濠傤潰瀹€濠冃┑鐘愁問閸ㄤ即濡堕幖浣歌摕婵炴垶菤濡插牊鎱ㄥΔ鈧悧濠囧极閸撗呯=濞达絽鎼牎闁汇埄鍨抽崑銈夊春閳ь剚銇勯幒鍡椾壕闂佽绻戦懝楣冣€﹂崹顕呮建闁逞屽墴楠炲啳顦圭€规洖宕湁闁哄瀵ч崰妯尖偓瑙勬礈鏋摶鏍归敐澶嬫珳闁汇儺浜缁樻媴娓氼垱鏁梺瑙勬た娴滎亜顫忔禒瀣妞ゆ牗绋掑▍鏍⒑閸濆嫮鈻夐柛妯圭矙閹ょ疀濞戞瑧鍘遍梺鏂ユ櫅閸燁垳绮堥埀顒€顪冮妶蹇曞矝闁哄棙绔糴婵犵數濮烽弫鍛婃叏娴兼潙鍨傞柛锔诲幘缁€濠傗攽閻樺弶鎼愰柣鎺戠仛閵囧嫰骞掑鍫濆帯闂佹剚鍨卞ú鐔煎蓟閺囥垹骞㈡俊銈傚亾闁哄棴缍侀弻锛勪沪閸撗勫垱濡ょ姷鍋炵敮锟犵嵁鐎n喗鍊婚柛鈩冿供濡冣攽閿涘嫬浜奸柛濠冪墱閺侇噣鎮欓崫鍕崶闂佸綊鍋婇崰姘舵儗濞嗗繆鏀介柣妯哄级婢跺嫰鏌涚€n偄濮嶉柡宀嬬秮婵偓闁靛繆鍓濆В鍕煛娴e摜澧︽慨濠勭帛閹峰懐绮欓幐搴♀偓顖氣攽閻橆喖鐏柨鏇樺灩閻g兘顢涘☉姗嗗殼闁诲孩绋掗敋濞存粠鍨跺娲川婵犲嫮鐣垫繝娈垮灥妞存悂骞嗛弮鍫濐潊闁挎稑瀚倴濠碉紕鍋戦崐鏍礉濡ゅ懎绐楅幖娣灮椤╂彃螖閿濆懎鏆為柣鎾寸洴閺屾盯濡烽敐鍛瀴闂佹眹鍔嶉崹鍧楀蓟閿濆鍋勯柛娆忣槹閻濇棃姊虹€圭姵顥夋い锔炬暬閻涱喖螣閼测晝顦╅梺缁樏畷顒勵敆閵忊€茬箚闁绘劦浜滈埀顒佺墪鐓ゆ繝闈涙閺嬪秹鏌¢崶鈺佷憾缂傚倹宀搁悡顐﹀炊閵娧€妲堥悗鐟版啞缁诲啴濡甸崟顖氱婵°倐鍋撻柛鐕佸灦椤㈡瑩鏁撻敓锟�20濠电姴鐥夐弶搴撳亾濡や焦鍙忛柣鎴f绾惧鏌eΟ娆惧殭缂佺姴鐏氶妵鍕疀閹炬惌妫″銈庡亝濞叉ḿ鎹㈠┑瀣棃婵炴垵宕崜鎵磽娴e搫校闁搞劌娼″濠氬Χ閸℃ê寮块梺褰掑亰閸忔﹢宕戦幘婢勬棃鍩€椤掑嫬鐓濋柡鍐ㄧ墕椤懘鏌eΟ鐑橆棤闁硅櫕鎹囬妶顏呭閺夋垹顦ㄩ梺鍐叉惈閿曘儵鏁嶉崨顖滅=闁稿本鐟чˇ锔姐亜閿旇鐏︽い銏″哺椤㈡﹢濮€閻橀潧濮︽俊鐐€栧濠氬磻閹惧绡€闁逞屽墴閺屽棗顓奸崨顖ょ幢闂備胶绮濠氬储瑜斿鍛婄瑹閳ь剟寮婚弴銏犻唶婵犲灚鍔栨晥闂備胶枪妤犲摜绮旇ぐ鎺戣摕婵炴垯鍨归崡鎶芥煏婵炲灝鍔氭い顐熸櫊濮婄儤瀵煎▎鎴犳殸缂傚倸绉撮敃顏堢嵁閸愩剮鏃堝礃閳轰焦鐎梻浣告啞濞诧箓宕f惔銊ユ辈闁跨喓濮甸埛鎴︽煕濠靛棗顏い銉﹀灴閺屾稓鈧綆鍋呭畷灞炬叏婵犲啯銇濈€规洦鍋婂畷鐔煎垂椤愬诞鍥ㄢ拺闁告稑锕ラ埛鎰版煟濡ゅ啫鈻堟鐐插暣閺佹捇鎮╅搹顐g彨闂備礁鎲″ú锕傚礈濞嗘挻鍋熷ù鐓庣摠閳锋垿姊婚崼鐔恒€掔紒鐘冲哺閺屾盯骞樼€靛摜鐤勯梺璇″枓閳ь剚鏋奸弸搴ㄦ煙闁箑鏋ゆい鏃€娲樼换婵嬪閿濆棛銆愬銈嗗灥濡稓鍒掗崼銉ョ劦妞ゆ帒瀚崐鍨箾閸繄浠㈡繛鍛Ч閺岋繝鍩€椤掑嫬纭€闁绘垵妫楀▓顐︽⒑閸涘﹥澶勯柛瀣浮瀹曘儳鈧綆鍠楅悡鏇㈡煛閸ャ儱濡兼鐐瓷戞穱濠囧矗婢跺﹦浼屽┑顔硷攻濡炶棄鐣烽锕€绀嬫い鎰枎娴滄儳霉閻樺樊鍎滅紓宥嗙墪椤法鎹勯悜妯绘嫳闂佺ǹ绻戠划鎾诲蓟濞戙埄鏁冮柨婵嗘椤︺劑姊洪崫鍕闁告挾鍠栭獮鍐潨閳ь剟骞冨▎鎾搭棃婵炴垶顨呴ˉ姘辩磽閸屾瑨鍏屽┑顔炬暩閺侇噣鍨鹃幇浣圭稁婵犵數濮甸懝楣冩倷婵犲洦鐓ユ繝闈涙閸gǹ顭跨憴鍕婵﹥妞介幊锟犲Χ閸涱喚鈧儳鈹戦悙鎻掔骇闁搞劌娼¢獮濠偽旈崘鈺佺/闁荤偞绋堥崜婵嬫倶娓氣偓濮婅櫣娑甸崨顔兼锭闂傚倸瀚€氭澘鐣烽弴銏犵闁挎棁妫勯埀顒傛暬閺屻劌鈹戦崱娑扁偓妤侇殽閻愮榿缂氱紒杈ㄥ浮閹晛鐣烽崶褉鎷伴梻浣告惈婢跺洭宕滃┑鍡╁殫闁告洦鍋€濡插牊绻涢崱妤佺濞寸》鎷�