Effects of interaction of phosphorus (P) application in soil and leaves on root, nodule characteristics and nitrogen (N) metabolism in peanut
LU Ya1,2,*, WANG Chun-Xiao3,*, YU Tian-Yi2, ZHOU Jing4, SUN Xue-Wu2, FENG Hao2, SUN Xiu-Shan2, WANG Peng3, JIAO Yan-Lin3, LI Lin,1,*, WANG Cai-Bin,2,*1. Hunan Agricultural University, Changsha 410128, Hunan, China 2. Shandong Peanut Research Institute, Qingdao 266100, Shandong, China 3. Yantai Academy of Agricultural Sciences, Yantai 265500, Shandong, China 4. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China 5. Changsha Branch of National Peanut Engineering Technology Research Center / Hunan Peanut Engineering Technology Research Center, Changsha 410128, Hunan, China
通讯作者:李林, E-mail: Lilindw@163.com, Tel: 0731-84617086; 王才斌, E-mail: caibinw@126.com, Tel: 0532-87632130。** 同等贡献(Contributed equally to this work)
This study was supported by the National Natural Science Foundation of China.31571617 This study was supported by the National Natural Science Foundation of China.31701376 This study was supported by the National Natural Science Foundation of China.31771732 the Shandong Major Scientific and Technological Innovation Project.2018YFJH0601 the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences.CXGC2018E21 the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences.CXGC2018B05 the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences.CXGC2016B05
作者简介 About authors 路亚,E-mail:luya850801@163.com,Tel:0532-87632130。
摘要 叶面追磷是土壤施磷的重要补充。为明确不同土壤磷水平下花生适宜的叶面追磷浓度, 本研究采用营养液沙培试验, 研究了土壤充足供磷(P2O5浓度为7.1 mg L -1, PA)及磷胁迫(P2O5浓度为0.71 mg L -1, PD)时, 不同浓度叶面磷肥(P2O5 0、0.1%和0.2%, 简称CK、P0.1%和P0.2%处理)对花生根系形态、结瘤特性、叶片氮代谢酶及干物质重的影响。结果表明: (1)结荚期和饱果期, 叶面追磷能够促进2种土壤供磷水平下花生根系和根瘤生长, 提高叶片氮代谢关键酶活性, P 0.2%处理各指标增幅高于P 0.1%处理。收获期, 土壤充足供磷时, 高浓度叶面磷肥(P 0.2%)导致花生早衰, 表现为P 0.2%处理根系、根瘤及氮代谢酶相关指标均低于P 0.1%处理。而土壤磷胁迫时, 2种浓度叶面磷肥均能提高上述指标, P 0.2%处理下各指标与P 0.1%处理相当或略高于P 0.1%处理。(2) 2种浓度叶面磷肥均能提高花生各器官氮、磷积累量及干物质重。土壤充足供磷时, P 0.1%处理的荚果氮、磷积累量及干物质重增幅大于P 0.2%处理, 其他器官(根、茎、叶及果针)各指标则表现出相反趋势。土壤磷胁迫时, 各指标均随叶面磷肥浓度增加而增加。追施叶面磷肥增产的主要原因是增加了单株果数。综上, 土壤充足供磷及磷胁迫时, 花生适宜的叶面追磷浓度分别为0.1%和0.2%。生产上应根据土壤供磷水平, 选择适当浓度叶面磷肥。 关键词:叶面磷肥;根系形态;根瘤特性;氮代谢;养分吸收
Abstract Spraying P fertilizer is an important supplement for applying P fertilizer in soil. A pot experiment with nutrient solution was conducted to study effect of foliar fertilizer with different P contents on peanut root morphology, nodule characteristics, leaf N metabolic enzymes and dry weight of plant under adequate and stress P conditions, respectively. In pod setting and fulling stages, spraying P fertilizer improved growth of root and nodule, and enhanced activities of N metabolic enzymes in leaves. The increments of each parameter under P 0.2% treatment were larger than those under P 0.1%. In harvest stage, relevant parameters of peanut root, nodule and N metabolism in P 0.2% treatment were lower than those in P 0.1% treatment with adequate soil P. High foliar P fertilizer resulted in senescence of plant. Foliage spray with each of two P contents could improve the parameters mentioned above under soil P stress condition. The parameters of P 0.2% treatment were equal to or a little higher than those of P 0.1% treatment. Foliar P fertilizer increased N, P accumulations and dry weight of different organs. Under adequate soil P condition, the increments of pod N, P accumulations and dry weight in P 0.1% treatment were larger than those in P 0.2% treatment, and the response of the parameters in others parts (root, stem, leaf and peg) to foliar P fertilizer was adverse. Under P stress condition, the parameters increased with increasing foliar P-level. The reason of yield increase in spraying P fertilizer treatments was the improvement of pod number per plant. In conclusion, the suitable foliar P content under adequate soil P and stress conditions is 0.1% and 0.2% respectively. In peanut production, we should choose suitable content of foliar P fertilizer according to soil P level. Keywords:foliar P fertilizer;root morphology;nodule characteristics;N metabolism;nutrition uptake
PDF (381KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 路亚, 王春晓, 于天一, 周静, 孙学武, 冯昊, 孙秀山, 王鹏, 矫岩林, 李林, 王才斌. 土壤施磷与叶面追肥互作对花生根系形态、结瘤特性及氮代谢的影响[J]. 作物学报, 2020, 46(3): 432-439. doi:10.3724/SP.J.1006.2020.94096 LU Ya, WANG Chun-Xiao, YU Tian-Yi, ZHOU Jing, SUN Xue-Wu, FENG Hao, SUN Xiu-Shan, WANG Peng, JIAO Yan-Lin, LI Lin, WANG Cai-Bin. Effects of interaction of phosphorus (P) application in soil and leaves on root, nodule characteristics and nitrogen (N) metabolism in peanut[J]. Acta Crops Sinica, 2020, 46(3): 432-439. doi:10.3724/SP.J.1006.2020.94096
标以不同小写字母的柱值于处理间0.05水平上差异显著。CK: 对照; P 0.1%: 喷施0.1%叶面磷肥; P 0.2%: 喷施0.2%叶面磷肥; PA: 土壤充足供磷; PD: 土壤磷胁迫; PS: 结荚期; PF: 饱果期; HS: 收获期。 Fig. 1Root morphology characteristics of peanut under different P application rates in soil and leaves
Bars superscripted by different letters are significantly different at the 0.05 probability level among treatments. CK: control; P 0.1%: spraying 0.1% P fertilizer; P 0.2%: spraying 0.2% P fertilizer; PA: adequate P in soil; PD: P deficiency in soil; PS: pod setting stage; PF: pod fulling stage; HS: harvest stage.
2.2 结瘤特性
叶面追磷提高了根瘤数量和鲜重。结荚期和饱果期, 2种土壤供磷条件下, 花生根瘤数量和鲜重均随叶面追磷浓度增加而增加, 高浓度叶面磷肥处理根瘤数量和鲜重增幅大于低浓度叶面磷肥。收获期,土壤充足供磷时, P 0.1%处理的根瘤鲜重和数量均显著高于对照, P 0.2%处理两根瘤指标增幅低于P 0.1%处理, 与对照差异均未达显著水平。土壤磷胁迫时, 两追磷处理的根瘤数量和鲜重基本一致, 均显著高于对照。结荚期、饱果期和成熟期, 土壤充足供磷时, P 0.1%处理的根瘤数量较对照分别增加31.98%、20.35%和21.98%, P 0.2%处理较对照分别增加53.61%、25.84%和6.91%。土壤磷胁迫时, P 0.1%处理3个生育期根瘤数量较对照分别增加54.88%、27.81%和35.99%, P 0.2%处理较对照74.23%、49.18%和35.87% (图2)。
标以不同小写字母的柱值于处理间0.05水平上差异显著。缩写同图1。 Fig. 2Nodule number and fresh weight of peanut under different P application rates in soil and leaves
Bars superscripted by different letters are significantly different at the 0.05 probability level among treatments. Abbreviations are the same as those given in Fig. 1.
Table 1 表1 表1不同土壤磷及叶面磷处理下花生氮代谢酶 Table 1Activities of leaf N metabolism enzyme under different P application rates in soil and leaves
土壤磷 处理 Treatment of soil P
叶面磷 处理 Treatment of foliage P
硝酸还原酶 Nitratase (IU L-1)
谷氨酸脱氢酶 Glutamate dehydrogenase (IU mL-1)
谷氨酰胺合成酶 Glutamine synthetase (IU L-1)
结荚期 PS
饱果期 PF
收获期 HS
结荚期 PS
饱果期 PF
收获期 HS
结荚期 PS
饱果期 PF
收获期 HS
PA
CK
163.50 ab
193.96 bc
166.55 ab
155.43 bc
146.63 bc
141.42 cd
51.16 a
50.65 ab
50.37 a
P 0.1%
171.47 a
217.40 a
179.22 a
174.23 ab
163.94 ab
155.39 ab
52.68 a
54.95 a
59.06 a
P 0.2%
173.65 a
221.93 a
170.01 a
178.84 a
165.05 ab
149.68 bc
52.31 a
55.41 a
50.23 a
PD
CK
144.13 b
184.36 c
150.38 b
142.03 c
143.48 c
131.52 d
47.78 a
45.28 b
48.29 a
P 0.1%
162.56 ab
190.68 bc
164.44 ab
167.09 ab
155.00 abc
149.75 bc
48.29 a
46.30 b
50.65 a
P 0.2%
165.38 a
203.14 b
172.25 a
174.24 ab
166.51 a
165.35 a
53.19 a
49.77 ab
58.21 a
Mean values followed by different letters within a column are significantly different among treatments (P <0.05). Abbreviations are the same as those given in Fig.1. 同列的数据后不同字母表示处理间差异显著(P < 0.05)。缩写同图1。
叶面追磷提高了花生不同器官氮、磷积累量。土壤充足供磷时, P 0.1%处理荚果氮、磷积累量增幅高于P 0.2%处理, 其中P 0.1%处理显著高于对照, P 0.2%处理与对照差异不显著; 土壤磷胁迫时, 荚果氮、磷积累量随叶面磷肥浓度增加而增加, 其中P 0.1%处理显著高于对照, P 0.2%处理与对照差异不显著。两土壤施磷处理下, 其他器官(根、茎、叶及果针)氮和磷积累量均随叶面磷肥浓度增加而增加, 两追磷处理均显著高于对照。土壤充足供磷时, P 0.1%处理的荚果和其他器官氮积累量较对照分别增加14.71%和12.68%, P 0.2%处理两指标较对照分别增加10.78%和18.31%; 土壤磷胁迫时, P 0.1%处理荚果和其他器官氮积累量较对照分别增加14.13%和20.00%, P 0.2%处理较对照分别增加19.57%和26.67% (表2)。
Table 2 表2 表2不同土壤磷及叶面磷处理下收获期花生不同器官氮、磷积累量 Table 2N, P accumulation of various organs under different P application rates in soil and leaves (g plant-1)
土壤磷处理 Treatment of soil P
叶面磷处理 Treatment of foliage P
N
P
荚果 Pod
其他器官 Others
整株 Whole plant
荚果 Pod
其他器官 Others
整株 Whole plant
PA
CK
1.02 bc
0.71 b
1.73 b
0.11 bc
0.15 bc
0.26 b
P 0.1%
1.17 a
0.80 a
1.97 a
0.13 a
0.16 a
0.29 a
P 0.2%
1.13 ab
0.84 a
1.96 a
0.12 ab
0.17 a
0.29 a
PD
CK
0.92 c
0.60 c
1.52 c
0.10 c
0.12 d
0.22 c
P 0.1%
1.05 abc
0.72 b
1.77 b
0.12 abc
0.14 c
0.26 b
P 0.2%
1.10 ab
0.76 ab
1.86 ab
0.12 ab
0.16 ab
0.28 ab
Mean values followed by different letters within a column are significantly different among treatments (P <0.05). Abbreviations are the same as those given in Fig. 1. 同列的数据后不同字母表示处理间差异显著(P < 0.05)。缩写同图1。
叶面追磷提高了花生不同器官干物质重。土壤充足供磷时, 高浓度追磷处理其他器官及整株干重高于低浓度追磷处理, 而高浓度追磷处理的荚果产量低于低浓度处理。土壤磷胁迫时, 花生各器官及整株干重均随叶面磷肥浓度增加而增加。2年结果基本一致。2017年土壤充足供磷时, P 0.1%处理花生荚果、其他器官及整株干重较对照分别增加11.76%、7.84%和9.61%, P 0.2%处理较对照分别增加5.49%、15.00%和10.66%; 土壤磷胁迫时, P 0.1%处理三指标较对照分别增加13.68%、12.46%和13.02%, P 0.2%处理较对照分别增加16.63%、27.45%和22.14%。因此, 土壤充足供磷时, 花生适宜的叶面磷肥(P2O5)浓度为0.1%, 而土壤磷胁迫时, 最佳叶面磷肥浓度为0.2%。
从产量构成因素来看, 追施叶面磷肥增产的主要原因是增加了单株果数。2017年土壤充足供磷时, P 0.1%和P 0.2%处理的单株果数较对照分别显著增加19.44%和14.01%; 土壤磷胁迫时, 两追磷处理较对照分别显著增加15.26%和19.50%。叶面追磷对百果重和出米率的影响较小, 同一土壤供磷水平下, P 0.1%和P 0.2%处理的百果重和出米率与对照的差异均未达显著水平(表3)。
Table 3 表3 表3不同土壤磷及叶面磷处理下花生产量及产量构成因素 Table 3Yield and yield components of peanut under different P application rates in soil and leaves
土壤磷处理 Treatment of soil P
叶面磷处理 Treatment of foliage P
单株果数 Pod number per plant (No. plant-1)
百果重 100-pod mass (g)
出米率 Kernel rate (%)
荚果干重 Pod weight (g plant-1)
其他器官干重 Other organs weight (g plant-1)
整株干重 Whole plant weight (g plant-1)
2017
PA
CK
16.20 c
203.62 a
70.61 a
29.67 b
35.34 bc
65.01 bc
P 0.1%
19.35 a
206.91 a
69.50 a
33.16 a
38.11 ab
71.26 a
P 0.2%
18.91 a
199.66 a
67.90 a
31.30 ab
40.64 a
71.94 a
PD
CK
15.33 c
199.31 a
71.61 a
27.12 c
28.34 d
55.47 d
P 0.1%
17.67 b
206.92 a
70.32 a
30.83 b
31.87 cd
62.69 c
P 0.2%
18.32 ab
203.24 a
69.80 a
31.63 ab
36.12 b
67.75 ab
2018
PA
CK
16.42 b
199.65 a
69.36 a
27.45 bc
32.16 bc
59.61 b
P 0.1%
19.03 a
203.69 a
67.21 ab
30.12 a
36.31 b
66.43 a
P 0.2%
18.69 a
200.62 a
66.98 ab
28.16 b
40.12 a
68.28 a
PD
CK
16.02 b
201.42 a
65.92 b
26.49 c
25.56 d
52.05 c
P 0.1%
18.63 a
200.36 a
66.98 ab
28.36 b
29.14 cd
57.50 bc
P 0.2%
18.79 a
206.31 a
68.28 ab
29.69 a
32.56 bc
62.25 ab
Values followed by different small letters in the same column and year are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Fig. 1. 同列及同年数据后不同小写字母表示差异达0.05显著水平。缩写同图1。
CzarneckiO, YangJ, Weston DJ, Tuskan GA, Chen JG . A dual role of strigolactones in phosphate acquisition and utilization in plants , 2013,14:7681-7701. [本文引用: 1]
Schachtman DP, Reid RJ, Ayling SM . Phosphorus uptake by plants: from soil to cell , 1998,116:447-453. [本文引用: 1]
RauschC, BucherM . Molecular mechanisms of phosphate transport in plants , 2002,216:23-37. [本文引用: 1]
Ajay BC, Meena HN, Singh AL, Bera SK, Dagla MC, KumarN, Makwana AD . Response of different peanut genotypes to reduced phosphorous availability , 77:105-111. [本文引用: 1]
Zheng YP, Xin CY, Wang CB, Sun XS, Yang WQ, Wan SB, Zheng YM, FengH, Chen DX, Sun XW, Wu ZF . Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut (Arachis hypogaea) Chin J Plant Ecol, 2013,37:777-785 (in Chinese with English abstract). [本文引用: 1]
Yu TY, Sun XW, Shi CR, Wu ZF, Sun XS, Wang CB, Zheng YM, ShenP, Zheng YP . Effect of phosphorus on carbon, nitrogen content and development of peanut J Peanut Sci, 2016,45(4):43-49 (in Chinese with English abstract) . [本文引用: 1]
Yu TY, Li XL, LuY, Sun XW, Zheng YM, Wu ZF, ShenP, Wang CB . Effect of phosphorus (P) on nitrogen (N) uptake and utilization in peanut Acta Agron Sin, 2019,45:912-921 (in Chinese with English abstract) . [本文引用: 1]
MaL, Velthof GL, Wang FH, QinW, Zhang WF, LiuZ, ZhangY, WeiJ, Lesschen JP, Ma WQ, OenemaO, Zhang FS . Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005 , 2012,434:51-61. [本文引用: 1]
Wan SB. . Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 260-261(in Chinese) [本文引用: 1]
Hart MR, Quin BF, Nguyen ML . Phosphorus runoff from agricultural land and direct fertilizer effects , 2004,33:1954-1972. [本文引用: 1]
Wang WL, LiangT, Wang LQ, Liu YF, Wang YZ, Zhang CS . The effects of fertilizer applications on runoff loss of phosphorus , 2013,68:1313-1319. [本文引用: 1]
Fageria NK, Filho M P B, Moreira A, Guimar?es C M, . Foliar fertilization of crop plants , 2009,32:1044-1064. [本文引用: 2]
Ahmed H FS, El-Araby M MI . Evaluation of the influence of nitrogen fixing, phosphate solubilizing and potash mobilizing biofertilizers on growth, yield, and fatty acid constituents of oil in peanut and sunflower , 2012,11:10079-10088. [本文引用: 1]
Li YT, Li XY, XiaoY, Zhao BQ, Wang LX . Advances in study on mechanism of foliar nutrition and development of foliar fertilizer application Sci Agric Sin, 2009,42:162-172 (in Chinese with English abstract). [本文引用: 1]
SherchandK, Paulsen GM . Response of wheat to foliar phosphorus treatments under field and high temperature regimes , 1985,8:1171-1181. [本文引用: 2]
Lyu XK, HanJ, Liao YC, LiuY . Effect of phosphorus and potassium foliage application post-anthesis on grain filling and hormonal changes of wheat , 2017,214:83-93. [本文引用: 1]
ShenP, LuoS, Wu ZF, Sun XS, Wang CB, Yu TY, Zheng YM, Sun XW, Zheng YP . Response of P absorption-allocation rate and root morphology of peanut to P foliar fertilizers with different acidities J Nucl Agric Sci, 2015,29:2418-2424 (in Chinese with English abstract). [本文引用: 4]
LiangX, Peng KQ, YangY . Effect of foliage spraying on photosynthetic indexes and plant hormones of peanut at blossom stage Crop Res, 2011,25(1):15-18 (in Chinese with English abstract). [本文引用: 1]
Sistani KR, Morrill LG . Foliar application of phosphorus and residual effect of gypsum on peanuts , 1991,27:317-327. [本文引用: 2]
Zheng YP, Chen DX, Xin CY, Liu JH, Wang CB, Sun XW, Wan SB, FengH, Wu ZF, Zheng YM . Effects of phosphorus application rate on physiology parameters of leaf source in peanut J Nucl Agric Sci, 2014,28:727-731 (in Chinese with English abstract). [本文引用: 1]
Le RM, KhanS, Valentine AJ . Organic acid accumulation may inhibit N2 fixation in phosphorus-stressed lupin nodules , 2008,177:956-964. [本文引用: 1]
SuliemanS, SchulzeJ, Tran L S P. N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula, under excessive nitrate or low phosphorus conditions , 2014,171:407-410. [本文引用: 1]
JebaraM, Aouani ME, PayreH, Drevon JJ . Nodule conductance varied among common bean (Phaseolus vulgaris) genotypes under phosphorus deficiency , 2005,162:309-315. [本文引用: 1]
Yao YB, Wu DT, Gong ZP, Ma CM . Effect of phosphorus level on nitrogen accumulation and yield in soybean J Nucl Agric Sci, 2012,26:947-951 (in Chinese with English abstract). [本文引用: 1]
Tsvetkova GE, Georgiev GI. Effect of phosphorus nutrition on the nodulation, nitrogen fixation and nutrient use efficiency of Gradyrhizobium japonicum soybean( Glycine max L. Merr.) symbiosis , 2003,SI:331-335. [本文引用: 1]
Campbell WH, Redinbaugh MG . Ferric-citrate reductase activity of nitrate reductase and its role in iron assimilation by plants , 1984,7:799-806. [本文引用: 1]
Yu TF, Liu XJ, HaoF . Effect of phosphate fertilizer application on alfalfa yield, nutritive value and N and P use efficiency Acta Pratac Sin, 2018,27(3):154-163 (in Chinese with English abstract). [本文引用: 2]
PengL, Zhu ZL, ChenQ, Ji MM, ChenR, Ge SF, Jiang YM . Characteristics of NO3 - absorption and utilization in Malus hupehensis Rehd. seedlings under different phosphorus levels Chin J Eco-Agric, 2017,25:1147-1153 (in Chinese with English abstract). [本文引用: 2]
Hossain MB, Ryu KS . Effect of foliar applied phosphatic fertilizer on absorption pathways, yield and quality of sweet persimmon , 2009,122:626-632. [本文引用: 1]
Amanullah, SaleemA, IqbalA, FahadS, . Foliar phosphorus and zinc application improve growth and productivity of maize (Zea mays L.) under moisture stress conditions in semi-arid climates , 2016,8:433-4395. [本文引用: 1]
ChaiY, ZhaoL, HuangT, Mao JS, ZhangY, Hou ZA . Effects of different combination ratios of N, P fertilizer on nutrient uptake of maize and yield Xinjiang Agric Sci, 2015,52:444-449. [本文引用: 1]
CaoN, Chen XR, He HH, Zhu CL, CaiS, XuT, Xie HW, Liu FP . Effects of spraying P and K fertilizers during panicle primordium differentiation stage on cold resistance, yield and physiological characteristics of early rice Chin J Appl Ecol, 2017,28:3562-3570 (in Chinese with English abstract). [本文引用: 1]