删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

大麦种质资源成株期抗旱性鉴定及抗旱指标筛选

本站小编 Free考研考试/2021-12-26

徐银萍, 潘永东,*, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜甘肃省农业科学院经济作物与啤酒原料研究所, 甘肃兰州 730070

Drought resistance identification and drought resistance indexes screening of barley resources at mature period

XU Yin-Ping, PAN Yong-Dong,*, LIU Qiang-De, YAO Yuan-Hu, JIA Yan-Chun, REN Cheng, HUO Ke-Cang, CHEN Wen-Qing, ZHAO Feng, BAO Qi-Jun, ZHANG Hua-YuInstitute of Industrial Crops and Malting Barley, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China

通讯作者: 潘永东, E-mail: panyongdong1010@163.com

收稿日期:2019-04-17接受日期:2019-08-9网络出版日期:2020-03-12
基金资助:本研究由甘肃省国际科技合作项目.17YF1WA156
甘肃省农业科学院农业科技创新专项科技支撑计划项目.2018GAAS02
甘肃省农业科学院科技自主创新专项现代生物育种项目.2019GAAS08
甘肃省农业科学院科研条件建设及成果转化中青年基金项目.2017GAAS74
国家现代农业产业技术体系建设专项资助.CARS-05


Received:2019-04-17Accepted:2019-08-9Online:2020-03-12
Fund supported: This study was supported by Gansu International Science and Technology Cooperation Project of China.17YF1WA156
Gansu Academy of Agricultural Sciences Agricultural Science and Technology Support Program of China.2018GAAS02
Gansu Academy of Agricultural Sciences Modern Biological Breeding Project of China .2019GAAS08
Gansu Academy of Agricultural Young and Middle-aged Fund Project of China.2017GAAS74
China Agriculture Research System.CARS-05

作者简介 About authors
E-mail:xuyinping7810@163.com













摘要
干旱是影响大麦生产的主要因素之一。在鉴定大麦种质资源成株期抗旱性的基础上, 筛选抗旱指标, 可为培育抗旱品种提供依据。本研究在2016和2017年在大麦生长主要需水期平均降雨量不足40 mm的甘肃省武威市进行田间试验, 以30份大麦种质资源为研究对象, 设置正常灌水和干旱胁迫处理, 测定大麦株高、穗长、分蘖数、单株粒数、单株粒重、穗粒数、千粒重和产量, 采用抗旱性度量值(D)、综合抗旱系数(CDC)、加权抗旱系数(WDC)、相关分析、频次分析、主成分分析、灰色关联度分析、隶属函数分析、聚类分析和逐步回归分析相结合的办法, 对其进行抗旱性鉴定及抗旱指标的筛选。干旱胁迫对测定的各指标均有极显著影响。频次分析表明, 各指标对干旱胁迫反应的敏感程度依次为产量、株高、单株粒重、穗长、单株粒数、分蘖数、穗粒数和千粒重。相关分析表明, 产量与株高、穗长、分蘖数、单株粒数和单株粒重呈极显著正相关, 与穗粒数呈显著正相关、与千粒重呈不显著正相关。主成分分析表明, 5个主成分可以代表大麦抗旱性86.39%的原始数据信息量。基于D值、CDC值和WDC值的大麦种质资源抗旱性排序基本一致。灰色关联度分析表明, 各指标单项抗旱系数值与D值间的关联度依次为产量、单株粒重、单株粒数、穗长、株高、分蘖、穗粒数和千粒重, 各指标DC值与WDC值间的关联大小依次为单株粒重、产量、单株粒数、分蘖、穗长、穗粒数、株高和千粒重。根据D值进行聚类分析, 将供试大麦种质资源依据抗旱性从强到弱分为5个抗旱等级, 其中1级5份、2级1份、3级11份、4级10份、5级3份。除分蘖和千粒重外, 其余指标的隶属函数值、CDC值、D值和WDC值均随着抗旱级别的升高而增大。回归分析表明, 5个测定指标均与D值密切相关。干旱胁迫对大麦种质资源成株期各指标均有极显著影响。确定了D值为适宜的抗旱鉴定指标。筛选出成株期抗旱性强的大麦种质资源甘啤7号、Z06-278-9、MERIT、NEVADA和西藏25, 可为大麦抗旱育种、抗旱机制以及干旱调控缓解机制的研究提供技术支持。穗长、单株粒数、单株粒重、穗粒数、产量可作为大麦种质资源成株期简单、直观的抗旱评价指标。
关键词: 大麦(Hordeum vulgare L.);成株期;抗旱性;抗旱指标

Abstract
Drought is one of the major factors affecting barley production. Identification of drought resistance of barley resource at maturity stage, could provide and their associating indexes a basis for breeding drought-resistant cultivars. Field experiments were carried out in Wuwei city, Gansu province, in 2016 and 2017, where the average rainfall during the main water requirement period is less than 40 mm. thirty barley resource under measured normal irrigation and drought stress were used to measured plant height, spike length, tiller number, grain number per plant, grain weight per plant, grain number per spike, 1000-grain weight and yield of barley. Drought resistance comprehensive evaluation value (D-value), comprehensive drought resistance coefficient (CDC-value), weight drought resistance coefficient (WDC-value), correlation analysis, frequency analysis, principal component analysis, grey relational analysis, subordinate function analysis, clustering analysis, and stepwise regression analysis were combined to identify the drought resistance and to screen drought resistance indexes of tested resource at mature period. Drought stress had significant effects on all measured indexes. Frequency analysis showed that the sensitivity of each index to drought stress was yield, plant height, grain weight per plant, spike length, grain number per plant, tiller number, grain number per spike and 1000-grain weight. The yield was very significantly and positively correlated with plant height, spike length, tiller number, grain number per plant and grain weight per plant, and significantly and positively correlated with grain number per spike, but not correlated with 1000-grain weight. Principal component analysis showed that five principal components could represent 86.39% of the original data information of barley drought resistance. The ranks of drought resistance based on the D-value, CDC-value, and WDC-value were similar. Grey relational analysis showed that the correlation degree between DC-value of all indexes and D-value in turn for yield, grain weight per plant, grain number per plant, spike length, plant height, tiller number, grain number per spike and 1000-grain weight, the correlation degree between DC-value of all indexes and WDC-value in turn for grain weight per plant, yield, grain number per plant, tiller number, spike length, grain number per spike, plant height and1000-grain weight, According to D-value clustering analysis, tested barley materials were divided into five drought resistance grades, in which five were in grade 1, one was in grade 2, eleven were in grade 3, ten were in grade 4, and three were in grade 5. Except for tiller number and 1000-grain weight, the subordinate function values, CDC-values, D-values, and WDC-values of other indicators were increased with increase of drought resistance grades. Stepwise regression analysis showed that plant height, Spike length, tiller number, grain number per plant, grain weight per plant, grain number per spike, 1000-grain weight and yield were closely related to the D-value. Drought stress had significant effects on all indexes of barley resources at mature period. D-value was determined as an appropriate index for drought resistance identification. Ganpi 7, Z06-278-9, MERIT, NEVADA, and Xizang 25 were identified as drought resistant barley materials at mature period, which could provide basic materials for the researches on cultivar breeding, drought resistant mechanism, and regulation and alleviation mechanism of drought resistance in barley. The spike length, grain number per plant, grain weight per plant, grain number per spike and yield could be used as the simple and intuitive identification indexes of drought resistance in barley resources at mature period.
Keywords:barley (Hordeum vulgare L.);mature period;drought resistance;drought resistance indexes


PDF (464KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461. doi:10.3724/SP.J.1006.2020.91031
XU Yin-Ping, PAN Yong-Dong, LIU Qiang-De, YAO Yuan-Hu, JIA Yan-Chun, REN Cheng, HUO Ke-Cang, CHEN Wen-Qing, ZHAO Feng, BAO Qi-Jun, ZHANG Hua-Yu. Drought resistance identification and drought resistance indexes screening of barley resources at mature period[J]. Acta Crops Sinica, 2020, 46(3): 448-461. doi:10.3724/SP.J.1006.2020.91031


大麦(Hordeum vulgare L.)是世界上最古老的农作物之一, 距今已有数千年的栽培历史, 是种植最广的谷类作物。大麦不但具有早熟、耐旱、耐寒和广适等特点, 而且具有良好的食用、酿造和饲用价值, 担负着为藏区居民提供粮食, 为麦芽和啤酒工业提供原料, 为畜牧和水产养殖提供饲料、饲草的特殊功能。与其他作物相比大麦具有更加广泛的生态适应性, 被认为是最适宜进行抗旱研究的试验材料[1,2], 随着全球水资源匮缺矛盾的加剧, 干旱已成为我国乃至世界农业生产长期面临的主要制约因素[3]。因此, 鉴定大麦成株期的抗旱性、筛选抗旱指标, 对大麦抗旱品种选育、抗旱机制及干旱调控机制的研究均具有重要意义。研究作物抗旱性首要解决的技术难点就是如何准确鉴定其抗旱性和筛选抗旱指标, 这需要将不同指标相结合, 对作物各个时期进行综合评价[4]。近年来, 随着不同作物抗旱性研究的发展, 研究者们为了避免单一指标的片面性和不稳定性, 先后在谷子[5,6]、胡麻[7,8,9]、大豆[10,11]、油菜[12,13]、棉花[14]、高粱[15,16,17]、绿豆[18,19,20]、薏苡[21,22]等作物抗旱性鉴定及抗旱指标筛选上采用了相关分析、频次分析、主成分分析、隶属函数分析、聚类分析、灰色关联度分析和逐步回归分析等相结合的方法综合评价。目前, 对大麦抗旱性鉴定的研究主要是从大麦萌发期和苗期的形态指标、生理指标、生长发育指标、生化指标和超微结构形态指标等多角度进行鉴定、标筛选及种质资源分级评价[23,24,25,26,27,28,29,30,31,32,33], 但对大麦成株期抗旱性鉴定评价及指标筛选均未涉及或鲜有报道。本研究设置正常灌水和干旱胁迫2个处理, 在大麦生长主要需水期降雨量不足40 mm的地区进行田间试验, 利用综合评价法对30份大麦种质资源的株高、穗长、有效分蘖数、单株粒数、单株粒重、穗粒数、千粒重和产量进行鉴定与评价, 从而筛选出成株期抗旱性强的大麦种质资源及易测定的与大麦抗旱性密切相关的指标, 为开展大麦抗旱品种选育和抗旱机制及干旱调控缓解机制等方面的研究提供基础。

1 材料与方法

1.1 供试材料

大麦种质30份, 包括美国引进的10份、中国西藏4份、中国甘肃甘南州1份、中国甘肃省农业科学院选育品种7份、新品系8份(表1)。

Table 1
表1
表130份大麦种质的来源
Table 1Origins of 30 barley resources
编号Number名称
Name
来源
Origin
01Z06-278-9美国 USA
02Z06-266-10美国 USA
03MERIT美国 USA
04Z06-291-1美国 USA
05BARI188美国 USA
06BARI160美国 USA
07BARI187美国 USA
08BARI165美国 USA
09西藏10 Xizang 10中国西藏 Tibet, China
10西藏12 Xizang 12中国西藏 Tibet, China
11西藏23 Xizang 23中国西藏 Tibet, China
12西藏25 Xizang 25中国西藏 Tibet, China
13NEVADA美国 USA
14甘啤6号 Ganpi 6中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
15甘饲1号 Gansi 1中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
160420-7 (甘啤4号杂交后代) Derived from Ganpi 4中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
170521-6 (甘啤7号杂交后代) Derived from Ganpi 7中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
182153122 (甘啤7号杂交后代) Derived from Ganpi 7中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
190821-2 (MERIT杂交后代) Derived from MERIT中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
200835-3 (MERIT杂交后代) Derived from MERIT中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
210844-1 (MERIT杂交后代) Derived from MERIT中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
220903-2 (法瓦维特杂交后代) Derived from Favorit中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
23中黄1号 Zhonghuang 1中国甘肃甘南州 Gannan, Gansu, China
240902-1 (法瓦维特杂交后代) Derived from Favorit中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
25陇青1号 Longqing 1中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
26甘啤4号 Ganpi 4中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
27甘啤7号 Ganpi 7中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
28甘啤8号 Ganpi 8中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
29甘啤9号 Ganpi 9中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
30Aspen美国 USA

新窗口打开|下载CSV

1.2 试验设计

2016年和2017年在甘肃省农业科学院武威市凉州区黄羊镇麦类综合试验站进行田间试验。该区属于大陆性温带干旱半干旱气候, 位于甘肃省河西走廊东部, 年日照时数为2360~2920 h, 平均海拔1766 m, 无霜期135~150 d, 年平均气温6.5℃, 年平均降雨量210 mm, 年蒸发量2100 mm。试验地土质为灌漠土, 含有机质26.7 g kg-1、碱解氮81.3 mg kg-1、有效磷11.2 mg kg-1、速效钾197 mg kg-1, pH 8.5。

设正常灌水(CK)和干旱胁迫(T) 2个处理, 3次重复, 采用随机区组排列, 小区面积12.5 m2 (2.5 m×5.0 m), 行距0.25 m, 种植10行, 区组间隔50 cm, 播种行与区组走向垂直, 试验地四周播种20行保护行, 分别于2016年3月15日与2017年3月18日以手锄开沟撒播, 播种量300 kg hm-2。播前施纯氮纯磷各150 kg hm-2 (分别用含氮46%的尿素和含P2O5 46%的磷酸二铵), 所有化肥均作为基肥播种前一次性施入。对照在大麦拔节期和扬花期每次灌水1500 m3 hm-2, 干旱胁迫处理全生育期不灌水完全依靠自然降水。大麦生育期2年平均降水量在40 mm左右。

1.3 测定项目与方法

在成株期收获前2 d, 从每小区随机拔取10株, 量取株高(plant height, PH)和穗长(spike length, SL), 调查单株分蘖数(tiller number, TN), 人工脱粒后统计单株粒数(grain number per plant, GNPP), 待自然干燥后测定单株粒重(grain weight per plant, GWPP)、穗粒数(grain number per spike, GNS)、千粒重(1000-grain weight, TGW)和小区产量(yield, Y)。

1.4 数据处理与分析

采用Microsoft Excel 2013整理数据、SPSS 18.0进行统计分析。以2016年和2017年数据的平均值作为基础数据, 参照汪灿等[17,21-22]、兰巨生[34]、祁旭升等[7,11]、张彦军等[8]和罗俊杰等[9]的方法, 采用配对处理t检验对各指标测定值进行平均数差异显著性检测。按公式(1)和(2)分别计算单项抗旱系数(drought resistance coefficient, DC)和综合抗旱系数(comprehensive drought resistance coefficient, CDC)。式中xi和CKi分别表示干旱胁迫和正常灌水处理的指标测定值。

DC=TiCKi
CDC=1ni=1nDC
针对各指标DC值, 进行简单相关分析、连续变数次数分布统计分析和主成分分析。按公式(3)、(4)和(5)分别计算因子权重系数(ωi)、各基因型各综合指标的隶属函数值[μ(xi)]和抗旱性度量值(drought resistance comprehensive evaluation value, D)。式中Pi为第i个综合指标贡献率, 表示第i个指标在所有指标中的重要程度, xixi,maxxi,min分别表示第i个综合指标及第i个综合指的最大值和最小值。

ωi=Pi÷inPi
μxi=xi-ximinxiiminmax
D=i=1nμxi×Pi÷inPi
以各指标DC值为比较序列, D值为参考序列进行灰色关联度分析, 获得各指标DC值与D值间的关联度(γD), 按公式(6)和(7)分别计算各指标权重系数[ωi(γ)]和加权抗旱系数(weight drought resistance coefficient, WDC)。式中γi为各指标关联度。

ωiγ=γi÷i=1nγi
WDC=i=1nDC×γi÷i=1nγi
以各指标DC值为比较序列, WDC值为参考序列进行灰色关联度分析, 获得各指标DC值与WDC值间的关联度(γWDC)。最后针对供试大麦种质D值, 采用欧氏距离和加权配对算术平均法(weighted pair group method average, WPGMA)进行聚类分析, 划分抗旱级别, 并分别以D值、CDC值和WDC值为参考序列, 对各指标DC值进行逐步回归分析, 求取回归方程。

2 结果与分析

2.1 供试种质的代表性及其指标测定值分析

干旱胁迫对供试种质资源各指标测定值均有显著影响, 处理间和种质材料间的差异均达到显著水平(表2和附表1)。种质材料间变异系数介于0.070~0.412, 说明本试验所选用的大麦种质材料类型丰富, 具有较好的代表性, 干旱胁迫处理效果好, 所选指标对干旱胁迫反应较敏感。另外, 供试大麦种质材料各指标在对照和干旱胁迫处理下的测定值相关系数介于0.352~0.737, 这进一步说明各指标对干旱胁迫反应的敏感性存在差异, 直接单独采用各指标测定值很难鉴定供试大麦种质资源的抗旱性。

Table 2
表2
表2干旱胁迫和正常灌水条件下供试大麦种质各测定指标平均值差异分析
Table 2Mean values of all indices in tested barley resources under drought stress and normal irrigation
项目
Item
株高
PH (cm)
穗长
SL (cm)
分蘖数
TN
单株粒数
GNPP
单株粒重GWPP (g)穗粒数
KNPS
千粒重
TGW (g)
产量
Y (kg hm-2)
CKTCKTCKTCKTCKTCKTCKTCKT
平均值 Ave.79.4158.597.616.312.662.2962.7752.113.012.3123.6721.0448.8443.423.071.45
变异系数 CV0.0860.1050.0840.1360.0780.1500.1010.1280.1460.1850.0980.1210.0700.0740.0830.412
标准误 SE6.6230.6660.2617.3520.3251.8083.0772.428
tt-value17.21810.7467.7947.94610.9197.9859.6555.855
PP-value0.0001**0.0001**0.0001**0.0001**0.0001**0.0001**0.0001**0.0001**
相关系数 r0.4990.6520.6650.3820.6810.7370.5870.352
PH: plant height; SL: spike length; TN: tiller number; GNPP: grain number per plant; GWPP: grain weight per plant; GNS: grain number per spike; TGW: 1000-grain weight; Y: yield. Data are the mean across 2016 and 2017. CK: normal water supply treatments; T: drought treatments. **: significantly different at P < 0.01.
数据为2016和2017两年的平均值。CK: 正常供水处理; T: 干旱胁迫处理。**表示在P < 0.01水平差异显著。

新窗口打开|下载CSV

Table 3
表3
表3供试大麦种质各指标的抗旱系数
Table 3Drought resistance coefficients of all indexes in tested barley germplasm
编号
Number
株高
PH
穗长
EL
分蘖数
TN
单株粒数
GNPP
单株粒重
GWPP
穗粒数
KNPS
千粒重
TGW
产量
Y
010.8450.8890.9620.9680.8500.9360.8750.815
020.6830.9010.8670.7720.8840.7750.9340.462
030.8150.9170.9810.9370.8620.9250.9020.823
040.6620.8530.9130.8250.9050.7850.9900.370
050.7740.9090.9260.8780.8100.8870.9360.384
060.7070.7940.7590.7830.7040.7230.8060.369
070.7780.8150.7670.7590.7360.7930.8240.393
080.7220.7970.7500.7900.6900.8200.8300.403
090.7630.8750.8570.8240.8150.8910.9550.442
100.7520.9640.9260.8670.7570.9390.8840.728
110.7090.8400.9880.8850.9050.9740.8410.442
120.8370.7790.7390.9660.9130.9440.9820.744
130.8790.9040.9640.9600.8590.9560.9100.806
140.7360.9210.9290.8980.8140.9760.8070.424
150.6400.7660.8520.7890.7980.8280.8220.361
160.7150.7250.6900.7530.5960.7210.8150.293
170.7220.8210.7880.9240.7940.8970.8560.377
180.7490.9700.9290.7920.8540.9540.9900.493
190.5660.7660.9620.7810.6790.9730.9440.499
200.8130.7490.9070.7920.7500.8710.8710.503
210.6370.7890.8750.7150.7410.8810.9350.466
220.7880.7590.7390.7490.6630.8820.9040.329
230.7500.6540.7060.5910.6710.8280.9060.231
240.7730.7570.8570.7750.7010.9420.9540.329
250.7820.7870.7400.9800.6570.9780.9370.385
260.6870.7860.9630.8650.8080.9490.8670.441
270.8340.9440.9660.9820.9850.9530.9530.839
280.6830.7820.8150.8890.7070.9020.8550.274
290.7180.9910.9640.9290.6700.9380.8390.385
300.6700.6360.6870.5880.4750.8530.7940.273
平均值Ave.0.7400.8280.8590.8340.7680.8890.8910.469
变异系数CV0.0930.1060.1130.1220.1400.0830.0660.373
PH: plant height; SL: spike length; TN: tiller number; GNPP: grain number per plant; GWPP: grain weight per plant; GNS: grain number per spike; TGW: 1000-grain weight; Y: yield.

新窗口打开|下载CSV

2.2 单项指标分析

与正常灌水处理相比, 供试大麦种质资源在干旱胁迫处理后, 各指标均发生不同程度变化(表3)。同一个指标各个种质资源的DC值存在明显差异, 变异系数介于0.066~0.373, 但是不同种质资源间DC值反映的抗旱性不同, 且同一种质资源各指标的DC值差异较大, 说明各指标对干旱胁迫反应的敏感性不同。

此外, 同一区间各指标DC值的分布次数与频率差异较大(表4)。DC>0.8的株高、穗长、分蘖数、单株粒数、单株粒重、穗粒数、千粒重和产量的分布频率分别为20%、53%、67%、53.5%、47%、83%、97%和13.3%, 说明各指标对干旱胁迫反应的敏感程度依次为产量、株高、单株粒重、穗长、单株粒数、分蘖、穗粒数和千粒重。因此, 直接采用这些指标会由于指标间信息的叠加, 很难准确客观地评价各种质资源的抗旱性。

Table 4
表4
表4供试大麦种质各指标抗旱系数在不同区间的分布
Table 4Distribution in DC intervals for drought resistance coefficients of all indexes in tested barley germplasm
指标
Index
0<DC<0.20.2<DC<0.40.4<DC<0.60.6<DC<0.80.8<DC<1.0
次数
Times
频率
Freq.(%)
次数
Times
频率
Freq.(%)
次数
Times
频率
Freq.(%)
次数
Times
频率
Freq.(%)
次数
Times
频率
Freq.(%)
株高 PH0000132377620
穗长 EL00000014471653
分蘖数 TN00000010332067
单株粒数GNPP000026.712401653.3
单株粒GWPP00001315501447
穗粒数 KNPS0000005172583
千粒重 TGW000000132997
产量 Y001446.71033.326.7413.3
Freq.: frequency; PH: plant height; SL: spike length; TN: tiller number; GNPP: grain number per plant; GWPP: grain weight per plant; GNS: grain number per spike; TGW: 1000-grain weight; Y: yield.

新窗口打开|下载CSV

相关分析表明(表5), 各指标均至少与一个其它指标呈显著或极显著相关, 说明各指标间存在一定程度的相关性。其中产量与株高、穗长、分蘖数、单株粒数、单株粒重呈极显著正相关, 与穗粒数呈显著正相关、与千粒重呈不显著正相关。

Table 5
表5
表5供试大麦种质各指标抗旱系数的相关性
Table 5Correlation coefficients among drought resistance coefficients of all indexes in tested barley germplasm
指标
Index
株高
PH
穗长
EL
分蘖数
TN
单株粒数
GNPP
单株粒重
GWPP
穗粒数
KNPS
千粒重
TGW
产量
Y
株高 PH
穗长 EL0.298
分蘖数 TN0.0690.705**
单株粒数 GNPP0.478**0.641**0.507**
单株粒重 GWPP0.339*0.620**0.622**0.599**
穗粒数 KNPS0.2700.370*0.558**0.562**0.288
千粒重 TGW0.1940.2500.2540.1870.471**0.313
产量 Y0.571**0.555**0.553**0.626**0.629**0.451*0.319
* and ** are significant correlation at P < 0.05 and P < 0.01, respectively. PH: plant height; SL: spike length; TN: tiller number; GNPP: grain number per plant; GWPP: grain weight per plant; GNS: grain number per spike; TGW: 1000-grain weight; Y: yield.
***分别表示在P < 0.05和P < 0.01水平显著相关。

新窗口打开|下载CSV

2.3 主成分分析

表6可见, 各因子特征值中前5个因子的累积贡献率达86.39%, 其特征根>0.697。因此, 提取前5个因子, 将具有同等效果的指标归为一类, 可将原来各指标换成5个新的互相独立的综合指标(分别以F1、F2、F3、F4和F5表示)。F1在分蘖数上有较高载荷, F2在产量上有较高载荷, F3在穗粒数和株高上有较高载荷, F4在单株粒重和千粒重上有较高载荷, F5在穗长和单株粒数上有较高载荷。

Table 6
表6
表6供试大麦种质各指标主成分的特征向量及贡献率
Table 6Eigenvectors and contribution rates of principal components of all indexes in tested barley germlasm
指标
Index
因子载荷 Factor loading
F1F2F3F4F5
株高 PH0.423-0.6310.728-0.0760.240
穗长 EL-1.4200.407-0.0320.026-0.731
分蘖数 TN0.580-0.020-0.234-0.424-0.120
单株粒数 GNPP0.214-0.2520.272-0.2840.661
单株粒重 GWPP0.2590.049-0.5130.9170.324
穗粒数 KNPS-0.246-0.0550.8210.192-0.097
千粒重 TGW-0.205-0.0490.1530.555-0.066
产量 Y-0.2020.662-0.116-0.1901.392
特征根 Characteristic root3.1071.2670.9630.8020.697
贡献率 Contribution rate (%)39.4615.6811.969.948.38
累计贡献率 Cumulative contribution (%)39.4655.2765.3377.2186.39
因子权重 Factor weight0.4530.1890.1350.1090.103
PH: plant height; SL: spike length; TN: tiller number; GNPP: grain number per plant; GWPP: grain weight per plant; GNS: grain number per spike; TGW: 1000-grain weight; Y: yield.

新窗口打开|下载CSV

2.4 供试大麦种质资源的综合抗旱性评价

供试大麦种质资源的CDC值和WDC值分别介于0.622~0.932和0.610~0.930, 平均值分别为0.758和0.777, 变异系数分别为0.085和0.088, 根据CDC值和WDC值的大小对30份供试大麦种质资源进行抗旱性排序, 其结果基本保持一致(表7)。其中, 抗旱性强的材料有甘啤7号、NEVAND、MERIT、西藏25和Z06-278-9, 抗旱性弱的材料为Aspen、中黄1号和0420-7, 其余种质资源介于两者之间。此外, 供试的30份大麦种质资源的D值介于0.106~0.931之间, 平均值为0.512, 变异系数为0.361, 同时根据D值的大小对供试大麦种质资源排序, 得到抗旱性强的材料为甘啤7号、NEVAND、Z06-278-9、MERIT和西藏25, 抗旱性弱的材料有Aspen、中黄1号和0420-7, 其余种质材料介于两者之间(表7), 这与基于CDC和WDC值的抗旱性鉴定结果高度吻合。

Table 7
表7
表7供试大麦种质抗旱性评价的CDC值、WDC值和D
Table 7CDC-value, WDC-value, and D-value of drought resistance evaluation in tested barley resources
编号
Number
隶属函数Subordinate function valueCDC值
CDC-value
排序
Rank
D
D-value
排序
Rank
WDC值
WDC-value
排序
Rank
μ1μ2μ3μ4μ5
010.8790.7410.8930.8520.8910.89340.85230.8914
020.5340.2700.7760.0940.7450.785150.481170.77815
030.8880.6320.4870.8590.5360.89530.83740.8943
040.5360.1420.6410.7370.8040.788140.457180.77914
050.6060.3430.6300.3780.8050.813100.554100.80410
060.2890.5380.5350.8600.6250.706270.338270.69927
070.3630.6330.5750.2880.3790.733230.417200.72623
080.3420.5730.6530.1650.7960.725260.388220.71825
090.5710.4430.6470.7690.8060.803110.545110.79412
100.7510.4850.4780.5530.8580.85260.69860.8486
110.6600.1770.5630.4970.3270.82380.56480.8158
120.7641.0000.4040.5530.6150.86350.81150.8595
130.9080.7750.5120.4230.5490.90520.88220.9022
140.6280.2800.5500.4730.7710.81390.55990.8059
150.3750.2391.0000.5300.7350.732240.348260.72424
160.1430.6460.7540.8330.4630.664290.243280.65528
170.4910.4910.6540.2220.9020.772180.491160.76418
180.6920.2570.3970.0560.8160.84170.60570.8327
190.4860.0000.5790.5620.5400.771190.389210.76119
200.5100.6090.9070.8380.7570.782130.529130.77516
210.4300.2130.5360.4370.6660.755210.387230.74621
220.3180.6570.5070.4671.0000.727250.386240.71522
230.1230.5790.5911.0000.6490.667280.214290.65429
240.4220.4520.8800.5540.5450.761200.428190.74920
250.4920.7160.5090.0000.3100.781120.537120.77017
260.5680.2120.3640.5710.7810.796130.497150.78713
271.0000.6570.5660.5150.8480.93210.93110.9301
280.3790.3410.7810.5280.6150.738220.372250.72822
290.5970.1830.5400.7250.6750.804110.514140.79611
300.0000.5310.0770.4960.4170.622300.106300.61030
平均值 Average0.7850.5120.777
变异系数 CV0.0850.3610.088
μ1 and μ2 are subordinate function values of two factors, respectively.
μ1μ2分别表示2个因子的隶属函数值。

新窗口打开|下载CSV

2.5 灰色关联度分析

表8可以看出, 各指标DC值与D值间的关联度大小依次为产量、单株粒重、单株粒数、穗长、株高、分蘖、穗粒数和千粒重, 反映了各指标DC值与D值的密切程度, 这与各指标对干旱胁迫反应的敏感性基本吻合。另外, 各指标DC值与WDC值间的关联度大小依次为单株粒重、产量、单株粒数、分蘖数、穗长、穗粒数、株高和千粒重。

Table 8
表8
表8供试大麦种质各指标DC值与D值和WDC值的关联度及各指标权重
Table 8Correlation degree between DC-value of all indexes and D-value together with WDC-value and indexes weight in tested barley germplasm
指标
Index
关联度
Correlation degree
排序
Rank
权重系数
Weight
关联度
Correlation degree
排序
Rank
株高 PH0.7128950.1240.642207
穗长 EL0.7381740.1280.716875
分蘖数 TN0.7059560.1220.725754
单株粒数 GNPP0.7472930.1300.740333
单株粒重 GWPP0.7489120.1300.750941
穗粒数 KNPS0.6576870.1140.650986
千粒重 TGW0.6359980.1100.597258
产量 Y0.8164610.1420.747232
缩写同表6。Abbreviations are the same as those given in Table 6.

新窗口打开|下载CSV

2.6 聚类分析及抗旱级别的划分

λ = 5处将30份大麦种质资源分为5类(图1)。其中, 第1类为高度抗旱材料, 包括甘啤7号、Z06-278-9、MERIT、西藏25和NEVADA共5份, 占总数的16.7%; 此外, 根据供试种质材料的综合抗旱性评价结果, 这5份种质材料的CDC值、WDC值、D值在所有参试种质资源中始终位于前5。第2类为抗旱材料, 1份占总数的3.3%; 第3类为中等抗旱材料共10份, 占总数的33.3%; 第4类为敏感材料共11份, 占总数的36.7%; 第5类为高度敏感型材料共3份, 占总数的10.0%。

图1

新窗口打开|下载原图ZIP|生成PPT
图1基于D值的供试大麦材料抗旱性系统聚类图

1、2、3、4、5表示不同抗旱级别。
Fig. 1Fuzzy clustering dendrogram of drought resistance in tested barley materials on D-value

1, 2, 3, 4, and 5 represent different drought resistance levels.


根据供试种质资源的抗旱性聚类分析及抗旱级别划分结果, 对供试种质资源抗旱性评价指标进行分级统计, 结果表明(表9)除了分蘖数和千粒重外, 其余指标的隶属函数值、CDC值、D值和WDC值均随着抗旱级别的升高而增大。此外, CDC值、D值和WDC值在不同抗旱级别上的差异较大, 可以为其他大麦种质资源抗旱级别的划分提供依据。

Table 9
表9
表9供试大麦种质抗旱性评价指标的分级
Table 9Classification of drought resistance evaluation indexes in tested barley germplasm
指标
Index
隶属函数 Subordinate function value
12345
株高 PH0.8830.5930.5550.4150.466
穗长 EL0.9230.7050.6530.4270.100
分蘖数 TN0.7810.7930.6950.4710.024
单株粒数 GNPP0.9510.7090.7070.5010.141
单株粒重 GWPP0.8210.6300.5520.5040.208
穗粒数 KNPS0.8650.8480.7640.5130.310
千粒重 TGW0.6640.4570.5090.4710.226
产量 Y0.9450.8180.3280.2430.057
CDC值 CDC-value0.8980.8520.8010.7440.651
DD-value0.8630.6980.5340.3910.188
WDC值 WDC-value0.8950.8480.7930.7340.640
1、2、3、4、5表示不同抗旱级别。缩写同表6
1, 2, 3, 4, and 5 represent different degree of drought resistance. Abbreviations are the same as those given in Table 6.

新窗口打开|下载CSV

2.7 抗旱指标的筛选

分别以D值、CDC值和WDC值为参考序列, 对供试种质资源各指标DC值进行回归分析, 得到的3个回归方程的决定系数R2 ≈ 1, F检验均达到极显著水平(表10), 说明回归方程最优, 模型拟合度好, 预测精度高, 用这3个回归方程进行大麦种质资源成株期抗旱性评价的效果好。根据D值与各指标DC值的回归方程可知, 在大麦种质资源成株期抗旱性评价中, 有针对性地测定与D值密切相关的指标, 如穗长、单株粒数、单株粒重、穗粒数和产量可鉴定大麦种质资源的抗旱性, 从而使鉴定工作简化。灰色关联度分析中各指标DC值与D值间的关联度大小排序也更进一步印证了这一点, 即, 穗长、单株粒数、单株粒重、穗粒数和产量可以有效作为大麦成株期抗旱性鉴定评价指标。此外, 相关分析还表明, 供试种质资源产量、D值、CDC值和WDC值两两之间均呈极显著正相关。

Table 10
表10
表10 供试大麦种质抗旱性模型预测
Table 10 Model predict of drought resistance in tested barley germplasm
因变量
Dependent variable
回归方程
Regression equation
决定系数R2F
F-value
P
P-value
相关系数 r
CDC值
CDC-
value
WDC值
WDC-
value
产量
Y
CDC值 CDC-valuey = 0.144+0.179x2+0.095x4+0.193x5+0.215x6+0.157x80.985314.79<0.0010.885**0.999**0.869**
DD-valuey = -0.888+0.290x2+0.514x4+0.560x5+0.455x6-0.194x80.991517.65<0.0010.900**0.562**
WDC值 WDC-valuey = 0.122+0.191x2+0.104x4+0.207x5+0.224x6+0.139x80.987362.79<0.0010.854**
x2: spike length; x4: grain number per plant; x5: grain weight per plant; x6: grain number per spike; x8: yield. **: significantly different at P < 0.01.
x2: 穗长; x4: 单株粒数; x5: 单株粒重; x6: 穗粒数; x8: 产量。**表示在P < 0.01水平差异显著。

新窗口打开|下载CSV

3 讨论

3.1 大麦成株期抗旱性评价方法的选择

评价作物的抗旱性不仅需要选择合适的评价指标, 而且要适宜的评价方法。将多种方法和多种指标相结合的手段在芝麻[35]、水稻[36]、油菜[12]、小麦[37]、菜豆[38]等作物种质资源抗旱性评价工作中被普遍采用。在以往的研究中, 大多数采用等权重的方法, 而没有考虑各指标对干旱胁迫的反应敏感程度。本研究采用D值、CDC值和WDC值等综合评价指标, 结合单项指标抗旱系数、相关分析、频次分析、主成分分析、灰色关联度分析、隶属函数分析、聚类分析以及回归分析, 对大麦种质资源的抗旱性进行综合评价, 消除各指标单位不同带来的影响; 同时, 结合指标变异系数来确定各指标在抗旱评价中的重要程度, 对抗旱密切相关的指标赋予较高的权重。本研究中将参试大麦种质资源的D值、CDC值和WDC值排序, 其结果基本一致。相关分析表明, 供试材料的产量、D值、CDC值和WDC值之间均呈极显著正相关, 基于D值的供试种质资源抗旱系统聚类分析结果与各种质资源田间实际抗旱性表现更为接近, 且产量与D之相关最密切。因此, 以D值为评价指标的评价方法, 既考虑了各指标的重要性, 又考虑了各指标之间的相互关系, 评价结果客观可靠。

3.2 大麦成株期抗旱指标的筛选

作物的抗旱性是复杂的数量性状, 是多种机制和众多因素共同作用的结果。因此, 选择合理的筛选指标是作物抗旱鉴定的关键。目前, 国内外****在作物抗旱鉴定方面开展了大量研究工作, 并针对不同的作物筛选出了不同的抗旱指标[36,37,38]。然而, 关于大麦抗旱鉴定的研究主要是从大麦萌发期和苗期进行了形态指标、生理指标、生长发育指标、生化指标和超微结构形态指标等多角度鉴定、指标筛选及种质资源分级评价, 但对大麦成株期抗旱鉴定评价及指标筛选鲜有报道。本研究选取与大麦种质资源成株期抗旱相关的8个关键指标, 将其结合起来, 采用不同方法分析, 结果显示各指标受干旱胁迫影响的程度有所不同, 且各指标间存在一定程度的相关性。因此, 直接利用这些指标很难客观、准确地评价各种质资源的抗旱性, 从而影响抗旱鉴定结果。通过主成分分析, 将原来8个单项指标转换成5个新的相互独立的综合指标, 使评价工作简化。灰色关联度分析表明各指标与D值的密切程度依次为产量、单株粒重、单株粒数、穗长、株高、分蘖数、穗粒数和千粒重, 这与各指标对干旱胁迫反应的敏感性及各指标与WDC值的密切程度基本吻合, 从而增加了评价工作的准确性和全面性。回归分析表明8个指标均与D值密切相关, 产量与株高、穗长、分蘖数、单株粒数、单株粒重呈极显著正相关。因此, 在大麦种质资源成株期抗旱鉴定中, 有针对性地测定与D值相关密切的指标, 如株高、穗长、分蘖数、单株粒数和单株粒重, 可有效鉴定大麦资源的抗旱性, 从而使鉴定工作简化。

4 结论

干旱胁迫对大麦种质资源成株期各指标均有极显著影响。确定了D值为适宜的抗旱鉴定指标。筛选出成株期抗旱性强的大麦材料甘啤7号、Z06-278-9、MERIT、NEVADA和西藏25。产量、单株粒重、单株粒数、穗长均可作为大麦种质资源成株期简单、直观的抗旱性评价指标。

Supplementary table 1
附表1
附表1 干旱胁迫和正常灌水条件下供试大麦种质各指标测定值
Supplementary table 1 Measured values of all indices in tested Barley resources under drought stress and normal irrigation
编号
Number
株高
PH (cm)
穗长
SL (cm)
分蘖数
TN
单株粒数GNPP单株粒重GWPP (g)穗粒数
KNPS
千粒重
TGW
产量
Y (kg hm-2)
CKTCKTCKTCKTCKTCKTCKTCKT
0178.9266.708.047.152.632.5360.9759.033.202.7223.9522.4252.6046.033.392.76
0289.7861.337.777.002.772.4069.8053.903.282.9026.2020.3047.4944.362.731.26
0388.6772.308.217.522.602.5571.5367.033.142.7027.9625.8744.7940.393.172.61
0493.4961.927.926.762.672.4360.9350.302.882.6124.9519.6048.4047.903.321.23
0579.7861.737.486.802.812.6057.7750.702.592.1020.5118.2045.0142.113.181.22
0683.3358.946.935.502.902.2058.8746.102.842.0021.5815.6048.2638.923.271.21
0777.9660.647.496.102.872.2063.8048.403.172.3321.9417.4049.6240.903.161.24
0875.8254.767.906.302.802.1059.2346.802.902.0022.2118.2049.0640.703.051.23
0987.8467.037.206.302.802.4052.7043.402.702.2019.3017.2050.3548.103.111.37
1086.5665.067.897.612.702.5066.2357.403.372.5524.5323.0350.4344.563.352.44
1173.4952.137.266.102.832.8066.3058.703.012.7223.4022.8048.8841.113.221.42
1273.8361.836.805.302.301.7052.2050.402.302.1023.4022.1043.9043.102.732.03
1374.6765.607.436.712.802.7060.2057.802.962.5522.5921.6051.3246.703.362.71
1474.0254.447.316.732.802.6065.6358.973.683.0023.7323.1656.1445.312.901.23
1582.8753.058.886.802.702.3064.6751.003.512.8024.2720.1054.3944.703.221.16
1680.5057.558.005.802.902.0057.4043.203.352.0022.6016.3049.3040.203.310.97
1778.5456.686.705.502.672.1061.8057.103.152.5023.2020.8054.9847.043.001.13
1869.5452.056.706.502.802.6062.1049.203.042.6022.4621.4249.2148.722.901.43
1990.4251.207.315.602.602.5059.3046.302.801.9022.0021.4044.4041.902.551.27
2077.1462.728.416.302.502.2762.8749.802.802.1025.7022.3854.4047.402.621.32
2189.8657.267.606.002.402.1074.2753.102.702.0026.2323.1145.6442.692.591.21
2274.0558.347.906.002.301.7067.2050.303.022.0023.7020.9044.8940.603.191.05
2374.0755.546.884.502.271.6084.1049.704.773.2031.8926.4051.8346.932.820.65
2473.6156.917.535.702.101.8062.3348.302.711.9022.8621.5243.4841.472.960.97
2582.2564.308.907.002.431.8060.1058.902.741.8025.2524.6846.3743.442.751.06
2679.4654.577.766.102.702.6061.6053.303.012.4323.6822.4748.7742.273.071.35
2780.4867.108.908.402.902.8066.1064.902.682.6423.4022.3051.3048.903.412.86
2874.4950.917.806.102.702.2056.3750.102.551.8022.5720.3645.0338.503.340.92
2970.8050.816.866.802.802.7059.9055.632.841.9021.7720.4247.4439.813.031.17
3066.0844.306.604.202.771.9056.9333.502.741.3022.4019.1047.5337.743.330.91
数据为2016和2017两年的平均值。CK: 正常供水处理; T: 干旱胁迫处理。
PH: plant height; SL: spike length; TN: tiller number; GNPP: grain number per plant; GWPP: grain weight per plant; GNS: grain number per spike; TGW: 1000-grain weight; Y: yield. Data are the mean across 2016 and 2017. CK: normal water supply treatments; T: repeated drought treatment.

新窗口打开|下载CSV


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Ellis R P, Forster B P, Robinson D . Wild barley: a source of genes for crop improvement in the 21st century
J Exp Bot, 2000,51:9-17.

[本文引用: 1]

George T S, Brown L K, Ramsay L . Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare)
New Phytol, 2014,203:195-205.

[本文引用: 1]

成福云 . 干旱灾害对二十一世纪初我国农业发展的影响探讨
水利发展研究, 2002,2(10):31-33.

[本文引用: 1]

Cheng F Y . Discuss on drought disaster for influence on the agricultural development of our country at 21st century
Water Resour Develop Res, 2002,2(10):31-33 (in Chinese with English abstract).

[本文引用: 1]

张木清, 陈如凯 . 作物抗旱分子生理与遗传改良. 北京: 科学出版社, 2005. pp 22-23.
[本文引用: 1]

Zhang M Q, Chen R K. Molecular Physiological and Genetic Improvement of Crop Drought Tolerance. Beijing: Science Press, 2005. pp 22-23(in Chinese).
[本文引用: 1]

孟庆立, 关周博, 冯佰利, 柴岩, 胡银岗 . 谷子抗旱相关性状的主成分与模糊聚类分析
中国农业科学, 2009,42:2667-2675.

[本文引用: 1]

Meng Q L, Guan Z B, Feng B L, Chai Y, Hu Y G . Principal component analysis and fuzzy clustering on drought-tolerance related traits of foxtail millet
Sci Agric Sin, 2009,42:2667-2675 (in Chinese with English abstract).

[本文引用: 1]

秦岭, 杨延兵, 管延安, 张华文, 王海莲, 刘宾, 陈二影 . 不同生态区主要育成谷子品种芽期耐旱性鉴定
植物遗传资源学报, 2013,14:146-151.

[本文引用: 1]

Qin L, Yang Y B, Guan Y A, Zhang H W, Wang H L, Liu B, Chen E Y . Identification of drought tolerance at germination period of foxtail millet cultivars developed from different ecological regions
J Plant Genet Resour, 2013,14:146-151 (in Chinese with English abstract).

[本文引用: 1]

祁旭升, 王兴荣, 许军, 张建平, 米君 . 胡麻种质资源成株期抗旱性鉴定
中国农业科学, 2010,43:3076-3087.

[本文引用: 2]

Qi X S, Wang X R, Xu J, Zhang J P, Mi J . Drought-resistance evaluation of flax germplasm at adult plant stage
Sci Agric Sin, 2010,43:3076-3087 (in Chinese with English abstract).

[本文引用: 2]

张彦军, 苟作旺, 王兴荣, 陈伟英, 祁旭升 . 胡麻种质萌发期抗旱性综合评价
植物遗传资源学报, 2015,16:520-527.

[本文引用: 2]

Zhang Y J, Gou Z W, Wang X R, Chen W Y, Qi X S . Comprehensive valuation of drought resistance of flax germplasm in germination
J Plant Genet Resour, 2015,16:520-527 (in Chinese with English abstract).

[本文引用: 2]

罗俊杰, 欧巧明, 叶春雷, 王方, 王镛臻, 陈玉梁 . 重要胡麻栽培品种的抗旱性综合评价及指标筛选
作物学报, 2014,40:1259-1273.

[本文引用: 2]

Luo J J, Ou Q M, Ye C L, Wang F, Wang Y Z, Chen Y L . Comprehensive valuation of drought resistance and screening of indexes of important flax cultivars
Acta Agron Sin, 2014,40:1259-1273 (in Chinese with English abstract).

[本文引用: 2]

王利彬, 刘丽君, 裴宇峰, 董守坤, 孙聪姝, 祖伟, 阮英慧 . 大豆种质资源芽期抗旱性鉴定
东北农业大学学报, 2012,43(1):36-42.

[本文引用: 1]

Wang L B, Liu L J, Pei Y F, Dong S K, Sun C S, Zu W, Ruan Y H . Drought resistance identification of soybean germplasm resources at bud stage
J Northeast Agricl Univ, 2012,43(1):36-42.

[本文引用: 1]

祁旭升, 刘章雄, 关荣霞, 王兴荣, 苟作旺, 常汝镇, 邱丽娟 . 大豆成株期抗旱性鉴定评价方法研究
作物学报, 2012,38:665-674.

[本文引用: 2]

Qi X S, Liu Z X, Guan R X, Wang X R, Gou Z W, Chang R Z, Qiu L J . Comparison of evaluation methods for drought-resistance at soybean adult stage
Acta Agron Sin, 2012,38:665-674 (in Chinese with English abstract).

[本文引用: 2]

朱宗河, 郑文寅, 张学坤 . 甘蓝型油菜耐旱相关性状的主成分分析
中国农业科学, 2011,44:1775-1787.

[本文引用: 2]

Zhu Z H, Zheng W Y, Zhang X K . Principal component analysis and comprehensive evaluation on morphological and agronomic traits of drought tolerance in rapeseed
Sci Agric Sin, 2011,44:1775-1787 (in Chinese with English abstract).

[本文引用: 2]

谢小玉, 张霞, 张兵 . 油菜苗期抗旱性评价及抗旱相关指标变化分析
中国农业科学, 2013,46:476-485.

[本文引用: 1]

Xie X Y, Zhang X, Zhang B . Evaluation of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed
Sci Agric Sin, 2013,46:476-485 (in Chinese with English abstract).

[本文引用: 1]

陈玉梁, 石有太, 罗俊杰, 王蒂, 厚毅清, 李忠旺, 张秉贤 . 甘肃彩色棉抗旱性农艺性状指标的筛选鉴定
作物学报, 2012,38:1680-1687.

[本文引用: 1]

Chen Y L, Shi Y T, Luo J J, Wang D, Hou Y Q, Li Z W, Zhang B X . Screening of drought tolerant agronomic trait indexes of colored cotton varieties (lines) in Gansu province
Acta Agron Sin, 2012,38:1680-1687 (in Chinese with English abstract).

[本文引用: 1]

王艺陶, 周宇飞, 李丰先, 依兵, 白薇, 闫彤, 许文娟, 高明超, 黄瑞冬 . 基于主成分和 SOM 聚类分析的高粱品种萌发期抗旱性鉴定与分类
作物学报, 2014,40:110-121.

[本文引用: 1]

Wang Y T, Zhou Y F, Li F X, Yi B, Bai W, Yan T, Xu W J, Gao M C, Huang R D . Identification and classification of sorghum cultivars for drought resistance during germination stage based on principal components analysis and self organizing map cluster analysis
Acta Agron Sin, 2014,40:110-121 (in Chinese with English abstract).

[本文引用: 1]

吴奇, 周宇飞, 高悦, 张娇, 陈冰汝, 许文娟, 黄瑞冬 . 不同高粱品种萌发期抗旱性筛选与鉴定
作物学报, 2016,42:1233-1246.

[本文引用: 1]

Wu Q, Zhou Y F, Gao Y, Zhang J, Chen B R, Xu W J, Huang R D . Screening and identification for drought resistance during germination in sorghum cultivars
Acta Agron Sin, 2016,42:1233-1246 (in Chinese with English abstract).

[本文引用: 1]

汪灿, 周棱波, 张国兵, 徐燕, 张立异, 高旭, 高杰, 姜讷, 邵明波 . 酒用糯高粱资源成株期抗旱性鉴定及抗旱指标筛选
中国农业科学, 2017,50:1388-1402.

[本文引用: 2]

Wang C, Zhou L B, Zhang G B, Xu Y, Zhang L Y, Gao X, Gao J, Jiang N, Shao M B . Drought resistance identification and drought resistance indexes screening of liquor-making waxy sorghum resources at adult plant stage
Sci Agric Sin, 2017,50:1388-1402 (in Chinese with English abstract).

[本文引用: 2]

王兰芬, 武晶, 景蕊莲, 程须珍, 王述民 . 绿豆种质资源芽期抗旱性鉴定
植物遗传资源学报, 2014,15:498-503.

[本文引用: 1]

Wang L F, Wu J, Jing R L, Cheng X Z, Wang S M . Drought resistance identification of mungbean germplasm resources at bud stage
J Plant Genet Resour, 2014,15:498-503 (in Chinese with English abstract).

[本文引用: 1]

王兰芬, 武晶, 景蕊莲, 程须珍, 王述民 . 绿豆种质资源苗期抗旱性鉴定
作物学报, 2015,41:145-153.

[本文引用: 1]

Wang L F, Wu J, Jing R L, Cheng X Z, Wang S M . Drought resistance identification of mungbean germplasm resources at seedling stage
Acta Agron Sin, 2015,41:145-153 (in Chinese with English abstract).

[本文引用: 1]

王兰芬, 武晶, 景蕊莲, 程须珍, 王述民 . 绿豆种质资源成株期抗旱性鉴定
作物学报, 2015,41:1287-1294.

[本文引用: 1]

Wang L F, Wu J, Jing R L, Cheng X Z, Wang S M . Identification of mungbean germplasm resources resistance to drought at adult stage
Acta Agron Sin, 2015,41:1287-1294 (in Chinese with English abstract).

[本文引用: 1]

汪灿, 周棱波, 张国兵, 张立异, 徐燕, 高旭, 姜讷, 邵明波 . 薏苡种质资源苗期抗旱性鉴定及抗旱指标筛选
中国农业科学, 2017,50:2872-2887.

[本文引用: 2]

Wang C, Zhou L B, Zhang G B, Zhang L Y, Xu Y, Gao X, Jiang N, Shao M B . Drought resistance identification and drought resistance indexes screening of Job’s Tears ( Coxi lacryma-jobi L.) germplasm resources at seedling stage
Sci Agric Sin, 2017,50:2872-2887 (in Chinese with English abstract).

[本文引用: 2]

汪灿, 周棱波, 张国兵, 张立异, 徐燕, 高旭, 姜讷, 邵明波 . 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选
作物学报, 2017,43:1381-1394.

[本文引用: 2]

Wang C, Zhou L B, Zhang G B, Zhang L Y, Xu Y, Gao X, Jiang N, Shao M B . Identification and indexes screening of drought resistance at adult plant stage in job’s tears germplasm resources
Acta Agron Sin, 2017,43:1381-1394 (in Chinese with English abstract).

[本文引用: 2]

赵东宾, 张海禄, 王仙, 齐军仓, 惠宏杉, 林立昊, 王凤, 郑许光 . 大麦叶片表皮蜡质组分和含量及其与抗旱性的关系
新疆农业科学, 2017,54(1):43-50.

[本文引用: 1]

Zhao D B, Zhang H L, Wang X, Qi J C, Hui H B, Lin L H, Wang F, Zheng X G . Relationship between epicuticular wax components and its content and drought resistance in barley leaf
Xinjiang Agric Sci, 2017,54(1):43-50 (in Chinese with English abstract).

[本文引用: 1]

张海禄, 齐军仓 . 大麦叶片表皮蜡质含量与抗旱性的关系研究
新疆农业科学, 2012,49(1):22-27.

[本文引用: 1]

Zhang H L, Qi J C . Study on the relationship between epicuticular wax content of barley leaves and drought resistance
Xinjiang Agric Sci, 2012,49(1):22-27 (in Chinese with English abstract).

[本文引用: 1]

谢蕾蕾 . 蜡质对大麦缺失突变体MB-1-5抗旱性影响及蜡质基因初步定位
甘肃农业大学硕士学位论文, 甘肃兰州, 2017.

[本文引用: 1]

Xie L L . Effect of Wax on Drought Resistance of Mutant MB-1-5 and Primary of Waxy Gene in Barley
MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2017 (in Chinese with English abstract).

[本文引用: 1]

鞠乐, 齐军仓, 贺雪, 王丹, 侯忠庆, 付强, 熊显鹏 . 大麦种子萌发期对渗透胁迫的响应及抗旱性鉴定指标的筛选
干旱地区农业研究, 2013,31(1):172-176.

[本文引用: 1]

Ju L, Qi J C, He X, Wang D, Hou Z Q, Fu Q, Xiong X P . The response of barley to osmotic stress during germination stage and the screening of drought resistance indicators
Agric Res Arid Areas, 2013,31(1):172-176 (in Chinese with English abstract).

[本文引用: 1]

鞠乐, 齐军仓, 成禄艳, 赵佳, 廖永兵 . 大麦种子萌发期对干旱胁迫的生理响应及其抗旱性评价
西南农业学报, 2013,26(1):93-98.

[本文引用: 1]

Ju L, Qi J C, Cheng L Y, Zhao J, Liao Y B . Physiological response of barley to drought stress during seed germination period and drought resistance evaluation
Southwest China J Agric Sci, 2013,26(1):93-98 (in Chinese with English abstract).

[本文引用: 1]

鞠乐, 齐军仓, 贺雪, 王丹 . 大麦种子萌发期抗旱性鉴定指标的筛选及抗旱性评价
新疆农业科学, 2016,53:2008-2014.

[本文引用: 1]

Ju L, Qi J C, He X, Wang D . Screening drought resistance identification index and drought resistance evaluation in barley during seed germination period
Xinjiang Agric Sci, 2016,53:2008-2014 (in Chinese with English abstract).

[本文引用: 1]

马小英, 贾方兴, 赵颖岚, 赵杰才 . 干旱和盐胁迫中大麦实时定量PCR内参基因的筛选
分子植物育种, 2016,11:3093-3101.

[本文引用: 1]

Ma X Y, Jia F X, Zhao Y L, Zhao J C . Reference genes screening for quantitative real-time PCR in barley under drought and salt stress
Mol Plant Breed, 2016,11:3093-3101 (in Chinese with English abstract).

[本文引用: 1]

汪军成, 孟亚雄, 徐先良, 王晋, 赖勇, 李葆春, 马小乐, 王化俊 . 大麦苗期抗旱性鉴定及评价
干旱地区农业研究, 2013,31(4):135-143.

[本文引用: 1]

Wang J C, Meng Y X, Xu X L, Wang J, Lai Y, Li B C, Ma X L, Wang H J . Identification and assessment on drought-resistance of Hordeum vulgare L. at seedling stage
Agric Res Arid Areas, 2013,31(4):135-143 (in Chinese with English abstract).

[本文引用: 1]

蒋花 . 大麦生长初期的抗旱生理特性研究
西北农林科技大学硕士学位论文, 陕西杨凌, 2012.

[本文引用: 1]

Jiang H . Study on Physiologic Characteristics of Initial Growth Barley Materials Related to Drought-Resistance
MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2012 (in Chinese with English abstract).

[本文引用: 1]

惠宏斌 . 干旱胁迫对大麦幼苗根系的影响及其与抗旱性关系的研究
石河子大学硕士学位论文,新疆石河子, 2016.

[本文引用: 1]

Hui H B . Effects of Drought Stress on Barley Seedling Roots with Different Drought Resistance
MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2016 (in Chinese with English abstract).

[本文引用: 1]

陈健辉, 李荣, 郭培国, 夏岩石, 田长恩, 缪绅裕 . 干旱胁迫对不同耐旱性大麦品种叶片超微结构的影响
植物学报, 2011,46(1):28-36.

[本文引用: 1]

Chen J H, Li R, Guo P G, Xia Y S, Tian C E, Miao S Y . Impact of drought stress on the ultrastructure of leaf cells in three barley genotypes differing in level of drought tolerance
Chin Bull Bot, 2011,46(1):28-36 (in Chinese with English abstract).

[本文引用: 1]

兰巨生 . 农作物综合抗旱性评价方法的研究
西北农业学报, 1998,7(3):85-87.

[本文引用: 1]

Lan J S . Comparison of evaluating methods for agronomic drought resistance in crops
Acta Agric Boreali-Occident Sin, 1998,7(3):85-87 (in Chinese with English abstract).

[本文引用: 1]

黎冬华, 刘文萍, 张艳欣, 王林海, 危文亮, 高媛, 丁霞, 王蕾, 张秀荣 . 芝麻耐旱性的鉴定方法及关联分析
作物学报, 2013,39:1425-1433.

[本文引用: 1]

Li D H, Liu W P, Zhang Y X, Wang L H, Wei W L, Gao Y, Ding X, Wang L, Zhang X R . Identification method of drought tolerance and association mapping for sesame ( Sesamum indicum L.).
Acta Agron Sin, 2013,39:1425-1433 (in Chinese with English abstract).

[本文引用: 1]

田又升, 谢宗铭, 吴向东, 王志军, 叶春秀, 张国丽 . 水稻种质资源萌发期抗旱性综合鉴定
干旱地区农业研究, 2015,33(4):173-180.

[本文引用: 2]

Tian Y S, Xie Z M, Wu X D, Wang Z J, Ye C X, Zhang G L . Identification of drought tolerance of rice germplasm during germination period
Agric Res Arid Areas, 2015,33(4):173-180 (in Chinese with English abstract).

[本文引用: 2]

李国瑞, 马宏亮, 胡雯媚, 汤永禄, 荣晓椒, 樊高琼 . 西南麦区小麦品种萌发期抗旱性综合鉴定
麦类作物学报, 2015,35(4):1-9.

[本文引用: 2]

Li G R, Ma H L, Hu W M, Tang Y L, Rong X J, Fan G Q . Identification of wheat cultivars for drought resistance during germination in southwest area
J Triticeae Crops, 2015,35(4):1-9 (in Chinese with English abstract).

[本文引用: 2]

李龙, 王兰芬, 武晶, 景蕊莲, 王述民 . 普通菜豆种质资源芽期抗旱性鉴定
植物遗传资源学报, 2013,14:600-605.

[本文引用: 2]

Li L, Wang L F, Wu J, Jing R L, Wang S M . Drought tolerance in common bean germplasm at bud stage
J Plant Genet Resour, 2013,14:600-605 (in Chinese with English abstract).

[本文引用: 2]

郑桂萍, 李金峰, 钱永德, 吕艳东, 刘丽华, 王伯伦 . 农作物综合抗旱性指标的评价分析
中国农学通报, 2005,21(10):109-121.



Zheng G P, Li J F, Qian Y D, Lyu Y D, Liu L H, Wang B L . Evaluation on comprehensive drought resistant index of crops
Chin Agric Sci Bull, 2005,21(10):109-121 (in Chinese with English abstract).



Kamoshita A, Babu R C, Boopathi N M, Fukai S . Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments
Field Crops Res, 2008,109:1-23.



Upadhyay H D . Variability for drought resistance related traits in the mini core collection of peanut
Crop Sci, 2005,45:1432-1440.



相关话题/指标 资源 鉴定 农业 作物