Analysis of differences in summer maize yield and fertilizer use efficiency under different cultivation managements
WANG Hong-Zhang, LIU Peng,*, JIA Xu-Cun, LI Jing, REN Hao, DONG Shu-Ting, ZHANG Ji-Wang, ZHAO BinCollege of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
This study was supported by the National Key R&D Program of China.2016YFD0300106 the National Natural Science Foundation of China.31771713 the National Natural Science Foundation of China.31371576 the Shandong Modern Agricultural Industry Technical System Project.SDAIT02-08
摘要 于2017—2018年在泰安、淄博和烟台, 根据生产调研和各地夏玉米高产经验, 在同一地块综合设置了超高产栽培、高产高效栽培和农户栽培3种栽培模式, 分别模拟超高产生产水平(SH)、高产高效生产水平(HH)和农户生产水平(FP) 3个层次。并分别设置不施氮(SHN0、HHN0、FPN0)、不施磷(SHP0、HHP0、FPP0)和不施钾(SHK0、HHK0、FPK0)的肥料空白处理。定量分析不同产量层次之间产量差及肥料利用效率差, 探究产量差和效率差的影响因素及缩差增效途径。结果显示, 当前山东省夏玉米SH、HH和FP的籽粒产量分别实现了光温潜力产量的68.13%、63.71%、53.22%。随着产量差距的增大, 肥料利用效率降低。FP的N、P、K肥料利用效率分别为4.23、5.83、4.94 kg kg -1, SH的分别为3.84、4.64、2.97 kg kg -1。通过优化栽培措施后, 高产高效管理模式能够较FP籽粒产量提升10.49%, N、P、K的肥料利用效率分别提高67.07%、101.35%、57.65%, 是实现产量与肥料利用效率协同提升的有效技术途径。对各产量水平进行产量性能分析发现, 随着产量水平的提高, 平均叶面积指数和单位面积穗数明显提高, 而穗粒数、平均净同化率和粒重则有所下降。随着产量水平的提高, 吐丝后干物质和N、P、K元素积累比例有增加的趋势。因此, 在保持现有功能性参数不降低情况下, 优化结构性参数是当前产量与资源利用效率协同提升的有效措施, 今后高产高效应更加注重生育后期群体结构性能的优化。 关键词:夏玉米;产量差;肥料利用
Abstract Our study was conducted in Tai’an, Zibo, and Yantai city from 2017 to 2018. According to the production research and experience of high-yield summer maize, three cultivation modes simulating super-high production level (SH), high production and high-efficiency production level (HH), and farmer production level (FP) were comprehensively set up in the same plot. The fertilizer blanks were applied with no nitrogen (SHN0, HHN0, FPN0), no phosphorus (SHP0, HHP0, FPP0), and no potassium (SHK0, HHK0, FPK0). Quantitative analysis of the yield gap and fertilizer utilization efficiency gap under different yield levels was carried out to explore the factors affecting yield gap and efficiency gap, and the way to reduce the gap and improve the efficiency. The grain yields of SH, HH, and FP of summer maize in Shandong province were realized 68.13%, 63.71%, and 53.22% of the potential yield of light and temperature. The fertilizer utilization efficiency decreased with the enlarged yield gap. The agronomic utilization rates of N, P and K fertilizers in FP were 4.23, 5.83, and 4.94 kg kg -1, respectively. The N, P, and K fertilizer utilization efficiencies of FP were 4.23, 5.83, and 4.94 kg kg -1, and those of SH were 3.84, 4.64, and 2.97 kg kg -1, respectively. After optimizing the cultivation measures, the high-yield and high-efficiency management mode increased the fertilizer utilization efficiency of N, P, and K by 67.07%, 101.35%, and 57.65%, respectively, and the output by 10.49%, as compared with FP. It is an effective technical way to achieve the synergistic improvement of yield and fertilizer use efficiency. The yield performance analysis of summer maize yields showed that with the increase of yield level, the mean leaf area index and the number of panicles per unit area increased significantly, while the number of kernels per panicle, average net assimilation rate and grain weight decreased. At the same time, with the increase of yield level, the accumulation ratio of biomass and N, P, and K uptake decreased in pre-silking stage, and increased in post-silking stage. Therefore, under the condition of keeping functional parameters unchanged on the existing basis, optimizing structural parameters is an effective measure for current yield and efficiency increase, and with the increase of yield, more attention should be paid to structural optimization in post-silking stage. Keywords:summer maize;yield gap;fertilizer utilization
PDF (600KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 王洪章, 刘鹏, 贾绪存, 李静, 任昊, 董树亭, 张吉旺, 赵斌. 不同栽培管理条件下夏玉米产量与肥料利用效率的差异解析[J]. 作物学报, 2019, 45(10): 1544-1553. doi:10.3724/SP.J.1006.2019.93002 WANG Hong-Zhang, LIU Peng, JIA Xu-Cun, LI Jing, REN Hao, DONG Shu-Ting, ZHANG Ji-Wang, ZHAO Bin. Analysis of differences in summer maize yield and fertilizer use efficiency under different cultivation managements[J]. Acta Agronomica Sinica, 2019, 45(10): 1544-1553. doi:10.3724/SP.J.1006.2019.93002
玉米为我国第一大粮食作物, 在国家粮食安全中占重要地位。在当今人口迅速增长、农业用地与其他用途土地竞争日益严峻的大背景下, 粮食总产再增加只能依靠单产的增加[1]。1980—2015年, 山东省夏玉米平均单产由3.85 t hm-2增加到6.46 t hm-2, 增长67.8%, 但仅实现了当地气候生产潜力的22.75%, 与高产记录产量之间仍有14.58 t hm-2的产量差距[2]。同时, 我国玉米田当季氮、磷和钾肥的利用率只有30%~35%、10%~25%和35%~50%, 远低于发达国家的50%~60%[3]。近几十年产量的提升依赖于高产品种的选育和化肥的大量施用, 但由于产量和效率的不协调发展, 产量提升的同时肥料利用效率显著下降[4,5]。众多****认为, 华北平原夏玉米的最佳种植密度为80,000~120,000株 hm-2, 但实际的种植密度不足60,000株 hm-2 [6,7]。不合理施用氮肥导致夏玉米生育前期的氮肥利用率只有10%左右, 通过氨挥发、反硝化和淋洗损失的氮肥超过270 kg N hm-2 [8,9,10,11,12]。因此, 在缩减产量差、提高单产的同时还面临着提升肥料利用效率的巨大挑战。近年来研究发现肥料运筹、种植密度、土壤条件以及其他的农业管理均可以缩减产量差距、提升肥料利用效率[13,14,15]。通过优化施肥, 能够在提高氮素利用效率的同时增加产量13%~15%[16]。高产试验中对最佳种植密度、均衡施肥和田间管理进一步优化, 在保证肥料利用效率的前提下, 产量甚至可以达到15 t hm-2 [17]。因此, 需要更多关注实现高效可持续生产。通过量化夏玉米不同产量层次之间的产量差、效率差, 明确二者之间的关系, 探明缩小产量差、效率差的有效途径, 对于提高产量和资源利用效率具有重大意义。
由表3可见, 试验期间山东省夏玉米的YRT为18.12 t hm-2, 各试验点平均YSH、YHH、YFP分别为12.27、11.45、9.56 t hm-2。产量水平差距明显, YSH、YHH和YFP与YRT之间分别存在31.87%、36.29%和46.78%的产量差距。SH和HH能有效缩小产量差距, 平均YSH和YHH较YFP产量分别提高28.35%和19.77%。其中, 2017年泰安、淄博、烟台试验点的YSH和YHH较YFP分别提高23.37%、23.16%、21.73%和13.34%、16.53%、20.91%; 2018年泰安、淄博、烟台试验点的YSH和YHH较YFP产量分别提升43.20%、31.14%、29.81%和29.49%、19.98%、19.87%。
Table 3 表3 表3不同产量层次夏玉米产量及各级产量差 Table 3Yield and yield gap at different yield levels
年份 Year
地点 Site
产量 Yield (t hm-2)
产量差 Yield gap (%)
YRT
YSH
YHH
YFP
YGI
YGII
YGIII
2017
泰安Tai’an
17.71
12.30 a
11.30 b
9.97 c
30.55
36.19
43.70
淄博Zibo
16.78
12.07 a
11.42 b
9.80 c
28.07
31.94
41.60
烟台Yantai
15.84
11.99 a
11.91 a
9.85 b
24.31
24.81
37.82
2018
泰安Tai’an
19.06
12.53 a
11.33 b
8.75 c
34.26
40.56
54.09
淄博Zibo
20.25
12.34 a
11.29 b
9.41 c
39.06
44.25
53.53
烟台Yantai
19.09
12.41 a
11.46 b
9.56 c
34.99
39.97
49.92
平均Average
18.12
12.27 a
11.45 b
9.56 c
31.87
36.29
46.78
YRT: light temperature production potential yield; YSH: super high yield level yield; YHH: high yield and high efficiency level yield; YFP: farmers’ level yield; YGI: yield gap I; YGII: yield gap II; YGIII: yield gap III. Values followed by different letters with in a row are significantly different between treatments at P < 0.05. YRT: 光温生产潜力产量; YSH: 超高产水平产量; YHH: 高产高效水平产量; YFP: 农户水平产量; YGI: 产量差I; YGII: 产量差II; YGIII: 产量差III。同行数据后不同小写字母表示处理间差异达0.05显著水平。
Table 4 表4 表4不同产量层次夏玉米产量性能方程参数的差异 Table 4Differences in parameters of yield performance equation of summer maize under different yield levels
年份 Year
产量水平 Yield level
结构性参数Structural parameter
功能性参数Functional parameter
MLAI
EN (×104 hm-2)
GN
MNAR (g m-2 d-1)
HI
GW (g)
2017
SH
3.69 a
7.93 a
501.30 b
6.69 b
0.51 a
370.16 b
HH
3.51 b
7.61 a
502.97 b
6.77 b
0.51 a
366.66 b
FP
3.00 c
6.76 b
557.40 a
8.38 a
0.50 a
383.32 a
2018
SH
3.47 a
7.84 a
524.40 b
7.23 b
0.53 a
371.36 a
HH
3.28 b
7.46 a
506.00 c
6.92 c
0.53 a
370.52 a
FP
3.01 c
6.44 b
563.47 a
7.49 a
0.53 a
379.31 a
平均 Average
SH
3.45
7.93
516.20
7.85
0.51
377.38
HH
3.23
7.57
507.50
7.72
0.52
377.76
FP
2.94
6.64
562.57
8.88
0.50
383.86
MLAI: mean leaf area index; EN: ear number; GN: grain number; MNAR: mean net assimilation rate; HI: harvest index; GW: grain weight. Values followed by different letters with in a column are significantly different between treatments at P < 0.05. Other abbreviations are the same as those given in Table 2. MLAI: 平均叶面积指数; EN: 穗数; GN: 穗粒数; MNAR: 平均净同化率; HI: 收获指数; GW: 粒重。同列数据后不同小写字母表示处理间差异达0.05显著水平。其他缩写同表2。
图中不同小写字母表示处理间差异达0.05显著水平。缩写同图1。 Fig. 3N, P, K uptake of summer maize under different yield levels
Bars superscripted by different small letters are significantly different between treatments at P < 0.05. Abbreviations are the same as those given in Fig. 1.
2.6 不同产量层次夏玉米N、P、K肥料利用效率的差异
由图4可见, 不同产量水平夏玉米的N、P、K肥料利用效率差异显著, 总体表现为HH>FP>SH。HH、FP和SH的氮肥农学利用率分别为6.64、4.23和3.84 kg kg-1, HH的氮肥农学利用率较FP和SH分别提高了56.81%和72.79%。其中2017年HH的氮肥农学利用率较FP和SH在泰安、淄博、烟台试验点分别提高了20.11%、61.40%、58.62%和29.94%、66.80%、84.71%; 2018年分别提高了88.91%、66.60%、51.40%和90.71%、83.55%、87.13%。
图中不同小写字母表示处理间差异达0.05显著水平。缩写同图1。 Fig. 4Fertilizer use efficiency of summer maize at different yield levels
Bars superscripted by different small letters are significantly different between treatments at P < 0.05. Abbreviations are the same as those given in Fig. 1.
HH、FP和SH处理的磷肥农学利用率分别为10.10、5.83和4.64 kg kg-1, HH的磷肥农学利用率较FP和SH分别提高了73.15%和117.66%。其中2017年HH的磷肥农学利用率较FP和SH在泰安、淄博、烟台试验点分别提高了65.73%、49.87%、68.04%和89.82%、61.38%、97.03%; 2018年分别提高了137.40%、34.92%、109.51%和217.41%、156.28%、134.75%。
HH、FP和SH的钾肥农学利用率分别为5.61、4.94和2.97 kg kg-1, HH的钾肥农学利用率较FP和SH分别提高了13.66%和89.29%。其中2017年HH的钾肥农学利用率较FP和SH在泰安、淄博、烟台试验点分别提高了10.82%、6.98%、39.29%和49.14%、68.58%、97.64%; 2018年分别提高了4.85%、4.56%、23.67%和65.23%、179.82%、121.09%。
Cassman KG . Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture , 1999,96:5952-5959. [本文引用: 2]
Wang QC, Chai LG, Li ZX, LiuX . Current status and development strategies of maize production in Shandong province J Maize Sci, 2006,14(5):159-162 (in Chinese with English abstract). [本文引用: 1]
Zhang FS, Wang JQ, Zhang WF, Cui ZL, Ma WQ, Chen XP, Jiang RF . Current status and improvement of fertilizer utilization rate of main grain crops in China Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract). [本文引用: 1]
YuY, HuangY, ZhangW . Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management , 2012,136:65-75. [本文引用: 1]
PremS, B, ChristianD, LathaN, AmitR, RudyR . Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants , 2015,51:897-911. [本文引用: 1]
LiuW, LyuP, SuK, Yang JS, Zhang JW, Dong ST, LiuP, Sun QQ . Effects of planting density on the grain yield and source-sink characteristics of summer maize Chin J Appl Ecol, 2010,21:1737-1743 (in Chinese with English abstract). [本文引用: 1]
Chen GP, Yang GH, ZhaoM, Wang LC, Wang YD, Xue JQ, Gao JL, Li DH, Dong ST, Li CH, Song HX, Zhao JR . Studies on maize small area super-high yield trails and cultivation technique J Maize Sci, 2008,16(4):1-4 (in Chinese with English abstract). [本文引用: 1]
Wang QX, WangP, Shen LX, Wang XL, Zhang HF, Zhai ZX . Effect of nitrogen application time on dynamics of nitrate content and apparent nitrogen budget in the soil of summer maize fields Acta Ecol Sin, 2004,24:1582-1588 (in Chinese with English abstract). [本文引用: 1]
Wu YC, Zhou SL, Wang ZM, Luo YQ . Dyanmics and residue of soil nitrate in summer maize field of North China Acta Ecol Sin, 2005,25:1620-1625 (in Chinese with English abstract). [本文引用: 1]
Fang QX, YuQ, Wang EL, Chen YH, Zhang GL, WangJ, Li LH . Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat- maize double cropping system in the North China Plain , 2006,284:335-350. [本文引用: 1]
Ju XT, Kou CL, Zhang FS, ChristieP . Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain , 2006,143:117-125. [本文引用: 1]
Zhao RF, Chen XP, Zhang FS . Nitrogen cycling and balance in winter-wheat-summer-maize rotation system in Northern China Plain Acta Pedol Sin, 2009,46:684-697 (in Chinese). [本文引用: 1]
Bai HZ, Tao FL . Sustainable intensification options to improve yield potential and eco-efficiency for rice-wheat rotation system in China , 2017,211:89-105. [本文引用: 1]
Cui ZL, Wang GL, Yue SC, WuL, Zhang WF, Zhang FS, Chen XP . Closing the N-use efficiency gap to achieve food and environmental security , 2014,48:5780. [本文引用: 1]
Liu ZJ, Yang XG, Lin XM, Hubbard KG, LyuS, WangJ . Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of northeast China , 2016,541:756-764. [本文引用: 2]
Zhou BY, Sun XF, Ding ZS, MaW, ZhaoM . Multisplit nitrogen application via drip irrigation improves maize grain yield and nitrogen use efficiency , 2017,57:1687-1703. [本文引用: 1]
Jin LB, Cui HY, LiB, Zhang JW, Dong ST, LiuP . Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China , 2012,134:30-35. [本文引用: 1]
Lai RS, Yu HL, Huang JY . Review on the calculation model of crop climate production potential Jiangsu Agric Sci, 2014,42(5):11-14 (in Chinese). [本文引用: 2]
LiuJ, Pan YH, Wang PH, Li YM, JinL, Wen YJ, Gao SX . Spatial and temporal characteristics of climatic potential productivity of maize in Liaoning Province from 1966 to 2015 Chin J Ecol, 2018,37:3396-3406 (in Chinese with English abstract). [本文引用: 1]
ZhangB, ZhaoM, Dong ZQ, Chen CY, SunR . “Three combination structure” quantitative expression and high yield analysis in crops Acta Agron Sin, 2007,33:1674-1681 (in Chinese with English abstract). [本文引用: 1]
ZhaoM, Li JG, ZhangB, Dong ZQ, Wang MY . The compensatory mechanism in exploring crop production potential Acta Agron Sin, 2006,32:1566-1573 (in Chinese with English abstract). [本文引用: 2]
Godfray HC, Beddington JR, Crute IR, HaddadL, LawrenceD, Muir JF, PrettyJ, RobinsonS, Thomas SM, ToulminC . Food security: the challenge of feeding 9 billion people , 2010,327(5967):812. [本文引用: 1]
Li SK, Zhao JR, Dong ST, ZhaoM, Li CH, Cui YH, Liu YH, Gao JL, Xue JQ, Wang LC, WangP, Lu WP, Wang JH, Yang QF, Wang ZM . Advances and prospects of maize cultivation in China Sci Agric Sin, 2017,50:1941-1959 (in Chinese with English abstract). [本文引用: 1]
Cassman KG, DobermannA, Walters DT, Yang HS . Meeting cereal demand while protecting natural resources and improving environmental quality , 2003,28:315-358. [本文引用: 1]
Lobell DB, Cassman KG, Field CB . Crop yield gaps: their importance, magnitudes, and causes , 2009,34:179-204. [本文引用: 1]
Chen GP, Gao JL, ZhaoM, Dong ST, Li SK, Yang QF, Liu YH, Wang LC, Xue JQ, Liu JG, Li CH, Wang YH, Wang YD, Song HX, Zhao JR . Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years Acta Agron Sin, 2012,38:80-85 (in Chinese with English abstract). [本文引用: 1]
TilmanD, BalzerC, HillJ, Befort BL . Global food demand and the sustainable intensification of agriculture , 2011,108:20260. [本文引用: 1]
TilmanD, Cassman KG, Matson PA, NaylorR, PolaskyS . Agricultural sustainability and intensive production practices , 2002,418:671-677. [本文引用: 1]
ZhangW, CaoG, LiX, Zhang HY, WangC, Liu QQ, Chen XP, Cui ZL, Shen JB, Jiang RF, Mi GH, Miao YX, Zhang FS, Dou ZX . Closing yield gaps in China by empowering smallholder farmers , 2016,537:671. [本文引用: 1]
Shen JB, Cui ZL, Miao YX, Mi GH, Zhang HY, Fan MS, Zhang CC, Jiang RF, Zhang WF, Li HG, Chen XP, Li XL, Zhang FS . Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency , 2013,2:1-8. [本文引用: 1]
Chen XP, Cui ZL, Fan MS, VitousekP, ZhaoM, Ma WQ, Wang ZL, Zhang WJ, Yan XY, Yang JC, Deng XP, GaoQ, ZhangQ, Guo SW, RenJ, Li SQ, Ye YL, Wang ZH, Huang JL, Tang QY, Sun YX, Peng XL, Zhang JW, He MR, Zhu YJ, Xue JQ, Wang GL, WuL, AnN, Wu LQ, MaL, Zhang WF, Zhang FS . Producing more grain with lower environmental costs , 2014,514:486-489. [本文引用: 1]
Sun HY, Zhang XY, Chen SY, Wang YM, Shao LW, Gao LN . Effect of meteorological factors on grain yield of summer maize in the North China Plain Chin J Agrometeorol, 2009,30:215-218 (in Chinese with English abstract). [本文引用: 1]
Liu SY, Dong ST, Hu CH, BaiP, LyuX . Relationship between ecological environment and maize yield and quality Acta Agron Sin, 2005,31:571-576 (in Chinese with English abstract). [本文引用: 1]
Mueller ND, Gerber JS, JohnstonM, Ray DK, RamankuttyN, Foley JA . Closing yield gaps through nutrient and water management , 2013,494:390-390. [本文引用: 1]
Foley JA, RamankuttyN, Brauman KA, Cassidy ES, Gerber GS, JohnstonM, Mueller ND, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockstr?m J, Sheehan J, Siebert S, Tilman D, Zaks D P M. Solutions for a cultivated planet , 2011,478:337-342. [本文引用: 1]
Li SK, Wang KR, Xie RZ, HouP, MingB, Yang XX, Han DS, Wang YH . Implement dense planting and high-yield mechanized production to achieve high yield and high efficiency of corn Crops, 2016, ( 4):1-6 (in Chinese with English abstract). [本文引用: 1]