删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

辽河流域玉米籽粒脱水特点及适宜收获期分析

本站小编 Free考研考试/2021-12-26

黄兆福1,2,*, 明博2,*, 王克如2, 谢瑞芝2, 杨飞1, 王志刚3, 肖春华,1,*, 李少昆,1,2,*1 石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832003
2 中国农业科学院作物科学研究所 / 农业部作物生理生态重点实验室, 北京 100081
3 内蒙古农业大学, 内蒙古呼和浩特 010019

Characteristics of maize grain dehydration and prediction of suitable harvest period in Liao River Basin

HUANG Zhao-Fu1,2,*, MING Bo2,*, WANG Ke-Ru2, XIE Rui-Zhi2, YANG Fei1, WANG Zhi-Gang3, XIAO Chun-Hua,1,*, LI Shao-Kun,1,2,* 1 College of Agronomy, Shihezi University / Key Laboratory of Oasis Eco-agriculture, Xinjiang Uygur Autonomous Region Production and Construction Group, Shihezi 832003, Xinjiang, China
2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
3 Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China

通讯作者: 李少昆, E-mail: lishaokun@caas.cn, Tel: 010-82108891; 肖春华, E-mail: xiaochunhuaxj@163.com;

收稿日期:2018-08-20接受日期:2019-01-12网络出版日期:2019-02-07
基金资助:本研究由国家重点研发计划项目.2017YFD0300803
国家现代农业产业技术体系建设专项.CARS-02-25
中国农业科学院农业科技创新工程资助


Received:2018-08-20Accepted:2019-01-12Online:2019-02-07
Fund supported: This study was supported by the National Key Research and Development Program of China .2017YFD0300803
the China Agriculture Research System.CARS-02-25
the Agricultural Science and Technology Innovation Project of CAAS.

作者简介 About authors
黄兆福,E-mail:819969026@qq.com

;明博,E-mail:mingbo@caas.cn









摘要
辽河流域处于中国东北春玉米区南部, 积温资源相对丰富, 在该区域推广玉米机械粒收技术具有较好的热量资源基础, 但区域内玉米收获时籽粒含水率偏高, 机械粒收的破碎率、损失率偏高等质量问题突出。分析区域内主推品种的籽粒脱水特征、基于热量资源条件确定机械粒收的适宜时间, 是解决上述问题的合理途径。2017年选择该区域主推的29个不同熟期玉米品种, 在开鲁县和铁岭县开展了籽粒脱水动态观测试验。结合流域内常年春玉米播种日期、不同品种生长发育及籽粒脱水积温需求、历史气象数据等分析结果, 建立不同品种在辽河流域适宜机械粒收时期的预测方法。结果显示, Logistic Power模型可以很好地模拟春玉米籽粒含水率变化过程。不同品种籽粒实收含水率与模拟含水率间存在极显著的线性关系, 决定系数R2为0.916 (n = 45), 均方根误差RMSE为1.217。研究建立的不同品种籽粒含水率模型具有极佳的区域适用性, 以2017年国审的4个宜机收品种及流域内2个主栽品种研究, 明确了不同品种适宜机械粒收时期的分布规律。国审品种中, 德育919和京农科728自播种至籽粒含水率降至25%活动积温需求低于3200°C d, 在辽河流域大部地区可于9月中下旬达到高质量机械粒收的籽粒含水率要求。泽玉8911和吉单66积温需求低于3400°C d, 可于10月上中旬在流域内实现机械粒收, 较上述德育919和京农科728晚10~20 d。而当地主栽的辽单575和京科968脱水至适宜籽粒含水率的积温需求较泽玉8911和吉单66多200°C d, 无法在当地常规收获期实现高质量的机械粒收。本研究检验了基于Logistic Power模型的籽粒含水率预测模型在区域分析应用中的精度。通过比较国审宜机收品种与当地主栽品种的籽粒含水率变化、成熟和脱水的积温需求以及适宜机械粒收日期的空间分布规律, 更新现有品种有助于在辽河流域实现常规收获期内的高质量机械粒收。
关键词: 辽河流域;玉米;籽粒脱水动态;机械粒收;粒收时期

Abstract
Liao River Basin (LRB) is located in the south of the northeast China, mainly planting spring maize. The technology of grain mechanical harvesting is promoted based on the better thermal resources in LRB, but it is impeded by the higher grain moisture at harvest, higher grain broken rate and higher yield loss rate. In order to solve problem, characteristics of grain dehydration of main cultivars need to be researched and the suitable harvesting time ought to be determined based on the thermal resources. The study was aimed at selecting suitable cultivars and evaluating the quality of grain mechanical harvesting. In 2017, the 29 maize cultivars with different maturity periods were weed to investigate grain dehydration dynamics in Kailu county and Tieling county. On the basis of the analysis results of sowing date of perennial spring maize in the basin, growth and development of different varieties, demand of grain dehydration accumulated temperature and historical meteorological data, the prediction method of suitable mechanical grain harvest period for different varieties was established in LRB. Logistic Power model was used to match the dynamic process of grain dehydration of spring maize. There was a significant linear relationship between the actual grain moisture at harvest and the simulated grain moisture (R2= 0.916, RMSE = 1.217), showing an excellent regional adaptability of this model. Using four cultivars suitable for grain mechanical harvest in 2017 national trial and two main cultivars grown in LRB, distribution regulations of the suitable harvest period were clarified. Among the four cultivars, the actively accumulated temperature requirements of Deyu 919 and Jingnongke 728 were less than 3122°C d from sowing to the stage with grain moisture reducing to 25%, showing that the better period of grain mechanical harvest was in the middle and late September in most parts of LRB. While the other two cultivars of Zeyu 8911 and Jidan66 had accumulated temperature requirements 3400°C d, and suitable harvest period in early October which was roughly 10-20 days behind there of the two former cultivars. As less than for the two main cultivars—Liaodan 575 and Jingke 968, their requirements of accumulated temperature were 200°C d more than there of Zeyu 8911 and Jidan66, which is difficult to achieve a high-quality mechanical grain harvesting at normal time. The research verified the application accuracy of the predicting model of grain moisture established based on Logistic Power model. Comparing the changes of grain moisture content, the accumulated temperature requirements to maturity and dehydration, and spatial distribution regulations of suitable period of grain mechanical harvesting between national trial cultivars and local main cultivars, and updating the existing cultivars and helpful to achieve high-quality mechanical grain harvesting in the LRB.
Keywords:Liao River Basin;maize;grain dehydration dynamic;mechanical grain harvesting;grain harvesting period


PDF (3912KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
黄兆福, 明博, 王克如, 谢瑞芝, 杨飞, 王志刚, 肖春华, 李少昆. 辽河流域玉米籽粒脱水特点及适宜收获期分析[J]. 作物学报, 2019, 45(6): 922-931. doi:10.3724/SP.J.1006.2019.83062
HUANG Zhao-Fu, MING Bo, WANG Ke-Ru, XIE Rui-Zhi, YANG Fei, WANG Zhi-Gang, XIAO Chun-Hua, LI Shao-Kun. Characteristics of maize grain dehydration and prediction of suitable harvest period in Liao River Basin[J]. Acta Crops Sinica, 2019, 45(6): 922-931. doi:10.3724/SP.J.1006.2019.83062


辽河流域是东北重要的玉米产区, 处于春播一熟制玉米种植区南部, 热量资源相对丰富, 玉米适收期长, 是推广玉米机械粒收技术的优势区域[1,2]。前期宜机收品种鉴选和机械粒收技术示范研究显示, 籽粒破碎和产量损失是辽河流域机械粒收所面临的主要质量问题[3,4,5], 与收获时籽粒含水率偏高密切相关[6,7,8,9,10]。国外机械粒收时籽粒含水率一般在15%~25%, 收获高峰期晚于生理成熟高峰期约1个月[11,12]。玉米品种脱水特性[13]和收获时期[14]是决定收获时籽粒含水率的关键。籽粒脱水过程受温度、湿度、风速、降水等气象因素的推动和影响[15,16,17,18,19]。基于温度、湿度等气象因子可以有效模拟籽粒含水率的变化过程[20,21]。因此, 研究品种的籽粒脱水特征、分析其适收期是解决机械粒收质量问题的关键[22,23]。本研究通过调查多个熟期品种籽粒含水率动态变化, 建立不同品种籽粒脱水模型, 基于区域常年气象条件分析其适宜粒收时期, 为东北春玉米区机械粒收技术推广提供依据。

1 材料与方法

1.1 试验点及气象条件

辽河流域位于中国东北地区南部, 跨内蒙古、辽宁、吉林、河北四省区, 面积21.9万平方千米, 属温带半湿润半干旱的季风气候, 无霜期大于160 d, 年均温7~10°C, 年降水量约为350~1000 mm, 从东南向西北递减, 年降水量的65%集中于4月至9月间。辽河流域西部通辽、赤峰, 及中下游地区的吉林省四平、辽源、辽宁省铁岭、沈阳、辽阳、鞍山、营口一线是东北重要的玉米产区。区域内以春播一熟制玉米种植模式为主[24], 是东北春玉米产区中热量资源相对丰富的地区, 玉米适收期长[25]。辽宁中部地区玉米生育季内(4月至10月)活动积温(≥0°C积温)最高, 为3750~4000°C d, 年降水量450~700 mm; 内蒙古自治区的西辽河平原通辽地区活动积温在3600~3750°C d, 燕山北麓平原赤峰地区活动积温3300~3600°C d, 内蒙古辖区内年降水量较少, 在350~450 mm之间(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1辽河流域积温、降水资源分布及试验点

Fig. 1Distribution of thermal and water resources and test yields in Liaohe river basin



1.2 试验设计与参试品种

2013—2017年间在内蒙古自治区通辽市科尔沁区、通辽市开鲁县、赤峰市松山区、赤峰市翁牛特旗, 辽宁省铁岭市蔡牛镇、沈阳市沈北区、鞍山市海城等地开展了2个省区、7个区县、18点次的品种鉴选和机械粒收质量评价试验。2017年, 选择该区域主推的29个不同熟期玉米品种(表1), 分别在内蒙古自治区通辽市开鲁县和辽宁省铁岭市铁岭县开展了籽粒脱水动态观测。其中, 在开鲁试验点5月10日播种, 7月19日进入吐丝期, 7月31日开始取样测定, 10月10日收获; 在铁岭试验点4月28日播种, 7月10日进入吐丝期, 7月26日开始取样测定, 10月20日收获。吐丝前, 选择生长一致、无病虫为害的植株雌穗套袋, 吐丝后0~3 d内统一授粉。观测间隔5~7 d取样1次, 接近生理成熟期时2~3 d测定1次。取样时选择5个套袋植株的果穗, 放入自封袋立即带回实验室。手工脱粒, 取果穗中部籽粒, 称鲜重后放入烘箱, 105°C杀青30 min, 85°C下烘至恒重称量。含水率(%) = (鲜重-干重)/鲜重×100%。

Table 1
表1
表1试验品种名称
Table 1Hybrid in the experiment
地点Location品种 Hybrid
开鲁金珠58, 德育919, 金庆202, 华美1号, 迪卡159, 东单913, ND865, 东单507, 泽玉501, S1651, 宏硕588, 泽玉8911, 东单1331, 金庆Q9, 德丰88, 优迪919, 世宾388, 翔玉998
KailuJinzhu 58, Deyu 919, Jinqing 202, Huamei 1, Dika 159, Dongdan 913, ND865, Dongdan 507, Zeyu 501, S1651, Hongshuo 288, Zeyu 8911, Dongdan 1331, Jinqing Q9, Dengfeng 88, Youdi 919, Shibin 388, Xiangyu 998
铁岭丰垦139, 丹玉311, 铁研388, 宏育236, 吉单66, 泽玉501, 泽玉8911, 陕单636, 东单913, 东单1311, 华美1号, 中迪702, 中迪710, 翔玉998, 优迪919, 迪卡159, 辽单575, 京农科728, 京科968
TielingFengken 139, Danyu 311, Tieyan 388, Hongyu 236, Jidan 66, Zeyu 501, Zeyu 8911, Shaandan 636, Dongdan 913, Dongdan 1331, Huamei 1, Zhongdi 702, Zhongdi 710, Xiangyu 998, Youdi 919, Dika 159, Liaodan 575, Jingnongke 728, Jingke 968

新窗口打开|下载CSV

1.3 籽粒含水率模型构建

采用Logistic Power非线性增长模型[21]模拟不同品种籽粒含水率变化过程, 吐丝后活动积温(≥0°C积温)为自变量, 籽粒含水率为因变量, 建立籽粒含水率模型。

$\text{MC}=\frac{a}{1+{{\left( \frac{T}{b} \right)}^{c}}}$

式中, MC为籽粒含水率(%); T (°C d)为授粉后积温, 以临近的国家气象地面观测台站数据计算; a、b、c为模型参数。a为模型极值, 即籽粒初始含水率, 本研究将a参数设定为90。使用CurveExpert Professional 2.2软件的非线性曲线拟合功能, 得出不同品种回归模型bc参数的最优估计值, 拟合结果经模型显著性检验并计算决定系数R2。以区域内多年多点机械粒收品种鉴选试验的实收籽粒含水率与模型模拟含水率的均方根误差RMSE检验模型准确性。

1.4 适宜机械粒收日期的时空分析

以该区域春玉米常年播种日期为起点, 通过试验确定不同品种生长发育及籽粒脱水的活动积温需求, 结合历史气象数据估算累积相应活动积温所需的天数, 累加得到不同品种在辽河流域籽粒含水率降至适宜机械粒收标准的日期。各地玉米播种日期由玉米产业技术体系生产调研数据统计分析得出, 包含区域内20个主产县市区。历史气象资料包括区域内20个气象站点(去除高海拔气象站点) 1961— 2015年数据[26]。利用ArcGIS地统计分析软件进行多源数据融合、空间插值及作图[27,28]

1.5 数据处理

采用Microsoft Excel 2010处理机械粒收品种鉴选及籽粒脱水动态观测试验数据和作图, 使用SPSS17.0进行方差和模型显著性分析。

2 结果与分析

2.1 不同玉米品种籽粒脱水与积温的关系

2017年在铁岭、开鲁的籽粒脱水动态观测试验, 选用不同熟期类型的玉米品种29个, 其中泽玉501、优迪919、东单1331、迪卡159、翔玉998、东单913、华美1号和泽玉8911为两地共用品种。以该品种雌穗统一授粉时间为起点, 计算籽粒含水率测定时的累积活动积温, 将活动积温与籽粒含水率进行模型拟合[21], 得到上述29个玉米品种的籽粒含水率模型特征参数。全部品种模型显著性检验均达到极显著水平(P<0.01), 决定系数R2均高于0.95 (表2)。共有品种在两地的脱水动态趋势一致, 可用相同的特征参数模拟两地的含水率变化动态。

Table 2
表2
表2不同玉米品种的含水率-积温方程参数值
Table 2Parameters of water content-accumulated temperature equation of different cultivars
品种
Hybrid
地点
Location
bcR2样本量
n
ND865开鲁 Kailu1265.972.250.9819
泽玉501 Zeyu 501开鲁, 铁岭 Kailu, Tieling1093.891.660.9818
世宾388 Shibin 388开鲁 Kailu1087.051.820.9919
德丰88 Defeng 88开鲁 Kailu1085.032.270.9919
优迪919 Youdi 919开鲁, 铁岭 Kailu, Tieling1081.161.750.9818
中迪710 Zhongdi 710铁岭 Tieling1079.051.870.9920
东单1331 Dongdan 1331开鲁, 铁岭 Kailu, Tieling1060.521.890.9718
S1651开鲁 Kailu1053.261.730.9919
迪卡159 Dika 159开鲁, 铁岭 Kailu, Tieling1051.991.490.9818
金庆Q9 Jinqing Q9开鲁 Kailu1049.912.110.9919
中迪702 Zhongdi 702铁岭 Tieling1040.692.170.9820
丹玉311 Danyu 311铁岭 Tieling1039.331.650.9720
宏硕588 Hongshuo 588开鲁 Kailu1025.911.850.9919
翔玉998 Xiangyu 998开鲁, 铁岭 Kailu, Tieling1023.581.790.9820
陕单636 Shaandan 636铁岭 Tieling1018.711.900.9820
铁研388 Tieyan 388铁岭 Tieling1005.381.690.9720
吉单66* Jidan 66*铁岭 Tieling1002.671.920.9820
宏玉236 Hongyu 236铁岭 Tieling1002.671.920.9820
丰垦139 Fengken 139铁岭 Tieling992.812.050.9820
德育919* Deyu 919*开鲁 Kailu Kailu, Tieling986.472.220.9919
京农科728* Jingnongke 728*铁岭 Tieling979.461.950.9920
东单507 Dongdan 507开鲁 Kailu975.561.380.9819
东单913 Dongdan 913开鲁, 铁岭 Kailu, Tieling973.421.460.9818
辽单575 Liaodan 575铁岭 Tieling966.181.590.9920
华美1号 Huamei 1开鲁, 铁岭 Kailu, Tieling957.271.780.9618
泽玉8911* Zeyu 8911*开鲁, 铁岭 Kailu, Tieling946.401.870.9918
金庆202 Jinqing 202开鲁 Kailu943.391.570.9619
京科968 Jingke 968铁岭 Tieling859.911.300.9720
金珠58 Jinzhu 58开鲁 Kailu845.781.690.9619
* shows the national audited maize varieties; b, c, and R2 are the model parameters and the coefficient of determination respectively.
*为国审宜机收玉米品种, bcR2分别为模型参数和决定系数。

新窗口打开|下载CSV

分析2013—2017年在辽河流域2个省区、7个试验点开展的机械粒收品种鉴选试验, 筛选其中已建立籽粒含水率预测模型的品种数据, 共有45点/次的机械粒收实收含水率测定结果。根据鉴选试验的吐丝期和收获期, 计算其间的活动积温。利用各品种的籽粒含水率模型, 模拟收获时的籽粒含水率。不同品种籽粒实收含水率与模拟含水率间存在极显著的线性关系(图2), 线性方程决定系数R2为0.916 (n = 45), 均方根误差RMSE为1.217。表明不同品种籽粒含水率模型具有较高的模拟精度。

由于积温资源不同, 2个省区试点实收籽粒含水率也存在极显著差异(P<0.01)。内蒙古试验点的籽粒含水率介于22.6%~30.2%之间, 高于辽宁试点17.6%~28.2%的含水率范围。模型的模拟结果较好地反映出气候资源不同造成的籽粒含水率差异(图2), 表明含水率模拟模型适于在该区域应用。

图2

新窗口打开|下载原图ZIP|生成PPT
图22013-2017年辽河流域不同品种机械粒收实测籽粒含水率与模拟含水率的关系

Fig. 2Relationships between observed and simulated moisture contents of different cultivars in mechanical grain harvest, which collected at seven locations in Liao River Basin from years 2013 to 2017



2.2 不同区域玉米品种积温需求差异

2017年铁岭、开鲁两地共用的8个品种播种到吐丝、吐丝到生理成熟和播种到生理成熟所需活动积温及方差分析如表3所示。同一年份不同品种之间在从播种至吐丝、吐丝到生理成熟和播种到生理成熟等各阶段所需积温差异显著(P<0.05); 而同一品种各阶段所需积温在区域间差异不显著(P>0.05), 说明不同区域同一品种从播种到吐丝、吐丝到生理成熟及播种到生理成熟所需积温相对稳定, 可以利用铁岭、开鲁两地各品种测定的生育期积温需求在区域内估算玉米生育进程。

Table 3
表3
表3不同玉米品种不同区域各生育时期积温需求
Table 3Accumulated temperature requirement during growth stages of different maize cultivars at different areas (°C d)
地点
Location
品种
Hybrid
播种-吐丝所需积温
Accumulated temperature from sowing
to silking
吐丝-生理成熟所需积温
Accumulated temperature from silking to physiological maturity
播种-生理成熟所需积温
Accumulated temperature from sowing to physiological maturity
内蒙古通辽市开鲁县
Kailu county, Tongliao city, Inner Mongolia autonomous region
华美1号 Huamei 11623.71334.52938.2
迪卡159 Dika 1591646.71552.93156.6
东单913 Dongdan 9131624.61350.52954.2
泽玉501 Zeyu 5011646.71520.03123.7
泽玉8911 Zeyu 89111646.71484.43088.1
东单1331 Dongdan 13311720.61617.73378.4
优迪919 Youdi 9191695.81611.83378.4
翔玉998 Xiangyu 9981695.81611.83378.4
辽宁省铁岭市铁岭县
Tieling county, Tieling city, Liaoning province
华美1号 Huamei 11616.91331.13078.2
迪卡159 Dika 1591644.91550.23306.4
东单913 Dongdan 9131644.91331.13087.2
泽玉501 Zeyu 5011673.51550.23306.4
泽玉8911 Zeyu 89111644.91495.33251.4
东单1331 Dongdan 13311700.91683.33439.5
优迪919 Youdi 9191700.91683.33439.5
翔玉998 Xiangyu 9981700.91683.33439.5
区域间 Interregionalnsnsns
不同品种 Different hybrid***
* Indicates the difference was significant at the 0.05 probability level.
*表示在0.05水平上差异显著。

新窗口打开|下载CSV

基于上述结果, 利用试验获取的播种、出苗、吐丝、生理成熟等关键生育期记载数据, 以及各品种的籽粒含水率预测模型, 分别计算各品种不同生育阶段的积温需求。选取2017年首次国审的宜机收品种德育919、泽玉8911、吉单66和京农科728, 与当地主栽的辽单575 (辽宁)、京科968 (内蒙古通辽和赤峰)对比分析。根据试验记载的生育期数据, 计算各品种自播种至吐丝期的积温需求, 再利用籽粒含水率预测模型, 估算自吐丝至达到机械粒收适宜含水率(25%)所需要的活动积温, 两者相加得到播种至适宜机械粒收时期所需活动积温[9,10](表4)。结果显示, 播种至籽粒含水率降至25%活动积温, 德育919为3122°C d, 京农科728为3178°C d, 属低于3200°C d积温的品种; 泽玉8911为3331°C d, 吉单66为3356°C d, 属低于3400°C d积温的品种; 当地主推品种辽单575为3558°C d, 京科968为3697°C d, 积温需求均大于国审宜机收品种200°C d以上。

Table 4
表4
表4不同玉米品种在不同阶段对活动积温的需求
Table 4Demands for actively accumulated temperature at different stages of different maize cultivars (°C d)
品种
Hybrid
播种-出苗
Sowing-Emergence
出苗-吐丝
Emergence-Silking
吐丝-生理成熟
Silking-Physiological maturity
吐丝-含水率25%
Silking-25% MC
播种-含水率25%*
Sowing-25% MC*
德育919 Deyu 9192371366135115193122
京科728 Jingke 7284701126149715823178
泽玉8911 Zeyu 89112651411157816553331
吉单66 Jidan 663101395166216513356
辽单575 Liaodan 5753791419165517603558
京科968 Jingke 9683791529162217893697
MC: moisture content. * There are 0-3 days interval between the silking date and the pollination date because of the controlled pollination.
*本试验在吐丝后进行统一授粉, 吐丝期和授粉日期之间有0~3 d的间隔。

新窗口打开|下载CSV

2.3 不同玉米品种适宜收获期的时空分布

基于区域内常年播种日期分析、不同品种降至适宜粒收含水率积温以及区域内近54年气候数据资料, 估算降至适宜机械粒收籽粒含水率25%日期的空间分布, 表明4个国审宜机收品种中, 德育919和京农科728, 籽粒脱水速率较快, 在9月中下旬即可在辽河流域大部降至25%含水率, 包括内蒙古辽河流域中部部分地区、辽宁南部地区、吉林部分地区, 仅辽河流域西部地区需延后至10月中旬达到。泽玉8911和吉单66脱水速率较上述两品种慢, 辽河流域大部地区需在10月上中旬降至25%含水率, 而流域西部地区无法在11月前脱水至适宜含水率水平(图3)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3辽河流域春玉米国审宜机收品种籽粒降水至25%的时间分布图

Fig. 3Time map when grain moisture content reduces to 25% of four national trial maize cultivars suitable for mechanical grain harvesting in Liao River Basin



辽单575和京科968分别是辽河流域辽宁及内蒙通辽、赤峰地区种植面积较大的主栽品种。基于两地生育期及籽粒脱水动态观测结果(图4), 这两品种虽然在当地普遍种植, 但其生育期长、籽粒脱水较慢, 除辽宁中部的营口、鞍山至沈阳一线地区能够在10月中下旬达到适宜机械粒收的含水率要求外, 其他大部地区难以在11月前常规收获期实现高质量的机械粒收。

图4

新窗口打开|下载原图ZIP|生成PPT
图4辽河流域主栽玉米品种籽粒降水至25%的时间分布图

Fig. 4Time map when grain moisture content reduces to 25% of two main maize cultivars in Liao River Basin



就区域总体而言, 与籽粒脱水较快的德育919相比, 京农科728籽粒含水率降至25%的时间约晚3~6 d, 平均4 d; 泽玉8911约晚8~15 d, 平均晚13 d; 而吉单66约晚12~22 d, 平均晚19 d。而当地主栽品种辽单575和京科968, 较国审粒收品种的平均宜机收时间晚约17~36 d, 平均约30 d。

3 讨论

籽粒含水率高低与机械粒收的籽粒破碎率、杂质率和损失率密切相关[6,7], 是影响机械粒收质量、制约机械粒收技术推广的重要因素。前人研究表明, 籽粒含水率在17%~25%之间进行机械粒收作业, 破碎率、杂质率和损失率等机收质量指标较高, 能够达到国标要求[8,10]。当籽粒含水率降至25%左右时收获, 可协调适期早收、提高收获质量、降低烘干成本之间的矛盾, 是判定玉米机械粒收时间的关键标准, 也是本研究采用的适宜收获期的判定指标。在辽河流域主要玉米产区内蒙古及辽宁省的机械粒收品种鉴选和技术示范研究显示[3,5], 籽粒破碎和产量损失是区域内机械粒收所面临的主要质量问题, 与收获时籽粒含水率偏高密切相关。其主要问题, 一是当地主栽玉米品种的生育期偏长、脱水速率较慢, 二是区域内机械粒收时期偏早。因此, 本研究围绕区域内主要种植品种的脱水动态, 分析其达到适宜机械粒收含水率要求的时间, 以明确区域适宜品种的筛选条件及其合理的收获时期。

本研究基于开鲁、铁岭两地不同品种籽粒脱水动态观测试验, 和Logistic Power模型, 分析并建立了各品种籽粒含水率模型, 可以很好地模拟春玉米的籽粒含水率变化过程, 效果较好。表明用Logistic Power模型模拟籽粒含水率变化过程具有极佳的区域生态条件和栽培模式的适应性。以此为基础, 明确了区域内主栽品种的脱水特性及降至机械粒收适宜含水率的积温需求。本研究与黄淮海夏玉米区研究结果相比较[21,23], 辽河流域主栽品种自播种至25%含水率的积温需求在3100~3700°C d, 明显高于黄淮海区品种。特别是在两种熟制模式下共有品种京农科728和辽单575的积温需求差异明显。其中, 京农科728在辽河流域春播一熟制模式下, 自授粉至生理成熟的积温需求为1497°C d, 至25%含水率的积温需求为1582°C d; 在黄淮海区夏播两熟制模式下, 至生理成熟的积温需求为1200°C d, 至25%含水率的积温需求为1354°C d, 两地相差297°C d和228°C d。而辽河流域主栽品种辽单575两个阶段积温需求分别为1655°C d和1760°C d, 在黄淮海区则表现为1389°C d和1528°C d, 两地相差266°C d和232°C d。表明虽然两种生态环境和熟制模式下籽粒脱水的动态趋势相似, 但脱水进程有差异, 后续可开展相关研究, 深入分析其中的生理机制和限制因子, 为选育和配置宜机收品种、收获期决策、栽培技术改进和扶持政策制定提供理论依据, 有效推动玉米机械粒收技术在我国各产区应用推广。

辽河流域处于东北玉米产区南部, 玉米生产以春播一熟制为主, 热量资源相对优越[25]。区域内以辽宁中部营口、鞍山、沈阳地区积温资源最为丰富, 其他地区渐次减少。传统生产方式下, 玉米播期集中在4月下旬至5月中旬之间, 常年收获期在10月上、中旬, 期间活动积温在3100~3600°C d之间, 能够满足区域内主要品种正常的生理成熟和大部分品种脱水至25%含水率, 说明辽河流域热量资源不是收获期籽粒含水率高的最关键限制因素。但从品种的脱水特性分析, 当前主栽的辽单575和京科968虽然熟期与区域热量资源匹配较好, 但生理成熟期籽粒含水率较高, 且脱水速率较慢, 难以在当地常规收获期内降至25%的籽粒含水率。2017年首批国审宜机收品种中, 德育919、京农科728脱水较快, 在大部地区可于9月中下旬达到25%含水率要求; 泽玉8911、吉单66脱水则相对较慢, 可于10月上中旬达到25%含水率要求。可见, 更新当地的主栽品种, 选择生理成熟期与当地积温资源相匹配, 且生理成熟时籽粒含水率较低、后期籽粒脱水快的品种, 可以在辽河流域实现高质量的机械籽粒收获。同时, 根据各地的积温资源情况, 合理确定机械粒收时期, 为籽粒充分成熟和熟后脱水留足时间, 可有效降低收后烘干和储运的成本。

玉米籽粒脱水过程, 不仅受温度条件驱动, 还受大气相对湿度、降水、风速等多种气象因素影响[29,30]。特别是生理成熟后的物理散失过程中[31], 籽粒脱水速率与大气的饱和气压差、干湿球温度差和相对湿度密切相关[32]。针对辽河流域温度资源相对丰富的区域特点, 以驱动籽粒脱水的主控因素入手开展分析, 暂未考虑相对湿度、降水、风速等其他气象因素对籽粒脱水的影响, 后续研究还需要结合更为精细的设计试验加以解决。

4 结论

研究分析了辽河流域29个玉米品种的籽粒脱水特性并分别建立了含水率预测模型。以多年多点籽粒含水率测定数据对预测模型的精度进行了验证, 并分析了6个典型品种常年达到适宜机械粒收日期的空间分布规律。国审宜机收品种可以在9月下旬至10月上旬达到适宜机械粒收的籽粒含水率条件, 较当地主栽品种早20~30 d。根据辽河流域积温条件, 合理更新品种、确定机械粒收时期, 可有效提高机械粒收质量, 降低收后烘干和储运的成本, 有助于提高当地玉米生产效益。

致谢: 感谢国家玉米产业技术体系生产调研提供的辽河流域玉米播种日期的数据。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

张东兴 . 农机农艺技术融合推动我国玉米机械化生产的发展
农业技术与装备, 2011, ( 9):22-25.

[本文引用: 1]

Zhang D X . Integration of agricultural machinery and agricultural technology to promote the development of corn mechanized production in China
Agric Technol Equipment, 2011, ( 9):22-25 (in Chinese).

[本文引用: 1]

李少昆 . 我国玉米机械粒收质量影响因素及粒收技术的发展方向
石河子大学学报(自然科学版), 2017,35:265-272.

[本文引用: 1]

Li S K . Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology
J Shihezi Univ (Nat Sci), 2017,35:265-272 (in Chinese with English abstract).

[本文引用: 1]

李少昆, 王克如, 王延波, 赵海岩, 沈玉忠, 蔡丹丹, 肖万欣, 姜文野, 黄兆福, 翟立超, 谢瑞芝, 侯鹏, 明博 . 辽宁中部地区玉米机械粒收质量及其限制因素研究
作物杂志, 2018, ( 3):162-167.

[本文引用: 2]

Li S K, Wang K R, Wang Y B, Zhao H Y, Shen Y Z, Cai D D, Xiao W X, Jiang W Y, Huang Z F, Zhai L C, Xie R Z, Hou P, Ming B . Research on the quality of maize mechanical grain harvest and its influencing factors in the middle Liaoning province
Crops, 2018, ( 3):162-167 (in Chinese with English abstract).

[本文引用: 2]

李少昆, 王克如, 高聚林, 李金琴, 黄兆福, 杨飞, 彭晓红, 姚振坤, 张国福, 张建军, 杨亚文, 王宇飞, 谢瑞芝, 侯鹏, 明博 . 内蒙古玉米机械粒收质量及其影响因素研究
玉米科学, 2018,26(4):68-78.

[本文引用: 1]

Li S K, Wang K R, Gao J L, Li J Q, Huang Z F, Yang F, Peng X H, Yao Z K, Zhang G F, Zhang J J, Yang Y W, Wang Y F, Xie R Z, Hou P, Ming B . Study on maize mechanical grain harvest in Inner Mongolia
J Maize Sci, 2018,26(4):68-78 (in Chinese with English abstract).

[本文引用: 1]

王克如, 李少昆, 王延波, 赵海岩, 沈玉忠, 蔡丹丹, 肖万欣, 姜文野, 黄兆福, 翟立超, 李璐璐, 谢瑞芝, 侯鹏, 明博 . 辽宁中部适宜机械粒收玉米品种的筛选
作物杂志, 2018, ( 3):97-102.

[本文引用: 2]

Wang K R, Li S K, Wang Y B, Zhao H Y, Shen Y Z, Cai D D, Xiao W X, Jiang W Y, Huang Z F, Zhai L C, Li L L, Xie R Z, Hou P, Ming B . Research on maize cultivar screening suitable for mechanical grain harvest in the middle Liaoning province
Crops, 2018, ( 3):97-102 (in Chinese with English abstract).

[本文引用: 2]

李少昆, 王克如, 谢瑞芝, 李璐璐, 明博, 侯鹏, 初振东, 张万旭, 刘朝巍 . 玉米子粒机械收获破碎率研究
作物杂志, 2017, ( 2):76-80.

[本文引用: 2]

Li S K, Wang K R, Xie R Z, Li L L, Ming B, Hou P, Chu Z D, Zhang W X, Liu C W . Grain breakage rate of maize by mechanical harvesting in China
Crops, 2017, ( 2):76-80 (in Chinese with English abstract).

[本文引用: 2]

王克如, 李少昆 . 玉米籽粒机械收获破碎率研究进展
中国农业科学, 2017,50:2018-2026.

[本文引用: 2]

Wang K R, Li S K . Progresses in research on grain broken rate by combine harvesting maize
Sci Agric Sin, 2017,50:2018-2026 (in Chinese with English abstract).

[本文引用: 2]

柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆 . 玉米机械籽粒收获质量现状及其与水分含量的关系
中国农业科学, 2017,50:2036-2043.

[本文引用: 2]

Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K . Current status of maize mechanical grain harvesting and its relationship with grain moisture content
Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract).

[本文引用: 2]

李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆 . 夏玉米机械粒收质量影响因素分析
中国农业科学, 2017,50:2044-2051.

[本文引用: 2]

Li L L, Lei X P, Xie R Z, Wang K R, Hou P, Zhang F L, Li S K . Analysis of influential factors on mechanical grain harvesting quality of summer maize
Sci Agric Sin, 2017,50:2044-2051 (in Chinese with English abstract).

[本文引用: 2]

李璐璐, 薛军, 谢瑞芝, 王克如, 明博, 侯鹏, 高尚, 李少昆 . 夏玉米籽粒含水率对机械粒收质量的影响
作物学报, 2018,44:1747-1754.

[本文引用: 3]

Li L L, Xue J, Xie R Z, Wang K R, Ming B, Hou P, Gao S, Li S K . Effects of grain moisture content on mechanical grain harvesting quality of summer maize
Acta Agron Sin, 2018,44:1747-1754 (in Chinese with English abstract).

[本文引用: 3]

赵明, 李少昆, 董树亭, 张东兴, 王璞, 薛吉全, 高聚林, 孙士明, 张吉旺, 刘鹏, 刘永红, 王永军 . 美国玉米生产关键技术与中国现代玉米生产发展的思考——赴美国考察报告
作物杂志, 2011, ( 5):1-3.

[本文引用: 1]

Zhao M, Li S K, Dong S T, Zhang D X, Wang P, Xue J Q, Gao J L, Sun S M, Zhang J W, Liu P, Liu Y H, Wang Y J . The key technology of American maize production and the development of modern maize production in China—a study report after visiting the United States
Crops, 2011, ( 5):1-3 (in Chinese with English abstract).

[本文引用: 1]

李少昆 . 美国玉米生产技术特点与启示
玉米科学, 2013,21(3):1-5.

[本文引用: 1]

Li S K . Characteristics and enlightenment of corn production technologies in the U.S
J Maize Sci, 2013,21(3):1-5 (in Chinese with English abstract).

[本文引用: 1]

刘显君, 王振华, 王霞, 李庭锋, 张林 . 玉米籽粒生理成熟后自然脱水速率QTL的初步定位
作物学报, 2010,36:47-52.

[本文引用: 1]

Li X J, Wang Z H, Wang X, Li T F, Zhang L . Preliminary localization of natural dehydration rate QTL of maize kernel after physiological maturity
Acta Agron Sin, 2010,36:47-52 (in Chinese with English abstract).

[本文引用: 1]

李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆 . 黄淮海夏玉米生理成熟期子粒含水率研究
作物杂志, 2017, ( 2):88-92.

[本文引用: 1]

Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K . Kernel moisture content of summer maize at physiological maturity in Huanghuaihai region
Crops, 2017, ( 2):88-92 (in Chinese with English abstract).

[本文引用: 1]

Crane P L . Factors associated with varietal differences in rate of field drying in corn
Agron J, 1959,51:318-320.

DOI:10.2134/agronj1959.00021962005100060003xURL [本文引用: 1]
Synopsis: Husk and shank characteristics and shape or size of ear were not found to be major factors associated with differing rates of drying among strains of corn.

Plett S . Corn kernel breakage as a function of grain moisture at harvest in a prairie environment
Can J Plant Sci, 1994,74:543-544.

DOI:10.4141/cjps94-097URL [本文引用: 1]
The relationship between grain moisture at harvest and the amount of kernel cracking was evaluated at Brandon, Manitoba. Grain moisture at harvest was closely correlated to percentage kernel cracking. Least amount of kernel cracking occurred with grain moisture ranging from 16.7% for K730 to 22.1% for 3979.

Borrás L, Westgate M E . Predicting maize kernel sink capacity early in development
Field Crops Res, 2006,95:223-233.

DOI:10.1016/j.fcr.2005.03.001URL [本文引用: 1]
Development of maize ( Zea mays L.) kernels follows a predictable pattern involving rapid increase in dry weight and large changes in water content (WC). We showed previously that final kernel weight (KW) was closely correlated with maximum WC achieved during rapid grain filling. The objectives of the current work were (i) to test if percent moisture content (MC, measured on a fresh weight basis) could be used to normalize genetic and environmental variations in kernel development shown to affect final KW and (ii) to determine whether final KW could be predicted from kernel WC prior to rapid grain filling. The data examined included results from five hybrids varying more than 2-fold in final KW grown in the field, and from previously published results. When KW and WC were expressed relative to their maximum values obtained during kernel development, a single model described the relationship between dry weight accumulation and MC for the larger seeded hybrids (199–352 mg kernel 611) and published results (222–359 mg kernel 611). Two smaller seeded yellow-flint popcorn hybrids, however, accumulated less dry matter per unit moisture than expected. Nonetheless, all genotypes exhibited a common developmental relationship between kernel WC (expressed as a percent of the maximum value) and MC under well-watered conditions. A new model was developed to couple this developmental relationship to final KW. This model accurately predicted final KW from kernel WC values measured prior to rapid grain filling (6580% MC; root mean square error, RMSE, of 28.9 mg kernel 611) for all hybrids examined and all published results for which KW and kernel WC data were available. The model also provided a simple means to determine whether final KW was limited by photosynthate supply during kernel development.

Gambin B L, Borras L, Otegui M E . Kernel water relations and duration of grain filling in maize temperate hybrids
Field Crops Res, 2007,101:1-9.

DOI:10.1016/j.fcr.2006.09.001URL [本文引用: 1]
Kernel water relations play a key role in controlling the duration of grain filling. This duration is controlled by the relationship between kernel water and biomass development, as it determines the timing kernels reach a critical percent moisture content (MC, measured on a fresh weight basis) at which biomass accumulation stops. The time in which this critical percent MC is attained can be affected by the timing kernel net water uptake stops (i.e. maximum water content is reached), or by the relationship between water loss and biomass deposition after maximum water content is attained. Which of the two mechanisms could be behind genotypic differences in maize ( Zea mays L.) grain-filling duration was unknown. We also studied the relationship between kernel water and volume development, as it was unknown in this species. Thirteen commercial hybrids were evaluated under different growing environments, and weight, water content and volume of their kernels were measured throughout grain filling. There were no differences among hybrids in their kernel percent MC at physiological maturity ( p > 0.05), showing that hybrid differences in grain-filling duration (from 1117 to 1470 C day) were related to variations in the accumulated thermal time from flowering to this critical percent MC. There were no differences in the accumulated thermal time from silking to kernel maximum water content, and this stage was always reached at the same kernel percent MC (ca. 540 g kg 1). Differences in grain-filling duration were explained by the pattern of percent MC decline after maximum water content was reached. This percent MC decline was dependent upon the relationship between water loss and biomass deposition; the higher the water loss rate and the higher the kernel growth rate the shorter the duration ( r 2 = 0.60; p < 0.001). Maximum kernel volume was achieved after maximum water content, and close to physiological maturity. Hybrids differed ( p < 0.05) in the kernel volume generated after maximum water content, and this was also related to the relationship between biomass and water development late in grain filling. Results showed the importance of understanding and predicting percent MC development throughout grain filling, as there were no differences between hybrids and environments in their kernel percent MC at specific developmental stages (i.e. maximum water content or physiological maturity). Our results highlighted the importance of the relationship between water loss and biomass deposition during late kernel development in the duration of maize grain filling.

王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析
中国农业科学, 2017,50:2027-2035.

[本文引用: 1]

Wang K R, Li S K . Analysis of influencing factors on kernel dehydration rate of maize hybrids
Sci Agric Sin, 2017,50:2027-2035 (in Chinese with English abstract).

[本文引用: 1]

Maiorano A, Fanchini D, Donatelli M . MIMYCS. Moisture, a process-based model of moisture content in developing maize kernels
Eur J Agron, 2014,59:86-95.

DOI:10.1016/j.eja.2014.05.011URL [本文引用: 1]
Moisture content influences harvest timing and the consequent drying process and drying costs, and the development of spoilage fungi during pre- and post-harvest phases. Maize kernel development in the field can be partitioned into three phases: i) lag phase, ii) grain filling and maturation drying, and iii) post-maturity dry-down. A model simulating maize kernel moisture content during maturation can help either monitoring or foreseen maize kernel humidity during the harvest period. Also, it would be useful in simulation studies via crop models to estimate the infield feasibility of harvest but also the interaction with diseases responsible for mycotoxin production, against weather scenarios. A process-based model was developed, called MIMYCS.Moisture. When the hybrids were analyzed all together, MIMYCS.Moisture showed a good general predictive capability with an average error in moisture estimation of +/- 3.28% moisture (considering the root mean square error - RMSE). The model efficiency (EF) was positive (0.85) and the model was able to explain the 89.7% of variation. When the two sub-models were analyzed separately, the RMSE remained approximately at the same level of the general model, while the other indicators changed revealing the different characteristics of the two models. The developmental moisture sub-model has a slight tendency to overestimate, while the dry-down sub-model tended to underestimate final moisture content. However, when the model was analyzed separately for each hybrid, both calibration and validation results suggested that more data are needed to improve the model likely with respect to kernel characteristics of hybrids. Finally, the equilibrium moisture content equation used, taken from industrial drying models, might not be adequate for simulating the field conditions where temperature is well below the one in dryers and environmental air humidity may vary considerably across sites and harvest periods. (C) 2014 Elsevier B.V. All rights reserved.

李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆 . 夏玉米籽粒脱水特性及与灌浆特性关系的研究
中国农业科学, 2018,50:1878-1889.

[本文引用: 4]

Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K . Study on grain dehydration characteristics of maize and its relationship with grain filling
Sci Agric Sin, 2018,50:1878-1889 (in Chinese with English abstract).

[本文引用: 4]

张万旭, 明博, 王克如, 刘朝巍, 侯鹏, 陈江鲁, 张国强, 杨京京, 车淑玲, 谢瑞芝, 李少昆 . 基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析
中国农业科学, 2018,51:1890-1898.

[本文引用: 1]

Zhang W X, Ming B, Wang K R, Li C W, Hou P, Chen J L, Yang J J, Che S L, Xie R Z, Li S K . Analysis of the suitable sowing time and harvesting period of machine-harvested maize based on the characteristics of mature period and grain dehydration
Sci Agric Sin, 2018,51:1890-1898 (in Chinese with English abstract).

[本文引用: 1]

李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆 . 黄淮海夏玉米品种脱水类型与机械粒收时间的确立
作物学报, 2018,44:1764-1773

[本文引用: 2]

Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K . The establishment of dehydration type and mechanical grain collecting time of Huang-Huai-Hai summer maize
Acta Agron Sin, 2018,44:1764-1773 (in Chinese with English abstract).

[本文引用: 2]

佟屏亚 . 中国玉米种植区划. 北京: 中国农业科技出版社, 1992. pp 6-16.
[本文引用: 1]

Tong P Y. Maize Plant District in China. Beijing: Chinese Agricultural Science and Technology Press, 1992. pp 6-16(in Chinese).
[本文引用: 1]

李依, 王秀芬, 杨艳昭, 林裕梅 . 西辽河流域玉米气候生产潜力变化分析
农业现代化研究, 2018,39:239-247.

[本文引用: 2]

Li Y, Wang X F, Yang Y Z, Lin Y M . Analysis of change of climatic productivity potential of maize in Xiliao River Basin
Res Agric Modernization, 2018,39:239-247 (in Chinese with English abstract).

[本文引用: 2]

China Meteorological Data Sharing Service System. National Meteorolgical Information Center
.Beijing[ 2017-03-15]. .

URL [本文引用: 1]

李军, 游松财, 黄敬峰 . 中国1961-2000年月平均气温空间插值方法与空间分布
生态环境, 2006,15(1):109-114.

[本文引用: 1]

Li J, You S C, Huang J F . Spatial in interpolation method and spatial distribution characteristics of monthly mean temperature in China during 1961-2000
Ecol Environ, 2006,15(1):109-114 (in Chinese with English abstract).

[本文引用: 1]

杨扬, 杨建宇, 李绍明, 张晓东, 朱德海 . 玉米生育期空间插值方法比较
农业工程学报, 2009,25(9):163-167.

[本文引用: 1]

Yang Y, Yang J Y, Li S M, Zhang X D, Zhu D H . Comparison of spatial interpolation methods for maize growth period
Trans CSAE, 2009,25(9):163-167 (in Chinese with English abstract).

[本文引用: 1]

Nielsen R L. Field dry down of mature corn grain
Corny News Network: Purdue University Department of Agronomy, 2011 [ 2018-06-08]. .

URL [本文引用: 1]

Schmidt J L, Hallauer A R . Estimating harvest date of corn in the field
Crop Sci, 1966,6:227-231.

DOI:10.2135/cropsci1966.0011183X000600030003xURL [本文引用: 1]
Moisture data for 12 years from the period 1940 to 1963 were summarized to determine the relation between kernel moisture and time. The rate of kernel moisture reduction was determined for five arbitrary moisture phases and used to predict when specified moisture levels would be attained from pollination date. Correlation studies were made between rate of kernel moisture reduction and four weather factors (air temperature, saturation deficit, wet bulb depression, and relative humidity).

高尚, 明博, 李璐璐, 谢瑞芝, 薛军, 侯鹏, 王克如, 李少昆 . 黄淮海夏玉米籽粒脱水与气象因子的关系
作物学报, 2018,44:1755-1763.

[本文引用: 1]

Gao S, Ming B, Li L L, Xie R Z, Xue J, Hou P, Wang K R, Li S K . Relationship between grain dehydration and meteorological factors in the Huang-Huai-Hai summer maize
Acta Agron Sin, 2018,44:1755-1763 (in Chinese with English abstract)

[本文引用: 1]

明博, 王克如, 谢瑞芝, 侯鹏, 李少昆 . 玉米子粒脱水研究与机械粒收对策
作物杂志, 2018, ( 6):17-21.

[本文引用: 1]

Ming B, Wang K R, Xie R Z, Hou P, Li S K . Researches on maize Grain dehydration and countermeasures for mechanical grain harvesting
Crops, 2018, ( 6):17-21 (in Chinese with English abstract).

[本文引用: 1]

相关话题/机械 生理 资源 作物 数据